
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2015)
F. Jaillet, G. Zachmann, and F. Zara (Editors)

Implicit Incompressible SPH on the GPU

Prashant Goswami †, André Eliasson‡ & Pontus Franzén‡

Blekinge Institute of Technology, Sweden

Abstract
This paper presents CUDA-based parallelization of implicit incompressible SPH (IISPH) on the GPU. Along with
the detailed exposition of our implementation, we analyze various components involved for their costs. We show
that our CUDA version achieves near linear scaling with the number of particles and is faster than the multi-core
parallelized IISPH on the CPU. We also present a basic comparison of IISPH with the standard SPH on GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.1 [Computer Graphics]: Hardware Architecture—Parallel Processing

1. Introduction

Smoothed particle hydrodynamics (SPH) has emerged as
a powerful method to simulate fluid behaviour in a num-
ber of graphics applications. The possibility of enforc-
ing computationally inexpensive incompressibility has been
introduced in predictive-corrective incompressible SPH
(PCISPH) [SP09] and improved upon in implicit incom-
pressible SPH (IISPH) [ICS∗14], and later in divergence-
free SPH (DFSPH) [BK15] in the context of particle sim-
ulation to achieve more realistic fluid behaviour in recent
years. The ability of the IISPH solver to simulate millions of
particles together with employing larger time steps makes it
promising for real-time considerations.

Similar to other particle-based methods, a large particle
count is desirable in IISPH to achieve high resolution fea-
tures in the simulation. To this end, sequential and multi-
core simulations remain beyond the scope of any real-time
purpose for more than a few thousand particles. Most mod-
ern graphics applications (games, simulators etc.) make mas-
sive use of the on-board computational power of the GPUs,
where fluid simulation could be just one of the several com-
ponents. Therefore, in order to fit efficiently within the ex-
isting framework, it is desirable to explore a GPU solution
for IISPH.

We propose a completely parallel, GPU-based solution for

† prashant.goswami@bth.se
‡ the authors have equal contribution

IISPH using CUDA. The particles are resident on the GPU-
memory throughout the simulation and could be used for
rendering in the next step on the graphics card itself. We
show that real-time to interactive frame rates are achievable
using our simple solution, exhibiting linear dependence on
the number of particles. We also give an initial estimate of
how IISPH fairs in comparison to the standard, compressible
SPH solver in terms of performance on the GPU.

2. Related Work

SPH has several benefits over other fluid simulation tech-
niques like simplified boundary handling, obtaining fine-
scale effects like splashes and implicit mass conservation.
It was first introduced to computer graphics in [DG96] for
deformable bodies and later to simulate fluids [MCG03].
Later [BT07] came up with a weakly compressible model
for free surface flows.

Traditional SPH formulation needs a large stiffness value
(and hence small time steps) to simulate incompressible
behaviour, thereby increasing the computational time. The
first promising work in this direction in computer graphics
was by [SP09] where the density of particles are fixed in a
predictive-corrective manner. The method was a significant
improvement as it eliminated solving computationally ex-
pensive matrices for Poisson equation while still being able
to handle large time steps.

Further work improved the state-of-the-art for simulating
incompressible fluid behaviour, mostly towards reducing the
cost. [RWT11] employ a hybrid approach by solving Poisson

c© The Eurographics Association 2015.

DOI: 10.2312/vriphys.20151331

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vriphys.20151331


A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

equation on a coarse grid and transferring the initial pres-
sure estimate to particles for density correction. In [HLL∗12]
Poisson equation is solved locally and integrated with the
predictive-corrective framework. In [MM13] incompress-
ibility is formulated as a positional constraint satisfying
problem which enables taking even larger time steps than
PCISPH. IISPH [ICS∗14] improves the predictive-corrective
incompressible SPH method by using a modified projection
scheme which improves the convergence rate of the solver.
Though multi-core CPU parallelization yields a linear paral-
lel scaling as demonstrated in [TSG14], the frame rates are
no longer interactive beyond a few thousand particles.

