‘Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2015)

F. Jaillet, G. Zachmann, and F. Zara (Editors)

Brownian dynamics simulation on the GPU: virtual colloidal
suspensions

Cong Tam Tran'2, Benoit Crespinl, Manuella Cerbelaud” and Arnaud Vidf:coq2

1'Univ. Limoges, CNRS, XLIM/DMI, UMR 7252, F-87000 Limoges, France
2Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, F-87000 Limoges, France

(b)

© @

Figure 1: (a) Initial state of a 60K virtual colloidal suspension (b) Brownian Dynamics simulation of aggregation (occurs
within approximately 1 second) (c) Virtual colloidal suspension with a bimodal size distribution (d) Microscopic image of a real

colloidal suspension where alumina and silica particles aggregate

Abstract

Brownian Dynamics simulations are frequently used to describe and study the motion and aggregation of colloidal
particles, in the field of soft matter and material science. In this paper, we focus on the problem of neighbourhood
search to accelerate computations on a single GPU. Our approach for one kind of particle outperforms existing
implementations by introducing a novel dynamic test. For bimodal size distributions we also introduce a new
algorithm that separates computations for large and small particles, in order to avoid additional friction that is

known to restrict diffusive displacements.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation 1.3.8 [Computer Graphics]: Applications—I.6.8 [Simulation and modeling]:
Types of Simulation—Parallel J.2 [Computer Applications]: Physical Sciences and Engineering—Chemistry

1. Introduction

The Brownian motion is widely observed in nature. It de-
scribes the random motion of small particles suspended in a
fluid, such as smoke particles in the air or colloids in lig-
uids. Colloidal suspensions, i.e. small solid particles sus-
pended in a liquid, are employed in very different fields such
as the food industry, biological analyses or industrial pro-
cesses. For example, they are widely used in ceramic shaping
processes (casting, ink-jet printing, stereolithography, etc.)

(© The Eurographics Association 2015.

DOI: 10.2312/vriphys.20151332

to produce parts of complex geometry and good quality. In
this area, it is important to control the suspension behaviour.
Indeed, each process needs specific rheological properties
and the particle arrangement in suspension greatly influences
the final properties (electrical, thermal, mechanical and op-
tical) of the ceramic parts. Since a lot of parameters such as
pH, ionic strength or external fields influence this behaviour,
numerical simulations constitute a very useful tool to in-
vestigate and discriminate the role of each parameter. The

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20151332

32 C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions

simplest simulation method to study colloidal suspensions
is Brownian Dynamics (BD) [AT87]. In this technique, the
fluid is represented as a continuum medium and its effect
upon the colloids is represented by a combination of fric-
tional (Z;(¢)) and random forces (I';). The motion of a col-
loid i is described by the Langevin equation, where v; is its
velocity, m; its mass, ¢ the time, 7;; the distance between col-
loids i and j, and F;; the interaction force between i and j:

dv;
m;

dit) =Y Fj(rij() + Ei(0) + Ti(r) M
J

By integrating this equation, BD simulations provide the
temporal evolution of the colloid positions in the suspen-
sion. This colloidal motion virtually reproduced is very use-
ful to understand the aggregation process represented in
Figure la and 1b, especially when experimental character-
izations are difficult or impossible to perform. BD simula-
tions have been successfully used to study different suspen-
sions [KHB*03, CVA*08, PVR*10]. One of the main draw-
backs of the BD technique is its crude description of the
hydrodynamics. As a consequence, it is not appropriate to
study concentrated or sheared suspensions. An other conse-
quence is that BD fails to properly simulate colloidal sus-
pensions with a bimodal size distribution of colloids charac-
terized by two very different sizes, as shown on Figures 1c
and 1d. The diffusivity of a large particle surrounded by
tenths of small ones is underestimated in an unphysical man-
ner [CVAFO09]. This is because the BD technique adds all the
particle frictions, which lead to a caging effect. While it is
possible to better describe the hydrodynamics in the BD sim-
ulations, using for instance the Rotne-Prager diffusion ten-
sor [JBTK99], this dramatically increases the computation
time.

The present paper deals with a GPU implementation of
BD and a novel algorithm capable of efficiently eliminating
this unphysical caging effect. Most of the problems encoun-
tered are related to more general issues found in particle-
based dynamic simulation and physical interaction anima-
tion. Particle systems have been made popular in computer
graphics by the early works of Reeves [Ree83], and particle-
based representations are now largely used in many differ-
ent fields ranging from autonomous agents to neural net-
works [KE95]. A good example is fluid simulations, where
particles can be used to represent independent volumes of
fluid with constant mass that interact with each other and
generate realistic motion [I0S*14]. Such simulations have
to cope with problems similar to those encountered with BD,
where the main bottleneck is usually neighborhood search.
This step of the simulation allows to determine the set of
neighbouring particles that are close to a given particle, in
order to compute their interactions and hence its motion.

As this step is repeated for all particles and for all time
steps, different strategies and data structures were investi-
gated over the years, preferably with efficient implementa-

tions on parallel architectures such as modern GPUs. Most
particle-based fluid simulations rely on uniform grids (also
called cell lists), where particles are spatially distributed in
regular cells subdividing the simulation domain. With an ap-
propriate size of cells, querying neighbours of a given par-
ticle only requires to check in the cell of this particle and
in the neighbouring cells. On the other hand, BD imple-
mentations prefer another approach called neighbour lists
(or Verlet lists), which store the neighbours of each parti-
cle [AT87]. These lists are updated every n;-th time step.
This value needs to be set carefully by the user: the larger
the value of n;, the better the efficiency of this approach over
uniform grids which are updated at each time step. However,
if n; is too large a lot of unnecessary neighbours will be con-
sidered for distance computations. Recent GPU implementa-
tions allow simulations to run on relatively cheap hardware
when compared to massively parallel supercomputers with
high-level computational capacity. Neighborhood search is
usually performed through a combination of neighbour lists
which avoids GPU/CPU transfers and improves memory co-
herence, with uniform grids for updates.

