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Abstract
Implicit integration is a standard for stiff spring-based cloth simulation because of its stability. However con-
straints are useful to simulate various physical behaviors such as contact collisions or interaction with rigid
bodies. Modified Conjugate Gradient (MCG) could support constraints as a part of implicit integration but con-
straints could not be added or removed during integration and they were limited to vertex nodes. Normally, a
contact constraint has one or two frictional constraints and act inside of triangle or edge rather than vertex node.
Also its inequality property makes it harder to be included in MCG. For this reason, constraints are typically
applied after implicit integration as a separate step or replaced with springs. In this paper, we propose a novel
method to interleave various constraints with stiff springs so that we can take advantages from both sides. Also
our Jacobian-free and matrix-free implicit integration allows us to use various nonlinear forces such as pressure
or none vertex-centered forces. Interleaving collision constraints into integration step can eliminate unpleasant
local deformation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Fabric materials have a wide range of properties such as
stretch, bending and shear resistance. Some materials show
great inextensibility but other materials are stretchable or
elastic. Simulating these various materials is a tough task.
Especially if we rely on just one simulation method such as
spring or constraint, the range of materials would be limited.

Since implicit backward integration for cloth simula-
tion had been introduced by Baraff and Witkin [BW98],
it became a standard method to simulate clothes with stiff
springs. Compared to other cloth simulation approaches
such as Position Based Dynamics [MHHR07] or constraint-
based method [GHF∗07] [HDB96], springs can represent
wider physical properties especially for bending and shear
forces. However springs may have an over-stretching prob-
lem, so they may not be suitable to simulate inextensible ma-
terials such as jeans. Strain-limiting as in [BMF03] [Pro96]
can remedy this problem but it may destroy bending or shear
effects since it usually runs after integration and does not
consider other forces.

Implicit integration is a key ingredient of simulating stiff
springs. It solves a linear equation which has a sparse but
large matrix. This matrix should be constructed at each time

and it requires to use the Jacobian matrix. Except a simple
linear spring, many forces have non-linear behavior, so it
may be hard to have the Jacobian. This non-linear forces can
be easily observed especially during interaction with other
simulation domains such as rigid body, fluid or even cloth-
cloth simulation. If there is a pressure acting on the triangle
of the cloth from surrounding fluid, the pressure force would
be very non-linear since it is a function of triangle area as
well as normal vector. If there is a spring connecting two
points inside of two separate triangles, it may be hard to for-
mulate the Jacobian of the spring since there are six vertices
contributing it.

In this paper, we propose a novel approach to interleave
two physics simulation components (stiff force and con-
straints) using Jacobian-free and matrix-free implicit inte-
gration. Our method does not require to linearize the forces
or calculate the Jacobian. Also it does not construct or store
the matrix. To improve the stability of the solver and allow a
larger timestep, we developed the second order implicit in-
tegration and special force computation method.
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Figure 1: Contact constraints with friction are interleaved with implicit integration

2. Related Work

Baraff and Witkin [BW98] developed implicit integration
method for stiff springs and could achieve large timesteps
with high stiffness. By using springs for stretch, shear and
bending forces, various textile materials could be simulated
but it was difficult to handle inextensible materials. To over-
come this problem, Bridson et al. [BMF03] used strain-
limiting as a post-processing process after the main simu-
lation solver. Their method is similar to Position-Based Dy-
namics (PBD) [MHHR07] [Mül08] as solving the stretched
edges one by one iteratively. Regarding stability of implicit
integration, Choi et al. introduced a second-order backward
difference formula (BDF) and post-bucking method.

Constraint-based approach can simulate inextensibility
effectively. House et al. [HDB96] used constraint dynam-
ics and introduced hierarchical approach for fast conver-
gence. Goldenthal et al. [GHF∗07] introduced a fast projec-
tion method which used a direct solver to apply global en-
forcement on inextensible materials. One of the weaknesses
of constraint-based approach is that it can not control stiff-
ness easily. In PBD [MHHR07], constraints can be softened
by using stiffness value but the soft constraints can turn to be
hard if the number of iterations increases. Separating bend-
ing spring from hard edge constraints was used in [GHF∗07]
but it could produce none smoothness artifacts due to its
staggered steps.

Beside integration method, collision detection and resolu-
tion are crucial part of cloth simulation. Baraff and Witkin
[BW98] used vertex constraints for cloth-vs-object collision
and stiff springs for cloth-vs-cloth collision. Since those col-
lisions are treated separately and they should be detected be-
fore the integration, the usage is limited. Also the collision
type is limited to vertex and frictional constraints can not be
added. In general case, contact collision is an inequality con-
straint. So representing contacts as springs can cause gluing
effect.

