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Abstract

A real-time delivery of accurate soft-tissue intervention navigation information is one of the most crucial aspects

for accepting the soft-tissue navigation systems for intra-operative use. Currently, soft-tissue navigation systems

face some obstacles in terms of registration of the virtual navigation information on the deformable soft-tissue

organ. Most of them perform a rigid registration between the virtual data and the organ, and then provide the

surgeon with all navigation information. However, they suffer from the disadvantage that the virtual information

is not correctly registered to the deformable organ. In order to enable a real-time non-linear registration between

the virtual navigation information and the deformable organ, we incorporate different means for tracking the soft-

tissue internal and on-surface local motion. Furthermore, we introduce an intelligent information fusion engine

for combining the various soft-tissue local motion tracking information into a global motion information channel.

The fusion engine is the interface to the motion measurements, a motion dynamics model, and static shape infor-

mation, which are combined to compute the a posteriori estimate of the current state of the deformed shape. The

dynamics model is realized as a finite-element deformation simulation. In order to test the feasibility of our devised

information fusion engine, we have employed it for capturing the global motion of a breast phantom during an

image-guided biopsy. The biopsy planning navigation data, in the form of a prior diagnostic MRI, is continuously

updated over time according to the a posteriori estimate of the global motion. As a result, the real-time changes

in the shape of the breast are always reflected in the biopsy navigation information.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Motion, Sensor fusion, Tracking, Shape; J.3 [Computer Applications]: Life and Medical Sciences—
Health

1. Introduction

Smart information processing and interactive visualization
systems have advanced significantly over the past years,
while fascinating us in many different ways. One of the most
prominent fields in which the incorporation of such systems
is very beneficial, is the field of modern medical technol-
ogy for computer-assisted intervention planning and navi-
gation. Currently, modern medical technologies employing
such systems are widely accepted for pre-operative planning
and diagnosis. However, their intra-operative use is still fac-
ing some obstacles in terms of intervention navigation and
surgeon’s interaction with the virtual information system.
The problem in terms of intervention navigation is twofold:

1. there are inaccuracies in the registration of the navi-

gation information on the deformable soft-tissue organ
[MMHW∗08], and

2. there is an increase in the cognitive load of the interven-
tion specialist during the transfer of the navigation infor-
mation from the system to the intervention situs.

The inaccuracies in the registration of the navigation
information on the deformable soft-tissue organ are, in
general, due to the rigid registration between the virtual data
and the soft-tissue organ or due to incomplete and erroneous
soft-tissue motion tracking. In other words, the deformation
component of the motion, which the soft-tissue organ
undergoes over time, is not properly taken into account.
The obstacles in terms of surgeon’s interaction with the
virtual information are related to the fact that the navigation

system is usually placed far away from the surgeon which
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inhibits direct interaction.
Projector-based soft-tissue navigation and surgeon-
computer natural interaction mechanisms [KOP11, KRL13]
are very promising in circumventing the obstacles concern-
ing the transfer of the virtual navigation information and the
difficulties in the interaction therewith. However, the overall

acceptance of the navigation systems as beneficial for the

intra-operative medical interventions is still confronting

big challenges, mainly due to the inaccuracies in the

registration of the navigation information on the deformable

soft-tissue organ.

1.1. Information Fusion System

In order to increase the accuracy of the above-described reg-
istration task, we devised an intelligent information fusion
engine for real-time estimation of the motion that a tracked
instance undergoes over time. The engine fuses, in real time,
three information sources: motion dynamics, motion mea-
surements, and shape information of the tracked instance
whose motion is being estimated.

Figure 1: General Information Fusion Concept.

The tracked instance is represented in a discrete fashion (see
Section 3), and its motion state at any discrete time k is
directly defined by the positions of all points which con-
stitute its discrete representation. The information fusion is
performed at the points which constitute the discrete repre-
sentation of the tracked instance. In accordance with this, the
information sources are estimated on a per-point basis, at the
points which constitute the state of the tracked instance. Our
navigation information visualization engine is then able to
update the virtual navigation information, in real time, ac-
cording to the output of our intelligent information fusion

engine, such that the changes in the pose and shape of the
tracked instance are reflected in the displayed virtual infor-
mation. The general concept for the above-described infor-
mation fusion, with an accompanying navigation informa-
tion visualization engine, is depicted in Figure 1. In this re-
gard, the work of Comaniciu et al. [CZK04] was influential
to us in our formulation of the general information fusion
problem in this manner.
In this work, we actually present the solution of a specific
information fusion problem instance, depicted in Figure 2.

Figure 2: Information fusion problem instance in the con-

text of breast biopsy navigation. Ek is the a priori displace-

ment estimate (taking into account the set of boundary con-

ditions Bk) and Ik is the approximation of the measurement

displacement vectors information source at a specific state

point, at a discrete time index k. P̂i(tk) is the a posteriori

estimate of the position of state point Pi, at time tk.