This paper describes first a hybrid neighbour list / uni-
form grid approach for BD simulations with one type of par-
ticles. The main idea is to replace the conservative strategy
for neighbour list updates by an on-the-fly approach where
the need for updates is tested at each time step. We show that
our implementation results in about 20% speedup as com-
pared to previous works. We then extend our approach to
two types of particles with very different sizes, and address
the aforementioned caging problem.

2. Related works
2.1. Brownian dynamics

Brownian dynamics simulations have been developed in the
70’s. One of the most famous algorithms was developed by
Ermark [EM78]. By expressing the frictional term by the
Stokes law (Z;(¢) = —;v; with {; = 6nna;, where 1 is the
solvent viscosity and a; the radius of colloid) and by con-
sidering a time step larger than the velocity relaxation time
of the colloid (1, = m;/C;), Equation 1 can be simplified as
follows:

d}’,‘(l)

dt

1 1
==Y Fj(rij(t)) + = Ti(1), 2
Ci j Ci
where r;(t) is the position of a particle over time. By inte-
grating this equation with a white noise algorithm [MP89],
the following iterative equation is obtained:

2kp

ri(t+6r) =ri(t) + 2

2 1
(802 + & LA (rij(1)8
J
3)
with & the time step, kg the Boltzmann constant, T' the tem-
perature and Y; uncorrelated Gaussian-distributed random
numbers with an average of zero and a standard deviation of

(© The Eurographics Association 2015.

C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions 33

1. When the time step is lower than the velocity relaxation
time of the colloid the full Equation 1 is integrated:

VKT 1)1 2y,

V,'(l‘-f—ﬁl) = Vi(t)+

% (-in(l) +2Fij(rij(l))> o,
: J
@
ri(t+0t) = ri(t) +vi(t)ot.)

These iterative equations are used in the so-called Langevin
Dynamics simulations.

When the colloids aggregate in the simulation, the aggre-
gation kinetics can be followed by counting the number of
aggregates as a function of time [TVC*13]. If we define an
aggregate as an assembly of at least two colloids and if we
start from a dispersed system, the number of aggregates first
increases and then decreases. The first stage corresponds to
a phase where dimer formation is predominant (two colloids
encounter and aggregate) and the second stage corresponds
to a phase where aggregates coalescence is predominant.
The final stage of the aggregation process is reached when
only one aggregate remains in the simulation.

2.2. Neighborhood search

Brownian and Langevin Dynamics are a particular case of
molecular dynamics simulations (MD). Plimpton [Pli95]
describes different parallel algorithms implemented on su-
percomputers. The best results were achieved when each
processor is assigned a fixed spatial region, compared to
other techniques (one thread per particle, one thread per in-
teraction force). This pioneer work was implemented into
the LAMMPS software [Pli95, Laa] and prefigured recent
GPGPU techniques for MD simulations.

Several works appear in the literature following the
emergence of GPUs with large computational capaci-
ties. In 2008, different implementations of molecular dy-
namics simulations using CUDA were presented [ALT08,
LSVMWOS]. These techniques both rely on Verlet lists
and outperform parallel versions of the LAMMPS soft-
ware running on a distributed memory cluster. Rovigatti
et al [RvRR15] described two variants of one-thread-
per-particle and one-thread-per-interaction-force approaches
called “vertex-based” and “edge-based”, respectively. Au-
thors show that the “edge-based” technique becomes the
most efficient choice for complicated interactions or a lim-
ited number of them between particles, contradicting the
results presented in [Pli95]. There seems to be a consen-
sus in recent approaches to combine Verlet lists with a uni-
form grid to improve shared memory parallelism and effi-
ciency, as presented in [Gon12] and [PSC13]. Finally, a hy-
brid CUDA-MPI implementation distributed on 1024 GPUs
is presented by Tang and Karniadakis [TK13] for large-scale

(© The Eurographics Association 2015.

simulations, which achieves speedups by a factor of 10-30
for a 128-million-particle system. Again, a grid is used to fa-
cilitate the construction of neighbor lists. These techniques
are implemented in several versatile parallelized software
developed for MD simulations with hundreds to millions
of particles, such as Gromacs [BvdSvD95, VDSLH*05],
HOOMD [SHUS10] and LAMMPS.

Fluid simulations also rely on particles to animate smoke,
liquids or more complex fluids. One of the most well known
models, Smoothed Particle Hydrodynamics (or SPH), uses
interpolation kernels presented by Monaghan [Mon92] then
Miiller et al [MCGO3]. As with MD, a critical problem
in such simulations concerns neighborhood search. Hierar-
chical tree structures such as KD- or BSP-trees are com-
monly used for CPU-based implementations, but also col-
lision detection and many other applications [EW82]. Multi-
resolution simulations with variable kernel support (hence
variable interaction radii) also rely on hierarchical spatial
structures to improve efficiency [APKGO7].