Several methods improve the efficiency of standard SPH.
These include developing hybrid SPH-FLIP model to re-
duce actual physical particles in memory [CIPT14], using
multiple resolutions [SG11], skipping computation on inac-
tive fluid parts [GP11] and employing regional time stepping
[GB14]. In this work, we focus our discussion on techniques
more closely related to ours and refer the reader to [IOS∗14]
for an in-depth survey of the various fluid simulation meth-
ods.

Recent growth in the hardware capabilities has seen an
emergence of efficient parallel solutions, particularly on the
GPU. [HKK07,ZSP08] were one of the first to propose GPU
solutions for SPH which employed shaders for the purpose.
[GSSP10] came up with a CUDA-based solution utilizing
shared memory, which scores both on the memory usage and
efficiency fronts. Continuing along the line, the aim of this
work is to explore the parallel GPU porting of IISPH.

3. IISPH Basics

Similar to PCISPH, IISPH does not rely on any stiffness pa-
rameter that appears in the equation of state (EOS) to com-
pute pressure. However, it uses a discretization of PPE (pres-
sure Poisson equation) which is a variant of earlier intro-
duced incompressible SPH (ISPH) formulation in [ESE07].
The density (and error) prediction is obtained by discretized
continuity equation.

IISPH solver comprises three major steps: advection pre-
diction, pressure solving and moving particles, in that order.
In the advection stage, density ρ and velocity v of all par-
ticles are predicted using external forces like viscosity and
gravity. The particles then enter density correction iteration
wherein the pressure value for each particle is updated which
in turn updates its density. The iterative loop is designed to
continue until all the particles have density error below a
specified threshold η, subjected to a minimum of 2 itera-
tions. Finally the velocity and position of the particles are
obtained from the computed forces.

A major difference here with respect to PCISPH is that
the density correcting pressure is built implicitly by itera-
tively solving linear equation for each particle and not di-
rectly computed and accumulated from the density error. The

implicit formulation improves the convergence of the itera-
tive solver. Similar to previous methods [SP09], [MM13],
during a simulation step the computed neighbourhood set is
reused through the iterations. The IISPH method is as out-
lined in Algorithm 1. We refer the reader to [ICS∗14] for a
more detailed understanding of the method.

Algorithm 1: IISPH Method
procedure PREDICT ADVECTION

foreach particle i do
compute ρi(t) = ∑ j m jWi j(t)

predict vadv
i = vi(t)+∆t Fadv

i (t)
mi

dii = ∆t2
∑ j−

m j

ρ2
i
∇Wi j(t)

foreach particle i do
ρ

adv
i = ρi(t)+∆t ∑ j m j(vadv

i j )∇Wi j(t)
p0

i = 0.5pi(t−∆t)
compute aii

procedure PRESSURE SOLVE
l = 0
while (ρl

avg−ρ0 > η)∨ (l < 2) do
foreach particle i do

∑ j di j pl
j = ∆t2

∑ j−
mj

ρ2
j (t)
∇Wi j(t)

foreach particle i do
compute pl+1

i
pi(t) = pl+1

i
l = l +1

procedure INTEGRATION
foreach particle i do

vi(t +∆t) = vadv
i +∆t Fp

i (t)
mi

xi(t +∆t) = xi(t)+∆tvi(t +∆t)

4. IISPH on CUDA

Neighbourhood determination: Like other particle-based
methods, the first step in IISPH is to determine neighbour-
hood set for each particle. To this end, we follow a similar
approach as laid out in [GSSP10] with some changes. The
simulation domain is divided into a virtual indexing grid
along each axis, with block size equal to the support ra-
dius for the particles. However, we replace Morton based
z− index with simple linear index for all blocks in the
simulation domain,(Kernel calcIndex in Algorithm 2). This
avoids expensive bitwise operations while still maintaining
coherence between adjacent particles. The particles are then
sorted based on this index using fast radix sort provided by
thrust library (Kernel sortParticles). To benefit from the in-
creased memory on modern GPUs and in order to be able to
take maximum advantage of available parallelism, for each
particle we explicitly store the indices of all its neighbour-
ing particles. The shared memory technique introduced in
[GSSP10] could be still useful to fit higher particle count on
a limited GPU memory, though with some penalty on paral-
lelism.

c© The Eurographics Association 2015.