In terms of interleaved method, Baraff and Witkin
[BW97], described the problem of one-sided interactions be-
tween difference domains and proposed a solution which
can combines various simulation domains such as rigid bod-
ies, particles and clothes. Our method is focused to solve

the same problem. However our approach is to interleave
various constraints into the implicit solver. Bouaziz et al.
[BML∗14] developed Projective Dynamics which combines
projective constraints with implicit euler solver. Even though
their approach could mix them, the level of interleaving is
not as deep as ours, so it requires multiple iterations where
each iteration is actually not interleaved.

In cloth simulation, separating collision resolution from
integration is common. Bridson el al. [BFA02] used sequen-
tial steps for integration and collision resolution. With this
approach, various physics simulation components can be
combined as velocity filters. However, it requires substan-
tially small timestep to hide visual artifacts caused from
staggered steps.

To our knowledge, Jacobian-free method has not been
much discussed in compute graphics community even
though it has been active in scientific community. Knoll et
al. did a survey research on Jacobian-free method in [KK04].
In our interleaved approach, Jacobian-free method is a key
feature since the interleaved constraints can be added or re-
moved inside Conjugate Gradient (CG) iterations while we
support nonlinear forces such as pressure force exerted on
triangle surface. Since pressure force is a function of trian-
gle area and its normal vector, computing the Jacobian by
linearization would be non-trivial. In addition, matrix-free
method can be beneficial to the simulation running on GPU
because managing a large sparse matrix could be cumber-
some on GPU.

3. Implicit Integration Review

In spring based cloth simulation, cloth is represented as
vertices and springs to exert stretch, bending and shear
forces to connected vertices. Each vertex has mass, position
and velocity properties. Unlike explicit integration, implicit
method uses a state vector at time t +∆t as in Equation 1.
Basically forces are extrapolated from t to t +∆t using their
Jacobian.

In the following equation, X, V and F are vertex positions,
velocities and forces respectively. M is vertex masses. Sub-
script zero means the current time frame. h is a timestep.
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By substituting ∆X in the second equation in Equation 1,
we get the Equation 2 which has unknown ∆V . By rearrang-
ing, we get a linear equation A∆V= b as in Equation 3 where
A is a matrix and b is a column vector.

(
∆X
∆V

)
= h

(
V0 +∆V

M−1
[

f0 +
∂ f
∂X ∆X + ∂ f

∂V ∆V
]) (1)

∆V = hM−1
[

f0 +
∂ f
∂X

h(V0 +∆V )+
∂ f
∂V

∆V
]

(2)

(
I −hM−1 ∂ f

∂V
−h2M−1 ∂ f

∂X

)
∆V = hM−1

(
f0 +h

∂ f
∂X

V0

)
(3)

To compute the matrix A, we need to know the Jacobian
∂ f
∂X and ∂ f

∂V , which often require to simplify or linearlize the
forces.

To solve the linear equation, Conjugate Gradient (CG) has
been a popular choice. Algorithm 1 shows Modified Con-
jugate Gradient (MCG) method introduced by Baraff and
Witkin [BW98]. Using a filter S, it is possible to constrain
vertices by removing their DOFs. Preconditioning is often
being applied for faster convergence. We omitted the precon-
ditioner in the Algorithm 1 to highlight the filter and com-
pare it to the matrix-free version in the following section.

Algorithm 1: Modified Conjugate Gradient (MCG), S is
a filter

Input: A
Input: b

1 r = S(b) ;
2 p = S(r) ;
3 δnew = rT p;
4 δ0 = S(b)T S(b);
5 while δnew > tolerance2

δ0 do
6 s = S(Ap);
7 α = δnew/(pT s);
8 ∆V = ∆V+αp;
9 r = r−αs;

10 δold = δnew;
11 δnew = rT r;
12 p = S(r+p(δnew/δold));

Output: ∆V

4. Matrix-free Formulation

To get rid of explicit matrix representation, we need to com-
pute the Jacobian on the fly. By using a first order finite dif-
ference, we can get the following equation.

∂ fi
∂x j

δx j =
fi(x j + εδx j)− fi(x j)

ε
(4)

ε is a small perturbation parameter, 0 < ε � 1, and sub-
script i and j are vertex indices. Since what we need to have
is an extrapolated force rather than the Jacobian itself, the
Equation 4 gives enough information. Here, all we need to
compute is forces with the current position x j and forward
position x j + εδx j. Algorithm 2 explains how to compute
forces. With this function, we can compute the right hand
side (b) of Equation 3 as in Algorithm 3. fext is an external
force such as gravity.