Neighbour lists, frequently used in MD, could be another
option for fluid simulations but they would suffer from par-
ticles neighborhoods changing rapidly at each iteration. A
uniform grid is usually preferred in parallel approaches be-
cause it fits better to the streaming architecture of modern
GPUs or multi-core CPUs [IABT11]. If the size of grid cells
is chosen to be equal to the maximal size of interpolation
kernels, neighborhood search for a given particle means that
only the cell of this particle and its adjacent cells have to
be queried. Different strategies can be used for the paral-
lel construction of uniform grids, for example index or Z-
index sort [IOS*14]. These approaches align neighbouring
particles into memory, thus improving memory coherence
between concurrent threads. Hash functions can be used to
compute index values for sorting [THM*03]. A typical hash
function will generate a unique hash key for all particles lo-
cated in the same cell:

X ¥ z

hashkey = (p; bJ S p2 bJ @ p3 bJ) mod rg,y (6)
where (x,y,z) is the position of a particle, c¢ is the size of a
cell, p1, p2 and p3 are large prime numbers, and ng,;q is the
number of cells in the grid. This rather inexpensive calcula-
tion allows to recompute the grid at each time step without
degrading performances [I0S* 14].

3. Brownian dynamics simulations with one kind of
particle

In this section we focus on BD simulations with only one
kind of particle, which means that all particles share the
same characteristics (mass, radius, etc). Our approach im-
plements a combination of neighbour lists with a uniform
grid, with a noticeable difference with previous approaches:
instead of using a fixed number of iterations to update neigh-
bour lists, we rely on a test performed at each iteration. Our

34 C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions

results show that this approach outperforms existing meth-
ods and makes our implementation competitive compared to
existing BD software.

Our simulations are developed on the GPU for a simple
aqueous suspension only composed of alumina particles of
diameter d4 = 600 nm. Interactions between particles are
modeled by an attractive short-range generalized Lennard
Jones potential V;;(r) (see the details in Annex). The sim-
ulation is carried out using Equation 3 with a time step of
& =3.685 x 10~ s, which is equivalent to more than 2.5M
iterations per second. The density ¢ (also called “volume
fraction”) of the BD simulation is the ratio of the total vol-
ume of particles over the volume of the simulation box.

The cut-off radius Rc represents the maximal interaction
radius. If a uniform grid is implemented to accelerate neigh-
bourhood search, the cell size is usually chosen equal to Rc¢.

If neighbourhood search relies on neighbors lists, addi-
tional parameters are needed as shown in Figure 2. The list
sphere radius Ry, (Ry, > R¢) represents the maximal distance
below which particles must be considered as potential neigh-
bours. This parameter can be set freely by the user, but its
value is of great importance when considering how many
neighbour list updates will be necessary [AT87]. If R;, ~ R,
then potential neighbours change very rapidly and neighbour
lists must be recomputed at almost each iteration. Inversely,
if Rz >> R then potential neighbours do not change too of-
ten but their number is very high and induces high memory
costs and unnecessary computations, because many poten-
tial neighbours will have to be tested although their distance
is much larger than Rc. One way to efficiently compute Ry,
is derived from Equation 3:

3kpT

mi

Ry = RC+2Vavgni8t y Vavg = @)
where n; is a fixed number of iterations and vqyg is the av-
erage velocity of a particle during one iteration of the sim-
ulation. If we let Ry,.;; = Rp, — Rc, then it is safe to assume
that neighbour lists must be recomputed after n; iterations,
because in the meantime particles can travel a distance up to
Rgperr/2. This scenario is illustrated in Figure 2 with particle
2. The same idea is used by most existing GPU-based MD
implementations described in the previous section. Again we
must choose a value for n; that will not induce too frequent
updates nor unnecessary distance computations.

The main problem is illustrated in Figure 2: since particles
have a Brownian motion, worst-case scenarios where a par-
ticle moves straightforward during several iterations almost
never happen. In average, particles will spend much more
than n; iterations before the covered distance equals R, /2.
In non-parallel implementations, updating neighbour lists
only occurs if the sum of the two maximal displacements
during an iteration is above Ry,.;; [AT87]. We verified this
idea on a 1M particles simulation by computing the number
of iterations needed to travel the distance Rgj;;/2 depend-

Figure 2: A particle (1) with an initially empty neighbour
list within radius Ry. If particles 1 and 2 travel the distance
Rype11/2 towards each other, then their neighbour lists must
be recomputed since they would lie within interaction range
Rc. However, BD particles will likely spend many iterations
moving around their initial position before covering distance
Rpe/2, as shown with particle 3.

ing on different values of n;. The results are summarized
on Table 1: we can conclude from this experiment that the
“real” average number of iterations is far higher, especially
for large values of n;.

Iterations needed to reach Ry, /2
n; | Min | Max Avg Avg comp. time
5 0 9 7.22 22.23 ms
8 2 25 17.8 14.9 ms
11 16 52 41.5 12.7 ms
12 18 66 51.0 12.5 ms
13 | 37 77 61.3 12.5 ms
20 | 107 | 209 161 12.8 ms
30 | 187 | 384 323.9 13.3 ms

Table 1: Summary of our experiments with a variable num-
ber of iterations n; and the “real” number of iterations
needed to reach the corresponding value R,e;1/2 (1M par-
ticles, O =15%). The final column shows the average com-
putation time for an iteration which helps to select the most
appropriate value for n; (12 in this case).

3.1. Hybrid Neighbor / Cell approach for
neighbourhood search

Our implementation relies on a hybrid approach that com-
bines neighbour lists and uniform grids. Following the ex-
periments presented in Table 1, the main difference with pre-
vious approaches is that we check if neighbour lists need to
be recomputed. This test is performed at each step because
the displacement of a particle is not bounded. Such a strat-
egy may seem time consuming at first glance: instead of an
automatic update every n; iterations, we must compute the

(© The Eurographics Association 2015.

C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions 35

distance between the current and stored locations of each
particle at each time step. However, our approach is not only
rather inexpensive on the GPU, but it also reduces memory
consumption by limiting the number of potential neighbors.