24



A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

The old particle data like positions and velocities (as-
signed to CUDA texture) are copied to new sorted index in
the global memory array (Kernel sortParticleData). In order
to determine the neighbours, the start and end index of each
cell in the virtual grid is stored (Kernel findGridCellStar-
tAndEnd). This is accomplished by simple linear scanning
of sorted particles which update their index in the respective
cell for the start and end. Finally, each particle collects its
neighbours from the cell it lies in together with the adjoin-
ing 26 cells (Kernel updateNeighbours). The neighbouring
indices are stored for each particle and are reused each time
neighbours are fetched during subsequent computations in
the iteration. The above operations are launched as separate
kernels, see also Algorithm 2.

Predict advection: The PREDICT ADVECTION proce-
dure comprises two separate kernels. In the first step, density
is predicted which is required for the computation of factor
dii. vadv

i is obtained using viscosity and external forces such
as gravity. Thereafter, launch of a second kernel is necessi-
tated by the observation that all particles need to finish with
dii calculation before ρ

adv
i because of the relative velocity

which appears in the density formulation. Following this, the
factor aii is determined for each particle.

aii = ∑
j

m j(dii−d ji)∇Wi j

Whereas the value of dii computed from previous kernel
is used, di j requires an extra computation (but no storage).
Since the value of aii remains unchanged for an iteration, it
is stored in the global memory for each particle and subse-
quently made a CUDA texture.

Pressure solve: The density is resolved through two or
more corrective loops on each particle per iteration. For this
purpose, the kernels in PRESSURE SOLVE are launched
from the standard CPU call for each loop. Kernel compute-
SumPressureMovement updates ∑ j di j pl

j, which is required
in Kernel computePressure to obtain the updated pressure
pl+1

i .

pl+1
i = (1−ω)pl

i +ω
1
aii

(
ρ0−ρ

adv
i −

∑
j

m j

(
∑

j
di j pl

j−d j j p j−∑
k 6=i

d jk pl
k

)
∇Wi j

)
The quantity ∑ j di j pl

j is supplied as a CUDA texture since
it is used first for the computation of pl+1

i and then ρ
l+1
i . Fur-

thermore, ∑k 6=i d jk pk is also derived from it. At the end of
each loop, the new density ρ

l+1
i (Kernel computePredicted-

Density) and hence the error ρ
err
i (Kernel computeDensity-

Error) is computed.

ρ
l+1
i = ρ

adv
i + pi ∑

j
m j(dii−d ji)∇Wi j+

∑
j

m j

(
∑

j
di j pl

j−d j j pl
j−∑

k 6=i
d jk pl

k

)
∇Wi j

Kernel Texture Attributes
computeDisplacementFactor xi,vi,Ni

computeAdvectionFactor xi,vadv
i ,dii,Ni

computeSumPressureMovement xi,ρi, pi,Ni
computePressure xi,dii,ρi,∑ j di j p j,Ni
computePredictedDensity xi,dii,ρi,∑ j di j p j,Ni
computeDensityError ρ

err
i

calcIntegration vadv
i ,ρi, pi,Ni

Table 1: Quantities supplied as texture for the various CUDA
kernels.

CPU Intel Core i7-3770 (3.4GHz)
GPU MSI GeForce GTX 970 Gaming 4G

RAM DDR3, 1600MHz, 16GB
OS Windows 7 Ultimate 64-bit

(a) Setup 1

CPU Intel Xeon E5-1650 (3.2GHz)
GPU NVIDIA Quadro K4000

RAM DDR3, 1600MHz, 16GB
OS Windows 8.1 Enterprise 64-bit

(b) Setup 2

Table 2: Hardware specifications for experiments.

The total number of corrective loops depends on the den-
sity error. In order to estimate the global density error, we
launch the reduction kernel in CUDA which supports paral-
lel addition and maximum finding operations.

Even though dynamic parallelism is supported in recent
versions of CUDA with compute capability 3.5 or higher,
the dependence of quantities makes it infeasible to efficiently
launch a kernel from within another kernel. This is because
we require global synchronization as opposed to synchro-
nization just within a block (for example, ρ

l+1
i depends upon

the computation of its neighbours’ pl
j).

Integration: The new velocity is computed for each parti-
cle by summing up pressure forces from the neighbours and
adding the contribution to the advection component vadv

i . For
this the complete neighbour set is made available to each
particle as texture memory.