The motion dynamics modeling is embedded in a finite el-
ement model (see Section 5), which is set with parameters
specific to the instance whose motion is being estimated. The
finite element model is then used to simulate in real time the
motion dynamics of the tracked instance, which serves as
a prediction of the motion which the tracked instance un-
dergoes over a specified time period. Furthermore, the finite
element-based model is actually extracted from a segmented
volumetric scan of the instance whose motion is being es-
timated. In other words, the shape information is also em-
bedded into the finite element-based model. Therefore, the
prediction Ek (see Figure 2) by our finite element-based non-
linear motion prediction model is actually the fusion of the
motion system dynamics and the shape information sources.
The motion measurements information source is composed
of real-time surface (electromagnetic-based) and volumet-
ric (ultrasound-based) tracking data (see Section 4), which
captures the motion of the tracked instance at points which
do not necessarily correspond in number as well as physi-
cally to the points constituting the state of the tracked in-
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stance. Therefore, the displacement vectors, which describe
the change in the position of all tracked points from time
k− 1 to k, are interpolated at the discrete points which con-
stitute the state of the tracked instance. In that way, we obtain
the approximation Ik (see Figure 2) of the measurement dis-
placement vectors information source at the state points.
The overall information fusion and estimation of the a pos-
teriori state P̂ (see Figure 2) are described in Section 6. The
virtual navigation information, in the form of a prior diag-
nostic MRI, is updated in real time according to the output
of our intelligent information fusion engine (see Section 7),
such that it always reflects the estimated current shape and
internal structure of the tracked instance. Since the overall
information fusion and navigation information update is per-
formed in real time, we need to exploit concurrency and par-
allelism efficiently and correctly (see Section 8). Results are
presented and discussed in Section 9.

1.2. Contribution

Our main contribution to the state of the art can be summa-
rized as follows:

1. real-time information fusion engine for motion measure-
ments, motion dynamics, and shape information to esti-
mate the a posteriori motion state and visualize the de-
formed shape;

2. computation and integration of displacements from mea-
surements and models;

3. application to real-time image-guided breast-biopsy nav-
igation.

2. Related Work

Baumhauer et al. [BFMR08] pointed out that probably
the greatest challenge, in the field of computer assisted
navigation for endoscopic soft tissue interventions, relates
to the intraoperative measurement and modeling of organ
shift and tissue deformation of “unconstrained” organs in
thoracic and abdominal cavities. Furthermore, they noted
that as navigation is performed over certain period of time,
a continuous correction of tissue motion and deformation
would be required for constant and reliable navigation
accuracy. In this section, we will discuss a list of selected
related work of others about: measurement of the organ shift
and tissue deformations, soft tissue deformation modeling,
and information fusion of these and related information
sources.
Zhang et al. [ZBL∗06] employed magnetically tracked
needles and biomechanical models, while compensating the
liver respiratory motion. They have implemented and ex-
tended the so-called paired-point, sensor orientation-based,
and needle-based (needles are implanted in the soft-tissue
organ and sampled both in the electromagnetic space
as well as in the CT image space) registration methods.
Furthermore, they rely on the affine transform proposed by

Horn [Hor87] for simulating the small-range deformation.
Kocev et al. [KRL13] incorporated an algorithm for creat-
ing, in real time, a virtual point-based representation of the
deformable surface of a tracked instance lying on a surgical
table. They first create a virtual point-based model of the
whole scene (viewed by a Kinect camera), and then segment
the surface of the tracked instance in the acquired point
cloud. In this way, they are able to sample the global motion
signal of the deformable tracked instance over time on the
surface spatial domain. However, they do not sample on the
tracked instance’s interior spatial domain and their method
may suffer from occlusion problems whenever parts of the
tracked region are not seen by the Kinect camera.
Cash et al. [CMS∗05] employed a range scan point cloud
acquired from the exposed soft-tissue organ surface, which
is then rigidly aligned to a preoperative (predeformed)
complete three-dimensional surface of the organ. They
account for the deformation by using a linearly elastic FEM,
which is implemented by using an incremental framework to
resolve geometric nonlinearities. The boundary conditions
for the incremental formulation are generated from the
intraoperatively acquired range scan surfaces of the exposed
soft-tissue organ surface. However, they do not measure the
organ interior local deformation, but rely solely on the FEM
constrained with the surface boundary conditions.
Several research groups have developed methods for brain
shift compensation. Škrinjar et al. [ŠND02] proposed a
biomechanical-model-based approach for brain shift comen-
sation, which is guided by limited intraoperative (exposed
brain) surface data. Dumpuri et al. [DTD∗07, DTC∗10]
computed an atlas of model deformations based on
different loading conditions preoperatively, and used it
with a constrained linear inverse model to predict the
intra- and post-operative distributed brain shift. Miller
et al. [MHJW12] employed the so-called Meshless Total
Lagrangian Explicit Dynamics Method (MTLED), for
computing brain deformations during surgery. The problem
geometry is based on patient-specific MRI data, while the
nodes are distributed automatically through the domain.
They reported a Hausdorff distance difference between
previously validated Finite Element results and their mesh-
less results of less than 0.2 mm. However, in the context
of real-time breast motion estimation, handling the motion
deformation component might be more challenging and
result in higher Hausdorff distance differences.
A relatively recent overview over ongoing research in the
field of physically based deformation modeling is given by
Nealen et al. [NMK∗05]. For an overview over ongoing
research in the field of breast biomechanics modeling, in the
context of information fusion from different imaging modal-
ities, we refer to the article by Rajagopal et al. [RNN10].
The Kalman filter, in its information filter form [AM79],
is the simplest and most well-known example of fusion. It
performs the fusion of the measurements and the system
dynamics information sources. The measurements and the
system dynamics predictions have independent uncertainty
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distributions which are expressed with mean vectors and
covariance matrices. Most of the other information fusion
algorithms employ the original idea of Kalman for fusing
the two above-mentioned information sources. However,
it is often necessary to adapt or extend the Kalman fusion
framework to handle additional information sources, such
that more complicated motions can be estimated in an
optimal and rigorous fashion.
Zhou et al. [ZGC05] continued the work of Comani-
ciu [CZK04], and thoroughly presented their complete
information fusion framework for robust shape tracking, in
a rigorous fashion. They follow the basic idea in treating
the measurement, the shape model, and the prediction as
noisy measurements with covariance matrices and fuse
all the information in an optimal way. More specifically,
they apply the subspace fusion on the Kalman fusion
(measurement + prediction based on system dynamics)
result and a subspace source (shape model), and in this way
they combine all the available knowledge in the information
space. They employ a strongly adapted-PCA (SA-PCA)