Algorithm 1 Brownian simulation with one kind of particle

1: updateNeighbourLists = true
2: for all iteration do
3: if updateNeighbourLists = true then

4: sort particles by hash key

5: for all particle i do // parallel kernel
6: previousPos; = position;

7: update NeighbourList;

8: updateNeighbourLists = false

9: for all particle i do // parallel kernel
10: sumForces; =0
11: for all particle j € NeighbourList; do
12: if dist(position;, position;) < Rc then
13: update sumForces;
14: update position;
15: if dist(position;, previousPos;) > Ry /2 then
16: updateNeighbourLists = true

Algorithm 1 summarizes our method, where neighbour
lists update is performed only if necessary. In this first step,
a uniform grid is used along with Equation 6 to compute
hash keys and sort particles. A parallel bitonic sort usually
achieves the best result, as in most GPU-based fluid sim-
ulations [IOS*14]. Updating neighbour lists is also imple-
mented in a parallel kernel, a thread group being launched
for each cell in the grid. This results in high cache-hit rates
due to neighboring particles being closer in GPU memory
and hence faster computations. The final step updates the
positions of each particle by checking all potential neigh-
bours within range Ry stored in the particle’s neighbour list.
The kernel also checks whether neighbour lists should be
updated before the next iteration. One could consider the
use of a bitonic sort at each iteration in order to maintain
the highest cache-hit rates in GPU memory. However sort-
ing particles is one of the most expensive steps, as shown in
Table 2. On this simulation, the sorting step appears very ex-
pensive but its global impact is limited to 5% as it is not exe-
cuted at each time step. It should be noted that the Brownian,
rather local motion of particles also limits the displacements
between neighbouring cells in the uniform grid, and hence
memory divergence.

The maximal size of each neighbour list NLyax is com-
puted by considering the maximal number of particles that
could fit into a sphere of radius Ry using a honeycomb distri-
bution. Memory can then be allocated for neighbouring par-
ticles to all fit into one neighbour list. This maximal size may
seem too large compared to the average number of neigh-
bours during the simulation, resulting in wasted memory. On
the other hand, a re-allocation scheme implemented on the

(© The Eurographics Association 2015.

Avg time | Iterations | Ratio

computeSumForce | 7.15 ms 1 57.7%
updatePosition 3.6 ms 1 29.2%
updateTest 0.4 ms 1 3.2%
bitonicSort 29.5 ms 51 4.6%
updateNeighbours 33.5ms 51 5.3%

Table 2: Average time of computation for the different steps
of Algorithm 1 and global computation ratio (IM particles,
O =15%). The third column shows the average number of
iterations before the corresponding step is effectively com-
puted.

GPU would also be computationally intensive if we were to
apply a less conservative approach.

However, even with our approach there is actually no
good way to automatically find the best value for R;. The
last column on Table 1 shows the impact of parameter n; on
the average computation time for an iteration. An optimum
is obtained here for n; = 12 or 13. In this case we choose
n; = 12 because this further reduces memory consumption,
which also explains why updates occur each 51" steps in
Table 2. For lower values of n;, computation times increase
because updating neighbour lists occur too often. For higher
values, too many distance computations are performed and
more memory is requested but also wasted. In the general
case the optimal value for n; can be determined manually
by running simulations with the same density but a lower
number of particles, since the average number of neighbours
remains approximately the same.

3.2. Implementation details

The global data structure in our implementation relies on
several buffers stored in global GPU memory:

e positions, previous positions, force vectors and hash keys
(3 double4 and one uint per particle)

e neighbour lists (NLmax uint per particle)

e state vector for random Gaussian generation (100 £1loat
per thread)

e various buffers used for bitonic sort

The total size for a typical simulation with 1M particles is
approximately 300 MB. This could be enhanced by consid-
ering single precision only, at least for force computations as
in several MD softwares [VDSLH*05].

Our pseudo-random number generator (PRNG) requires a
state vector of 100 floating-point values that is updated after
each call to generate the next random number. The kernel
implements a scheme called one-PRNG-per-thread which
gives acceptable results for Brownian dynamics [PAG11] by
limiting memory consumption and atomic calls. Still, ran-
dom number generation accounts for almost all the compu-

36 C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions

tation time needed for the updatePosition step in Table 2 and
could be further optimized.

3.3. Results

The curves shown in Figure 3 describe how our BD simu-
lation behave with various densities [TVC*13]. As expected
the number of aggregates grows rapidly until all particles
have at least one close neighbour, then it falls down until
only one main aggregate remains. Density plays a significant
role in this process: the smaller the simulation box, the faster
the convergence of the curve towards 1. The video showing
the evolution of 60K particles with ¢ =15% from Figure 1a
to 1b can be seen at: http://vimeo.com/133039225

14000 ‘ ‘ ‘ ‘
—— density 5% p \
. 120007 density 10% \ |
£10000 - — density 15% / \ 1
iﬁ 8000 density 20% | \\ |
&
o 6000 \ 1
E
E 4000 \ 1
=1
2000 - 1
s \ N
0 I - e L 1 i 1 |
le-06 1e-05 0.0001 0.001 0.01 0.1 1 10

time (s)

Figure 3: Evolution of the number of aggregates during 10s
of our BD simulation on a logarithmic scale with 60K parti-
cles with various densities. An aggregate is composed of two
particles at least.

Our method was implemented with OpenCL and tested on
two NVIDIA GPUs. The Tesla K20m is a high-end profes-
sional graphics card (costs approx. 2,500$) with 13 physical
cores and 5 GB of memory. The GTX690 is twice cheaper
(approx. 1000$), with 8 cores and 4 GB of memory. Fig-
ure 4 demonstrates the scalability of our approach, depend-
ing on the density of the simulation. Variations in compu-
tation times can be related to the results shown in Figure 3
since higher densities induce a faster convergence towards a
stationary state with limited particles displacements.