The complete list of quantities supplied as texture mem-
ory for the various CUDA kernels is given in Table 1.

5. Results

The proposed approach was implemented in C++ using Di-
rectX and HLSL shaders. We used two different setups for
our experiments as given in Table 2.

In all scenarios a fixed time-step of 3.5 ms and particle
spacing of 0.09 m was used. The density error threshold
η was set to 1% of the rest density ρ0 (= 1000). All the
kernels were launched with a maximum of 256 threads per

c© The Eurographics Association 2015.

25



A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

Algorithm 2: Parallel IISPH on CUDA

1 procedure NEIGHBOUR DETERMINATION
2 Kernel calcIndex

3 Kernel sortParticles

4 Kernel sortParticleData

5 Kernel findGridCellStartEnd

6 Kernel updateNeighbours

7 procedure PREDICT ADVECTION
8 Kernel computeDisplacementFactor
9 foreach particle i do

10 compute ρi(t)
11 predict vadv

i
12 compute dii

13 Kernel computeAdvectionFactor
14 foreach particle i do
15 compute ρ

adv
i

16 compute p0
i

17 compute aii

18 procedure PRESSURE SOLVE
19 l = 0
20 while (ρl

avg−ρ0 > η)∨ (l < 2) do
21 Kernel computeSumPressureMovement
22 foreach particle i do
23 compute ∑ j di j pl

j

24 Kernel computePressure
25 foreach particle i do
26 compute pl+1

i
27 pi(t) = pl+1

i

28 Kernel computePredictedDensity
29 foreach particle i do
30 compute compute ρ

l+1
i

31 compute ρ
err
i

32 Kernel computeDensityError
33 compute ρ

l
avg

34 l = l +1

35 procedure INTEGRATION
36 Kernel calcIntegration
37 foreach particle i do
38 compute vi(t +∆t)
39 compute xi(t +∆t)

block. All the associated constant variables were stored in
the constant memory. DirectX 11.0 was used for rendering,
billboards were used to represent each particle. Using the
interoperability with DirectX, particles were always resident
on the GPU memory and were never transferred back to the
CPU. Real-time surface construction could be achieved on
GPU with [Nvi15].

Three versions of the algorithm were implemented. The
first one was a sequential version running on the CPU. The
second one was the proposed parallel version running on
the GPU. A simple parallel implementation of the CPU-
version was also developed using OpenMP for comparison,
though [TSG14] would give a better estimate on this front.
The various scene set-ups used are as shown in Figure 1. The
CUDA solution is able to achieve higher performance than
an OpenMP implementation on the CPU. Setup 1 (Table 3)
achieved a speed-up of about 6 times compared to the paral-
lel CPU version. In setup 2 (Table 4) the speed-up (about 2
times) was lower because of a slower graphics card.

The CPU has a steady time per frame regardless of the
scene while the CUDA times fluctuate slightly on computer
setup 2 but on setup 1 the fluctuation is greater, see also Fig-
ure 2. Although the scenes differ slightly from each other,
they still follow a linear growth when the number of parti-
cles increases. A similar linear growth in memory usage was
detected in both the CPU- and the GPU-implementation for
all test scenes, see Figure 3.

Figure 4 demonstrates the average time spent on each
CUDA kernel in our implementation on the faster setup. For
larger particle counts, Kernel computeDisplacementFactor,
Kernel computePredictedDensity, Kernel computePressure
and Kernel computeAdvectionFactor are the most expensive
ones (in that order). Further, we notice that the neighborhood
computation is not so expensive when compared to the other
kernels. Using our implementation, we obtain a total occu-
pancy of about 0.75 in our experiments.To estimate the cost
of incompressibility with IISPH, the presented approach was
applied to standard, compressible SPH implementation and
measured with both setups. The results are as given in Ta-
ble 5. A low stiffness constant of 1000 was employed and
the time steps were computed using CFL condition. The re-
sults for both setups in Table 5 follow a linear growth rate
just like IISPH. For 175K particles, standard SPH is around
2.3 times faster than IISPH in terms of the number of physics
iterations executed per second.