Algorithm 2: ComputeForce(v)
Input: v

1 compute forward vertex positions
X f orward = X0 +hεv;

2 Compute forward forces f f orward exerted on vertices
using the forward positions X f orward ;
Output: f f orward

Algorithm 3: Compute b
1 finitial = ComputeForce(0);
2 f f orward = ComputeForce(V0);

3 b = h(fext +M−1(finitial +
f f orward−finitial

ε
))

Output: b

Computing the multiplication between the matrix A and
the vector p is similar to how to compute b. It reuses finitial
which was already computed before. It uses p as velocity.
We do not use the filtering to constrain vertices here. In-
stead, we developed more flexible and versatile interleaved
constraint system in the next section.

Algorithm 4: Compute s = Ap
Input: p
Input: finitial

1 f f orward = ComputeForce(p);

2 s = p−hM−1(
f f orward−finitial

ε
)

Output: s

With this Jacobian-free and matrix-free formulation, we
can conveniently generate b and replace the matrix and vec-
tor multiplication with simple force calculation. Therefore
we do not need to linearize forces any more and can support
various non-linear forces.
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Choosing the perturbation parameter ε is delicate. If it is
too large, the derivative will be poorly approximated and if it
is too small, the computation will suffer from floating-point
roundoff error. Knoll et al. [KK04] suggests ways to choose
ε. For us, we simply use square root of machine epsilon.

5. Interleave Various Constraints

MCG constrains vertices by removing their DOFs using fil-
tering. Even though it can effectively apply constraints, there
are shortcomings. The constraint cannot be introduced or re-
moved during MCG iterations. So all constraints should be
known before starting MCG. Also inequality or limits can-
not be applied to the constraints. It controls only positional
DOFs so it is hard to constrain velocities. With these reasons,
general contact constraints from cloth-vs-cloth and cloth-vs-
object cannot be naturally supported by MCG.

One of the biggest benefits from our Jacobian-free and
matrix-free method is that any change on vertex velocity will
be immediately applied to CG solver during its iteration pro-
cess. We do not need to reconstruct the linear equation and
restart the CG.

Algorithm 5 shows our Jacobian and Matrix-free Conju-
gate Gradient (JMCG) solver with interleaved constraints.
When we compute forces, we apply the filter S which is
the same one in MCG so that we can support DOF based
constraints. But the interleaved constrain filtering is located
inside CG iteration. At each iteration, we compute forward
vertex position X f orward using a full timestep and filtered
updated velocity V0 +∆V. Unlike MCG, our filter S can be
introduced or removed during iteration and conditional ac-
cording to positions or velocities so that it can support in-
equality or limits of constraints.

With these new positions and velocities, we can apply var-
ious constraints and velocity filtering such as contact con-
straints, strain-limiting or shape preserving constraints. We
can also apply constraint limits here. Once we apply the con-
straints, we update V0 instead of ∆V. Updating ∆V can cause
CG to diverge. Thanks to our Jacobian-free method, updat-
ing V0 will be reflected to the linear system at the next iter-
ation without affecting convergence.

Since we perform handling contact constraint within CG
iteration, checking collision may become a huge bottleneck.
Especially checking continuous collision detection per CG
iteration would be too much expensive.

To avoid frequent bounding volume hierarchy (BVH) up-
date and running broad phase collision detection, we define
the maximum vertex displacement length similar to CFD
condition in fluid simulation. When we update bounding vol-
umes, we inflate them with this maximum length and find
potential colliding pairs. After having them, we run implicit
integration. Within it, when we run constrain filtering, we
check the proximity-based narrow phase collisions from the

Algorithm 5: Jacobian and Matrix-free Conjugate Gra-
dient (JMCG), S is a filter

1 compute b
finitial = ComputeForce(0);
f f orward = ComputeForce(S(V0));

b = h(fext +M−1(finitial +
f f orward−finitial

ε
));

2 r = b ;
3 p = r ;
4 δnew = rT p;
5 δ0 = bT b;
6 while δnew > tolerance2

δ0 do
7 compute Ap

f f orward = ComputeForce(S(p));
s = p−hM−1(

f f orward−finitial
ε

);
8 α = δnew/(pT s);
9 ∆V = ∆V+αp;

10 r = r−αs;
11 δold = δnew;
12 δnew = rT r;
13 constraint filtering

X f orward = X0 +hS(V0 +∆V);
apply constraints and update V0 ;

14 p = r+ p(δnew/δold);
Output: ∆V

pairs. To avoid having too many continuous collisions, we
try to find and resolve proximity contact collisions as much
as possible. At each iteration, we check each vertex’s dis-
placement and if it is larger than the maximum length condi-
tion, we update its bounding volume and its parents’ bound-
ing volumes and find a new potential colliding pairs. With
this approach, we can minimize the need to update BVH and
check broad phase collisions. Also we can reduce the cost
of checking continuous collisions by doing more proximity
checking because proximity collision is much cheaper than
continuous collision in general.