Table 3 describes how our neighbourhood search ap-
proach outperforms existing strategies used in molecular
or fluid dynamics. In a 1M particles simulation, the worst
results appear when using a uniform grid because of the
bitonic sort step computed at each iteration. The second ap-
proach uses a larger size Ry, but also a conservative test to
check whether the grid should be reordered. In this case low
performances are related to the excessive number of poten-
tial neighbours that must be considered. With the approach
described at the beginning of Section 3, which combines
static neighbour lists and a uniform grid, computation time
is divided by 2. Our approach further reduces this time by
almost 25% by introducing a dynamic conservative test.

50 ‘
—— K20m (5%) -
40— K20m (10%) e
—%— K20m (15%) /
Z30f 5 GTX690 (5%) 1
by GTX690 (10%)
£
320 GTX690 (15%) 1
10 1
e

I I I
200000 500000 le+06 2e+06
number of particles

Figure 4: Average computation time per iteration obtained
with our approach for an increasing number of particles
and various densities. Tests were conducted on two NVIDIA
cards, K20m (2013) and GTX690 (2012)

Neighbourhood search Avg comp. time
Uniform grid with cell size = R¢ 58.5 ms
Uniform grid with cell size = Ry, 33.6 ms
Hybrid approach (static update) 16.5 ms

Our approach 12.5 ms

Table 3: Average computation time for an iteration with
various neighbourhood search strategies (IM particles,
0=15%)

We compared our results with an implementation of Gro-
macs [VDSLH*05] (v5.02) which is the only software avail-
able for such BD simulations. The tests ran on two Intel
Xeon E5-2650-v2 processors with 8 cores each and 8 GB
memory per core. Although it is not a GPU-based architec-
ture, we consider this configuration to be a good equivalent
to our K20m hardware with 3 more cores available and a lot
more memory (but approximately the same price). The ex-
periments were conducted with n; = 10 in single precision,
and a pre-computed Lennard Jones potential to accelerate
computations. Even with such improvements, our approach
is approximately 15% faster (e.g. 14.83ms per iteration for
1M particles were obtained with Gromacs).

4. Brownian dynamics simulations with two Kkinds of
particles

In this section we seek to study more complex and realis-
tic suspensions composed of two kinds of particles, which
have a large size ratio (1/16) and where hetero-aggregation
occurs. As a model, we use the suspensions described
in [CVA*08, CVAF09] composed of large alumina particles
with a radius a4 = 200nm and small silica particles with
a radius ag = 12.5 nm. The alumina particles are positively
charged and silica particles negatively charged. The inter-
actions between particles are described by a DLVO poten-
tial [EGIW95], noted V? Lvo(r), which represents the inter-
actions between oxide particles in suspension (see Annex).

(© The Eurographics Association 2015.

http://vimeo.com/133039225

C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions 37

Step 1

Figure 5: Computation of interaction forces between large
alumina and small silica particles. Top: computation of in-
teraction forces between (1) isolated silica and alumina
shown in red, (2) alumina-alumina in blue and (3) silica-
silica in black. Bottom: after all isolated silica and Silica-
Alumina Complexes (SACs) are displaced, interaction forces
between adsorbed silica and all other particles are com-
puted.

Particles of the same kind tend to repel each other, but ag-
gregation still occurs rapidly due to the attractive force be-
tween silica and alumina. Such simulations result in aggre-
gates that appear visually close to microscopic observations
as shown in Figures 1c and 1d with 82 silica for one alumina
particle.

4.1. Naive approach

The velocity relaxation time of the silica particles is calcu-
lated as T, = 7.63 x 10~ '!'s and for the alumina particles
as Ty = 3.53 x 10~ % s. For BD simulations, the time step
must be larger than both these values, e.g. 6t = 10~ 7s. The
problem with such a large time step is that interaction forces
change significantly for the silica particles, which does not
allow to describe their motion properly. To avoid this ef-
fect, the time step is usually fixed between relaxation times
at & = 5x 107'9 5. The motion of alumina is described
by Langevin dynamics (Equations 4 and 5) and the motion
of silica by Brownian dynamics (Equation 3). The values
of cut-off and neighbour list radii (R¢c and Ry respectively)

(© The Eurographics Association 2015.

now depend on the type of interaction: alumina-alumina,
alumina-silica and silica-silica.

Simulations combining Brownian and Langevin dynamics
are actually known to show that first, silica particles adsorb
at the surface of alumina particles, and then silica-covered
alumina particles aggregate via the adsorbed silica which lie
between them as shown in Figure 5 [CVA*08]. The adsorp-
tion radius Ry is usually set to 1.05(as + ag).

However, with a naive approach which does not take hy-
drodynamics into account the motion of an alumina particle
is reduced by the silica covering it [CVAF09]. The diffusion
coefficient of an isolated alumina particle is Dy = 1.07 X
1072 m?s™!, whereas it drops to D = 1.66 x 1073 m?s~!
when 82 silica particles are adsorbed at the surface. This
phenomenon, also called caging effect, is explained by the
fact that BD techniques add all the particle frictions together.
To remove this artifact, hydrodynamic effects can be in-
serted in the simulation by using for example the Yamakawa-
Rotne-Prager tensor [JBTK99], but at the cost of extra com-
putations. This would also make most existing BD software
impossible to use, unless they run on high-performance su-
percomputers [TK13].

Our method described in the next section addresses this
issue by introducing a novel approach.

4.2. New scheme of simulation

The core of our method is to modify the scheme of simula-
tion by considering each silica-covered alumina particle as a
single entity called Silica-Alumina Complex (SAC). A silica
and an alumina belong to the same SAC if their distance is
below the adsorption radius R4. SACs can move as a whole
in a first step using Langevin dynamics, without considering
any interaction inside R4. The own motion of adsorbed silica
around an alumina inside each SAC has to be computed in a
second step.