6. Conclusions

In this paper, we presented an efficient, CUDA-based par-
allel implementation of IISPH method. The proposed tech-
nique performs faster than the multi-core CPU-based par-
allel implementation and achieves near-linear scaling with
the number of particles. A related future work would be to
compare the GPU version of IISPH with other methods like
divergence-free SPH and position-based fluids for efficiency.

c© The Eurographics Association 2015.

26



A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

(a) Simple: 121K particles

(b) Gallery: 99K particles

(c) Two blocks: 116K particles

Figure 1: Time lapse visualization of three different scenes with varying particle counts.

Setup 1 Physics - GPU Physics - CPU
(OpenMP)

Particles Time (ms) FPS Time (ms) FPS Speedup
7 600 2.58 388 6.89 146 2.67

20 000 4.06 247 22.18 45 5.47
54 000 10.21 100 64.20 16 6.29

103 000 21.07 49 126.80 8 6.02
175 000 39.18 28 221.16 5 5.64

Table 3: The average time and fps (frames per second) mea-
sured on setup 1 for each scene with a calculated speed-up
between the GPU and parallel CPU.

Setup 2 Physics - GPU Physics - CPU
(OpenMP)

Particles Time (ms) FPS Time (ms) FPS Speedup
7 600 4.58 219 5.34 188 1.17

20 000 9.45 106 16.23 62 1.72
54 000 23.18 43 46.23 22 1.99

103 000 47.82 21 92.29 11 1.93
175 000 83.06 12 161.06 6 1.94

Table 4: The average time and fps measured on setup 2 for
each scene with a calculated speed-up between the GPU and
parallel CPU.

SPH CUDA Setup 1 Setup 2
Particles time (ms) FPS time (ms) FPS

7 600 0.79 1268 1.42 707
20 000 1.15 874 3.89 277
54 000 3.19 329 6.90 146

103 000 7.42 173 14.04 76
175 000 16.55 64 22.19 46

Table 5: Table showing the results of a standard SPH imple-
mentation on the two setups for comparison.

7. Acknowledgements

We thank anonymous reviewers for their constructive com-
ments that helped us to improve the paper. We also thank
Pierre-Luc Manteaux (INRIA-Grenoble) for the insightful
discussions on IISPH.

References
[BK15] BENDER J., KOSCHIER D.: Divergence-free smoothed

particle hydrodynamics. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(2015), ACM. URL: http://dx.doi.org/10.1145/
2786784.2786796. 1

[BT07] BECKER M., TESCHNER M.: Weakly compressible

c© The Eurographics Association 2015.

27

http://dx.doi.org/10.1145/2786784.2786796
http://dx.doi.org/10.1145/2786784.2786796


A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

0

20

40

60

80

100

120

140

160

180

200

220

240

260

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

T
im

e 
p

er
 f

ra
m

e 
(m

s)

Number of particles

GPU: Breaking dam CPU: Breaking dam

GPU: Gallery CPU: Gallery

GPU: Simple CPU: Simple

GPU: Two blocks CPU: Two blocks

(a) Setup 1

0

20

40

60

80

100

120

140

160

180

200

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

T
im

e 
p

er
 f

ra
m

e 
(m

s)

Number of particles

GPU: Breaking dam CPU: Breaking dam
GPU: Gallery CPU: Gallery
GPU: Simple CPU: Simple
GPU: Two blocks CPU: Two blocks

(b) Setup 2

Figure 2: The graph visualizes the computation time of the
algorithm per frame on setup 1 (a) and setup 2 (b) for the
CUDA-solution compared to OpenMP. All four tests scenes
used a time-step of 3.5 ms and a particles spacing of 0.09 m.
Measurements was taken over 1 000 frames.

0

20

40

60

80

100

120

140

160

180

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

M
em

o
ry

 u
sa

g
e 

(M
B

)

Number of particles

GPU: Breaking dam CPU: Breaking dam
GPU: Gallery CPU: Gallery
GPU: Simple CPU: Simple
GPU: Two blocks CPU: Two blocks

Figure 3: The GPU memory usage in all scenes grows lin-
early with the number of particles.