6. Improve Stability

Like the original MCG introduced by Baraff and Witkin
[BW98], our JMCG is not unconditionally stable, even
though it allows much larger timestep compared to explicit
integration. To improve the stability and have a much larger
timestep, we developed second order implicit integration and
special force computation method.

The following equation shows second order finite differ-
ence derived from Taylor series expansion. By using forward
and backward forces, we can easily achieve second order Ja-
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cobian calculation. Algorithm 6 shows second order matrix-
free Conjugate Gradient method.

∂ fi
∂x j

δx j =
fi(x j + εδx j)− fi(x j − εδx j)

ε
(5)

Algorithm 6: Second order JMCG, S is a filter

1 compute b
finitial = ComputeForce(0);
fbackward = ComputeForce(S(-V0));
f f orward = ComputeForce(S(V0));

b = h(fext +M−1(finitial +
f f orward−fbackward

ε
));

2 r = b ;
3 p = r ;
4 δnew = rT p;
5 δ0 = bT b;
6 while δnew > tolerance2

δ0 do
7 compute Ap

fbackward = ComputeForce(S(−p));
f f orward = ComputeForce(S(p));
s = p−hM−1(

f f orward−fbackward
ε

);
8 α = δnew/(pT s);
9 ∆V = ∆V+αp;

10 r = r−αs;
11 δold = δnew;
12 δnew = rT r;
13 constraint filtering

X f orward = X0 +hS(V0 +∆V);
apply constraints and update V0 ;

14 p = r+ p(δnew/δold);
Output: ∆V

In case of linear spring, we can use slightly different way
to compute force when the spring is compressed. Instead us-
ing the X f orward to compute force direction vector, we use
X0. Also we project the two forward vertex positions into
the new force direction vector and use them to compute the
current spring length as in Equation 6. ks is a spring con-
stant. With this special force computation, we could observe
big improvement of stability. This approach is different from
post buckling method proposed by Choi et al. [CK02].

fi =

 ks(
∣∣X f orward,i j

∣∣−L) X f orward,i j
|X f orward,i j| :

∣∣X f orward,i j
∣∣≥ L

ks(X f orward,i j ·
X0,i j
|X0,i j| −L) X0,i j

|X0,i j| :
∣∣X f orward,i j

∣∣< L

(6)

7. Results

Firgure 1, 3 and 4 show cloth simulations with pin or con-
tact constraints interleaved within JMCG. The pinned vertex

Figure 2: Comparing CG iterations from JMCG (first order),
JMCG (second order) and MCG with separate collision step.
The horizon axis is simulation frame and the vertical axis is
the number of CG iterations. The simulation scene is in Fig-
ure 1. In all three cases, stretch spring constant was 100000
and bending spring constant was 10000. Timestep was 240
Hz without any sub-steps.

is constrained on the horizon line. Therefore the vertex can
only move following the invisible line.

Figure 2 shows the comparison among first order JMCG,
second order JMCG and MCG with separate collision step.
The simulation scene is shown in Figure 1. The second order
JMCG has slightly higher CG iterations than the first order
JMCG. MCG shows low CG iterations but it is probably be-
cause the collision is separate from integration process.

We do not compare the simulation time between JMCG
and MCG because interleaved contact constraint can con-
tribute a lot on the performance. However, based on our ob-
servation, JMCG is comparable to MCG as long as the CG
iteration is not too high. It may possible to run constraint fil-
tering in JMCG at every few iterations but we believe it may
cause CG to converge slowly.

8. Conclusion

Matrix-free approach can be beneficial in terms of memory
consumption and sparsity management. GPU would be a big
beneficiary. If cloth mesh topology changes frequently such
as tearing, our matrix-free method can handle it efficiently
since there will be no reconstructing or managing matrix ex-
plicitly.

The Jacobian-free method allows us to use non-linear
forces without linearizing them. Previously two-way inter-
action with other physical material such as fluid often used
penalty force or impulse in sequential manner. With our ap-
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Figure 3: Cloth is constrained at the corner on the horizontal line.

proach, it should be possible to interleave it within integra-
tion solver. We plan to do more research on this topic.

Our implicit integration can support various interleaved
constraint types such as contact collision, pins or strain-
limiting inside its CG iteration. This interleaving can give
a lot of flexibility to simulate various physical materials.

For future research, we want to improve the stability and
develop a smart way to tune ε in a better way. Also we plan
to investigate preconditioner for matrix-free CG.
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Figure 4: Cloth is pinned on the horizontal line and there is contact collision with torus shaped object. Both pin and contact
constraints are interleaved with matrix-free implicit integration.
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