A summary of our approach is presented in Figure 5. In
the first step (top draw), interactions forces are computed be-
tween: (1) alumina and isolated silica, (2) alumina and alu-
mina, and (3) silica and silica if at least one of them is iso-
lated. Then all isolated silica and SACs are displaced. The
second step (bottom draw) focuses on the computation of
the remaining interaction forces between adsorbed silica and
all other particles. Displacements of adsorbed silica are then
applied. This motion decomposition prevents additional fric-
tion from restricting the displacements of alumina particles,
without computing hydrodynamic effects.

Our method uses three types of neighbour lists and three
uniform grids for neighbourhood search, one for each inter-
action force. The maximal number of neighbours and the
size of grid cells is given by the corresponding R; value.
The “silica-silica” grid (resp. “alumina-alumina”) stores sil-
ica particles (resp. alumina). Accelerating “alumina-silica”

38 C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions

interactions is only interesting when a large alumina particle
looks for small neighbouring silica. Hence only silica par-
ticles are stored in the “alumina-silica” grid and neighbour
lists. This also allows an alumina to look for adsorbed sil-
ica within radius R4 efficiently in order to update the corre-
sponding SAC. If an adsorbed silica lies within the R4 radius
of multiple SACs, one of them is chosen arbitrarily. This is
the case in Figure 5 for the silica particle located between
the two alumina, which is arbitrarily associated to the left
alumina in Step 1 and moves with the corresponding SAC.

Algorithm 2 Brownian/Langevin simulation with two kinds
of particles
1: for all iteration do
// step 1
for all interaction force do
update neighbour lists if necessary

3

4

5 update SACs composition if necessary
6: for all interaction force do

7 update sumForces for isolated silica
8 update sumForces for SACs

9: update SACs velocities and positions
10: update isolated silica positions

11: // step 2

12: for all interaction force do

13: update neighbour lists if necessary
14: for all adsorbed silica do

15: update sumForces

16: update adsorbed silica positions

Algorithm 2 extends the BD case presented in Section 3
by separating computations. The parallel kernels used for
updating neighbour lists, forces and positions are all derived
from Algorithm 1. They are executed on all particles, ex-
cept during step 2 where only adsorbed silica are consid-
ered. The use of Langevin dynamics for the motion of SACs
also implies extra computations for SACs velocities using
Equation 5. The main difference is that some calls must be
repeated three times, one for each interaction force. Only
the corresponding data structures (grids and neighbour lists)
need to be cached into GPU memory during kernels execu-
tion, but the global number of kernel calls during an iteration
is far more higher than with BD simulations.

4.3. Results and discussion

With a time step of & = 5 x 10~10 s, 2 billions iterations
must be computed for one second of simulation. In these
conditions, an average time of 12.5ms per iteration (ob-
tained with BD simulations) for 1M particles would mean
more than 289 days of computation. Fortunately computa-
tion times can be reduced because the aggregation process
is faster with smaller particles. The characteristic time when
the number of aggregates starts to decrease occurs within

Figure 6: Left: compact aggregate with 8 alumina particles
and an average number of neighbours of 1. Right: linear
aggregate with an average number of neighbours of 1.75

0.1s whereas it was 1s with the first system, but simulating
0.1s still means 200M iterations.

Alumina | Silica | Time/iteration (ms) | Total (days)
200 2969 0.85 1.96
200 29699 2.92 6.76
300 44549 3.87 8.95

Table 4: Average iteration and total time of computation for
Brownian-Langevin simulations of 0.1s

These observations led us to drastically reduce the total
number of particles in order to achieve acceptable results.
Table 4 shows the computation times obtained on a K20m
NVIDIA GPU for a concentration of silica R = 0.2 (see
Annex). Our method scales correctly with up to approxi-
mately 48K total particles, but the computation cost becomes
prohibitive for larger simulations. Nevertheless, significant
structures can be extracted by material science researchers
who are more interested in statistical analysis than interac-
tive visualization with a lower number of particles.

In order to compare the aggregation kinetics and the ag-
gregate shapes with the first system, here only alumina par-
ticles are considered. A first analysis showed that the dif-
fusion coefficient of isolated alumina particles was not af-
fected by adsorbed silica, thus preventing any caging effect.
This is confirmed by the evolution of the number of ag-
gregates, which is similar to the results obtained for homo-
aggregation in Figure 3. The shape of the aggregates them-
selves is significantly different. For unimodal size distribu-
tions, the average number of neighbours per aggregate at
the end of the simulation is approximately 5, which corre-
sponds to a rather compact shape. For bimodal size distri-
butions, as more linear aggregates or “chains” are obtained
with our simulations, this number drops towards 2, as illus-
trated in Figure 6. This effect can be observed on videos
rendered using the VMD software [VMD] for bimodal size
distributions at: http://vimeo.com/133997636 and
http://vimeo.com/133997637

Our approach still suffer from several limitations that
should be addressed for other types of colloidal suspensions,

(© The Eurographics Association 2015.

http://vimeo.com/133997636
http://vimeo.com/133997637

C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions 39

related to the magnitude of interaction forces between small
and large particles. Small silica particles stay close to large
alumina in our case, but with higher repulsion forces the ra-
dius of our SAC model would increase, along with compu-
tation times. The fact that silica particles can belong to only
one SAC at a time could also be a problem in this case.

5. Conclusion

We have presented in this paper a novel approach to ad-
dress the problem of neighbourhood search in the context
of Molecular Dynamics simulations. Based on a combina-
tion of neighbourhood lists and a uniform grid, our method
outperforms existing approaches for Brownian Dynamics by
introducing a dynamic test at each iteration. We are able to
run simulations with up to 2M particles on a single GPU,
with computation times comparable to those obtained with
well-known MD software like Gromacs.