0

1

2

3

4

5

6

7

5 225 9 055 14 089 31 054 53 539 83 822 125 836 176 699

T
im

e 
p

er
 f

ra
m

e 
(m

s)

Number of particles

Sorting FindGridCellStartEnd

UpdateNeighbors DisplacementFactor

AdvectionFactor SumPressureMovement

Pressure PredictDensity

DensityError Integration

Figure 4: Split-up of the timings taken by the CUDA kernels
in our GPU implementation.

SPH for free surface flows. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2007), SCA, Euro-
graphics Association, pp. 209–217. URL: http://dl.acm.
org/citation.cfm?id=1272690.1272719. 1

[CIPT14] CORNELIS J., IHMSEN M., PEER A., TESCHNER M.:
IISPH-FLIP for incompressible fluids. Computer Graphics Fo-
rum 33, 2 (2014), 255–262. URL: http://dl.acm.org/
citation.cfm?id=2771467. 2

[DG96] DESBRUN M., GASCUEL M.-P.: Smoothed particles: A
new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics Workshop on Computer Animation
and Simulation (New York, NY, USA, 1996), Springer-Verlag
New York, Inc., pp. 61–76. URL: http://dl.acm.org/
citation.cfm?id=274976.274981. 1

[ESE07] ELLERO M. B., SERRANO M., ESPAÑOL P.: Incom-
pressible smoothed particle hydrodynamics. Journal of Compu-
tational Physics (2007). doi:10.1016/j.jcp.2007.06.
019. 2

[GB14] GOSWAMI P., BATTY C.: Regional Time Stepping for
SPH. In Eurographics - Short Papers (2014), Galin E., Wand M.,
(Eds.), The Eurographics Association. doi:10.2312/egsh.
20141011. 2

[GP11] GOSWAMI P., PAJAROLA R.: Time Adaptive Approxi-
mate SPH. In Workshop in Virtual Reality Interactions and Phys-
ical Simulation "VRIPHYS" (2011), Bender J., Erleben K., Galin
E., (Eds.), The Eurographics Association. doi:10.2312/PE/
vriphys/vriphys11/019-028. 2

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive sph simulation and rendering on the
GPU. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Aire-la-Ville, Switzerland,
Switzerland, 2010), SCA, Eurographics Association, pp. 55–
64. URL: http://dl.acm.org/citation.cfm?id=
1921427.1921437. 2

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs. In Proc. of
Computer Graphics International (2007), pp. 63–70. URL:
http://inf.ufrgs.br/cgi2007/cd_cgi/papers/
harada.pdf. 2

[HLL∗12] HE X., LIU N., LI S., WANG H., WANG G.: Lo-
cal Poisson SPH For Viscous Incompressible Fluids. Computer
Graphics Forum (2012). doi:10.1111/j.1467-8659.
2012.03074.x. 2

c© The Eurographics Association 2015.

28

http://dl.acm.org/citation.cfm?id=1272690.1272719
http://dl.acm.org/citation.cfm?id=1272690.1272719
http://dl.acm.org/citation.cfm?id=2771467
http://dl.acm.org/citation.cfm?id=2771467
http://dl.acm.org/citation.cfm?id=274976.274981
http://dl.acm.org/citation.cfm?id=274976.274981
http://dx.doi.org/10.1016/j.jcp.2007.06.019
http://dx.doi.org/10.1016/j.jcp.2007.06.019
http://dx.doi.org/10.2312/egsh.20141011
http://dx.doi.org/10.2312/egsh.20141011
http://dx.doi.org/10.2312/PE/vriphys/vriphys11/019-028
http://dx.doi.org/10.2312/PE/vriphys/vriphys11/019-028
http://dl.acm.org/citation.cfm?id=1921427.1921437
http://dl.acm.org/citation.cfm?id=1921427.1921437
http://inf.ufrgs.br/cgi2007/cd_cgi/papers/harada.pdf
http://inf.ufrgs.br/cgi2007/cd_cgi/papers/harada.pdf
http://dx.doi.org/10.1111/j.1467-8659.2012.03074.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03074.x


A. Eliasson & P. Franzén & P. Goswami / Implicit Incompressible SPH on the GPU

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HOR-
VATH C., TESCHNER M.: Implicit incompressible SPH.
IEEE Transactions on Visualization and Computer Graph-
ics 20, 3 (Mar. 2014), 426–435. URL: http://dx.doi.
org/10.1109/TVCG.2013.105, doi:10.1109/TVCG.
2013.105. 1, 2

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: SPH Fluids in Computer Graphics.
In Eurographics 2014 - State of the Art Reports (2014), Lefebvre
S., Spagnuolo M., (Eds.), The Eurographics Association. URL:
https://diglib.eg.org/handle/10.2312/egst.
20141034.021-042, doi:10.2312/egst.20141034.
2

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (Aire-la-Ville, Switzerland, Switzerland, 2003),
SCA, Eurographics Association, pp. 154–159. URL: http://
dl.acm.org/citation.cfm?id=846276.846298. 1

[MM13] MACKLIN M., MÜLLER M.: Position based fluids.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 104. 2

[Nvi15] NVIDIA Flex. URL: https://developer.
nvidia.com/physx-flex. 4

[RWT11] RAVEENDRAN K., WOJTAN C., TURK G.: Hy-
brid smoothed particle hydrodynamics. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation (New York, NY, USA, 2011), SCA, ACM, pp. 33–
42. URL: http://doi.acm.org/10.1145/2019406.
2019411, doi:10.1145/2019406.2019411. 1

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle
simulation. ACM Trans. Graph. 30, 4 (July 2011), 81:1–
81:8. URL: http://doi.acm.org/10.1145/2010324.
1964976, doi:10.1145/2010324.1964976. 2

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. ACM Trans. Graph. 28, 3 (2009), 40:1–
40:6. URL: http://doi.acm.org/10.1145/1531326.
1531346, doi:10.1145/1531326.1531346. 1, 2

[TSG14] THALER F., SOLENTHALER B., GROSS M. H.: A
parallel architecture for IISPH fluids. In VRIPHYS: 11th
Workshop on Virtual Reality Interactions and Physical Simula-
tions, Bremen, Germany, 2014. Proceedings (2014), pp. 119–
124. URL: http://dx.doi.org/10.2312/vriphys.
20141230, doi:10.2312/vriphys.20141230. 2, 4

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the GPU. In Proceedings
of the Fifth Eurographics / IEEE VGTC Conference on Point-
Based Graphics (Aire-la-Ville, Switzerland, Switzerland, 2008),
SPBG, Eurographics Association, pp. 137–146. URL: http://
dx.doi.org/10.2312/VG/VG-PBG08/137-146, doi:
10.2312/VG/VG-PBG08/137-146. 2

c© The Eurographics Association 2015.

29

http://dx.doi.org/10.1109/TVCG.2013.105
http://dx.doi.org/10.1109/TVCG.2013.105
http://dx.doi.org/10.1109/TVCG.2013.105
http://dx.doi.org/10.1109/TVCG.2013.105
https://diglib.eg.org/handle/10.2312/egst.20141034.021-042
https://diglib.eg.org/handle/10.2312/egst.20141034.021-042
http://dx.doi.org/10.2312/egst.20141034
http://dl.acm.org/citation.cfm?id=846276.846298
http://dl.acm.org/citation.cfm?id=846276.846298
https://developer.nvidia.com/physx-flex
https://developer.nvidia.com/physx-flex
http://doi.acm.org/10.1145/2019406.2019411
http://doi.acm.org/10.1145/2019406.2019411
http://dx.doi.org/10.1145/2019406.2019411
http://doi.acm.org/10.1145/2010324.1964976
http://doi.acm.org/10.1145/2010324.1964976
http://dx.doi.org/10.1145/2010324.1964976
http://doi.acm.org/10.1145/1531326.1531346
http://doi.acm.org/10.1145/1531326.1531346
http://dx.doi.org/10.1145/1531326.1531346
http://dx.doi.org/10.2312/vriphys.20141230
http://dx.doi.org/10.2312/vriphys.20141230
http://dx.doi.org/10.2312/vriphys.20141230
http://dx.doi.org/10.2312/VG/VG-PBG08/137-146
http://dx.doi.org/10.2312/VG/VG-PBG08/137-146
http://dx.doi.org/10.2312/VG/VG-PBG08/137-146
http://dx.doi.org/10.2312/VG/VG-PBG08/137-146