For bimodal size distributions our implementation relies
on the same neighbourhood search method and extends it to
three types of interactions. We introduced a new way to sep-
arate computations for large and small particles, using the
concept of Silica-Alumina Complexes. It provides a solu-
tion to the caging problem, i.e. additional friction limiting
the displacements of large particles, occurring in Brownian-
Langevin Dynamics. The time step defined by physical prop-
erties (8f = 5 x 10_103) is the bottleneck of our computa-
tions and does not allow to run simulations with more than
50K particles on a single GPU. However, our results suggest
that other types of colloidal suspensions found in food indus-
try or biological analyses could benefit from our approach.

Future works will seek to improve the performances of
our software for bimodal size distributions, which also corre-
spond to important systems for material science researchers.
The main goal is to find an implicit formulation for the mo-
tion of small silica particles. This would make it possible
to use larger time steps and reduce computation times. We
could also try to investigate how to extend the concept of
Silica-Alumina Complexes to aggregates composed of sev-
eral SACs. Their motion could be computed by considering
them as single entities in a multi-phase algorithm extending
Algorithm 2.

References

[ALT0O8] ANDERSON J. A., LORENZ C. D., TRAVESSET A.:
General purpose molecular dynamics simulations fully imple-
mented on graphics processing units. Journal of Computational
Physics 227, 10 (May 2008), 5342-5359. 3

[APKGO7] AbpAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3
(July 2007). 3

[AT87] ALLEN M., TILDESLEY D.: Computer simulation of Lig-
uids. Oxford University Press: Oxford, 1987. 2, 4

[BvdSvD95] BERENDSEN H., VAN DER SPOEL D., VAN
DRUNEN R.: Gromacs: A message-passing parallel molecular

(© The Eurographics Association 2015.

dynamics implementation. Computer Physics Communications
91, 1-3 (1995), 43 - 56. 3

[CVA*08] CERBELAUD M., VIDECOQ A., ABELARD P., PAG-
NOUX C., ROSSIGNOL F., FERRANDO R.: Heteroaggregation
between Al, O3 submicrometer particles and SiO; nanoparticles:
Experiment and simulation. Langmuir 24,7 (2008), 3001-3008.
2,6,7

[CVAF09] CERBELAUD M., VIDECOQ A., ABELARD P., FER-
RANDO R.: Simulation of the heteroagglomeration between
highly size-asymmetric ceramic particles. Journal of Colloid and
Interface Science 332, 2 (2009), 360 — 365. 2,6, 7

[EGIW95] ELIMELECH M., GREGORY J., JIA X., WILLIAMS
R. (Eds.): Particle Deposition and Aggregation, oxford, eng-
land ed. Butterworth-Heinemann, 1995. 6

[EM78] ERMAK D. L., MCCAMMON J. A.: Brownian dynam-
ics with hydrodynamic interactions. The Journal of Chemical
Physics 69, 4 (1978), 1352-1360. 2

[EW82] EASTMAN C., WEISS S.: Tree structures for high di-
mensionality nearest neighbor searching. Information Systems 7,
2(1982), 115-122. 3

[Gonl2] GONNET P.: Pairwise verlet lists: Combining cell lists
and verlet lists to improve memory locality and parallelism. Jour-
nal of Computational Chemistry 33, 1 (2012), 76-81. 3

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER
M.: A parallel sph implementation on multi-core cpus. Com-
puter Graphics Forum 30, 1 (2011), 99-112. 3

[I0S*14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KoLB A., TESCHNER M.: Sph fluids in computer graphics. Eu-
rographics State-of-The-Art-Reports (2014), 21-42. 2,3, 5

[JBTK99] JARDAT M., BERNARD O., TURQ P., KNELLER
G. R.: Transport coefficients of electrolyte solutions from
smart brownian dynamics simulations. The Journal of Chemi-
cal Physics 110, 16 (1999), 7993-7999. 2,7

[KE95] KENNEDY J., EBERHART R.: Particle swarm optimiza-
tion. In Neural Networks, 1995. Proceedings., IEEE Interna-
tional Conference on (Nov 1995), vol. 4, pp. 1942-1948 vol.4.
2

[KHB*03] KiM A. Y., HAuCH K. D., BERG J. C., MARTIN
J. E., ANDERSON R. A.: Linear chains and chain-like fractals
from electrostatic heteroaggregation. Journal of Colloid and In-
terface Science 260, 1 (2003), 149 — 159. 2

[Laa] Lammps molecular dynamics simulator. URL: http://
lammps.sandia.gov. 3

[LSVMWO08] Liu W., ScHMIDT B., Voss G., MULLER-
WITTIG W.: Accelerating molecular dynamics simulations us-
ing Graphics Processing Units with CUDA. Computer Physics
Communications 179, 9 (Nov. 2008), 634-641. 3

[Lyk91] LYKLEMA J. (Ed.): Fundamentals of interface and col-
loid science: Volume 1, london ed. Academic Press, 1991. 10

[MCGO03] MULLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2003), SCA 03, pp. 154-159. 3

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics.
Annual Review of Astronomy and Astrophysics 30 (1992), 543—
574. 3

[MP89] MANNELLA R., PALLESCHI V.: Fast and precise al-
gorithm for computer simulation of stochastic differential equa-
tions. Phys. Rev. A 40 (Sep 1989), 3381-3386. 2

[PAG11] PHILLIPS C. L., ANDERSON J. A., GLOTZER S. C.:

http://lammps.sandia.gov
http://lammps.sandia.gov

40 C-T. Tran, B. Crespin, M. Cerbelaud & A. Videcoq / Brownian dynamics simulation on the GPU: virtual colloidal suspensions

Pseudo-random number generation for Brownian Dynamics and
Dissipative Particle Dynamics simulations on GPU devices.
Journal of Computational Physics (June 2011). 5

[P1i95] PLIMPTON S.: Fast Parallel Algorithms for Short-Range
Molecular Dynamics. Journal of Computational Physics 117
(1995), 1-19. 3

[PSC13] PROCTOR A. J., STEVENS C. A., CHO S. S.: Gpu-
optimized hybrid neighbor/cell list algorithm for coarse-grained
md simulations of protein and rna folding and assembly. In
Proceedings of the International Conference on Bioinformat-
ics, Computational Biology and Biomedical Informatics (2013),
BCB’13, pp. 633:633-633:640. 3

[PVR*10] PIECHOWIAK M. A., VIDECOQ A., ROSSIGNOL F.,
PAGNOUX C., CARRION C., CERBELAUD M., FERRANDO R.:
Oppositely charged model ceramic colloids: Numerical predic-
tions and experimental observations by confocal laser scanning
microscopy. Langmuir 26, 15 (2010), 12540-12547. 2

[Ree83] REEVES W. T.: Particle systems - a technique for mod-
eling a class of fuzzy objects. ACM Transactions on Graphics
(1983). 2

[RVRR15] ROVIGATTIL., SULC P., REGULY I. Z., ROMANO F.:
A comparison between parallelization approaches in molecular
dynamics simulations on GPUs. J. Comput. Chem. 36, 1 (Jan.
2015),1-8. 3

[SHUS10] STONEIJ. E., HARDY D.J., UFIMTSEV 1. S., SCHUL-
TEN K.: GPU-accelerated molecular modeling coming of age.
Journal of molecular graphics & modelling 29, 2 (Sept. 2010),
116-125. 3

[THM*03] TESCHNER M., HEIDELBERGER B., MAULLER M.,
POMERANTES D., GROSS M. H.: Optimized Spatial Hashing
for Collision Detection of Deformable Objects. In Vision Model-
ing and Visualization (2003), pp. 47-54. 3

[TK13] TANG Y.-H., KARNIADAKIS G. E.: Accelerating Dis-
sipative Particle Dynamics Simulations on GPUs: Algorithms,
Numerics and Applications. Computer Physics Communications
185, 11 (Nov. 2013), 2809-2822. 3,7

[TVC*13] TomiLov A., VIDECOQ A., CERBELAUD M.,
PIECHOWIAK M. A., CHARTIER T., ALA-NiIssiLA T.,
BOCHICCHIO D., FERRANDO R.: Aggregation in colloidal sus-
pensions: Evaluation of the role of hydrodynamic interactions by
means of numerical simulations. The Journal of Physical Chem-
istry B 117,46 (2013), 14509-14517. 3, 6

[VDSLH*05] VAN DER SPOEL D., LINDAHL E., HESS B.,
GROENHOF G., MARK A. E., BERENDSEN H. J. C.: Gromacs
: fast, flexible, and free. Journal of Computational Chemistry 26,
16 (2005), 1701-1718. QC 20120301. 3,5, 6

[VMD] Vmd: Visual molecular dynamics. URL: http://www.
ks.uiuc.edu/Research/vmd/. 8

Annex 1: Brownian dynamics with one kind of particle

The generalized Lennard Jones potential V;;(r) is defined by:

36 18
d d
Vij(r) = 4epksT {(VA) - (TA)
) 1

Vij(r) = 0 otherwise,

if rjj <=Rc,

(®)
with dy the particle’s diameter, Rc the cut-off radius and
€p = 14. Simulations are performed in water at 7 = 293K
m= 1073 Pa.s). The velocity relaxation time of the alumina
particles is calculated at T = 8.5 x 10785,

Compositions R=02% | R=1.1%
Number of silica for one alumina 15 82
Yy (mV) 45 30
Ys (mV) -20 -26

Table 5: Parameters used in simulations with alumina and
silica particles.

Particles lie inside a cubic simulation box with periodic
boundary conditions, and its size is fixed by the density of

3
particles (¢) and their number (1) as Lyyx = 1 4n3rff‘

Annex 2: Brownian dynamics simulations with two
kinds of particles

The DLVO potential (named after scientists Derjaguin, Lan-
dau, Verwey and Overbeek) is the sum of two contributions:
a van der Waals potential V"W and an electrostatic potential
vel [Lyk91] due to the surface charges of colloids:

VPO () = v ™Y (i) + V¥ (i),)
where
Ajj 2a;a;
NV ACALA T B s i
(l]) 6 r12] — (al- _l’_a])z
2 2
2a;a; r,«j—(ai+aj)
2 B +In 5 3
ryj— (@i —aj) rij —(ai—aj)
(10)
and
aa;
Ve (r) = (s (\p.z \pZ)
(ru) Tteai_"_aj l+ Jj X
29 1 +exp(—Khjj))
+In(1 —exp(—2Kh;;
¥+ (17exp(thij) (p(i)

an

with A;; the constant of Hamaker (As4 = 4.76 X 107207,
Ags = 4.6 x 1072'J and Axg = 1.48 x 1072°J for the
alumina-alumina, silica-silica and alumina-silica inter-
actions respectively), Kk the inverse of Debye length
(k = 108 mfl), € the dielectric constant of water, ¥;
the surface potential of i and h;; the surface-to-surface
separation distance. Two concentrations of silica quoted R
are used, which give the parameters summarized in Table 5.
Simulations are performed with a density ¢ = 0.03.

Acknowledgements

The results presented in this paper were obtained with the
CALI supercomputer at the University of Limoges, spon-
sored by the Limousin Region and institutes XLIM, [PAM
and GEIST.

(© The Eurographics Association 2015.

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