model [CZK04] to augment the statistical generic shape
model with information specific to the currently tracked
shape (e.g., the initial contour of the tracked heart of a
specific patient), and in this way obtain a deformation model

of the current case. The SA-PCA model is then actually
fused with the above-specified Kalman fusion result, such
that in the end they actually fuse four information sources:
the system dynamics, measurement, subspace model, and
the tracked instance-specific information. In our solution,
we can interpret the finite element-based model, extracted
from the segmented volumetric scan of tracked instance,
as the above-described deformation model of the current

case. By setting the finite element-based model with tracked
instance-specific material properties (density and elastic
modulus), we actually incorporate the system dynamics in
the finite element-based model. Therefore, the prediction
of our finite element-based nonlinear motion prediction
model is actually the fusion of the system dynamics and the
deformation model of the current case.

3. Tracked Instance In State Representation

The tracked instance which undergoes some form of mo-
tion is denoted as In, where n is the number of points which
constitute its discrete representation. The overall state of the
tracked instance In, at time t, is represented by the state vec-
tor function:

S(t) =
[

P0(t) P1(t) ... Pn−1(t)
]

(1)

where Pi(t) is a vector variable function defined as

Pi(t) =




xi(t)
yi(t)
zi(t)


 ,

where xi(t), yi(t), and zi(t) are three scalar variables which
define the 3D position, in a Cartesian coordinate system in
Euclidean space, of the i-th point at time t. The n points Pi

constitute the discrete representation of the tracked instance
In, as shown in Figure 3.

Figure 3: Discrete representation of the breast phantom.

The global motion of the tracked instance, from any discrete
time point k− 1 to k, is described by the displacement func-
tion:

u : Ω → R
3 (2)

where Ω ⊂ R
3 spans the 3D subspace of all possible 3D

position values for the points which constitute the state rep-
resentation (1) of the tracked instance In.

4. Motion Measurements Information Source

In general, all tracking data captures some form of motion.
The measured tracking data at a discrete time point k, for
an instance In which undergoes some form of motion, is a
discrete set of points:

Mk =

{
Mi(tk) :

Mi(tk) is the measurement o f

the i− th point at time tk

}
(3)

whose cardinality theoretically may range from 1 to an
arbitrarily large number. Mi(tk) is a vector variable mea-
surement function which gives the vector value of the
observable or tracked i-th point at time tk. In practical
examples, the arbitrarily large number is sufficiently big,
while the expected minimum cardinality of the set Mk is
imposed by the minimum amount of information necessary
for updating the overall state S(tk) of the tracked instance
correctly.
If |Mk| = n and ∀M ∈Mk ∃Pi such that in reality they both
correspond to the same physical point, then the state S(tk)
of the tracked instance In, at time tk, is completely defined
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Figure 4: Breast skin surface and interior track-

ing data. In this example, the discrete set of points

{M1,M2,M3,M4,M5,M6} constitute the set Mk from

Eq. 3. The four dark gray rectangular bodies, among which

three are attached directly on the skin surface and one

on the utlrasound probe, are the tracked electromagnetic

bodies/sensors.

directly by the measurements. However, in real scenarios
we have |Mk| < n. Furthermore, the cardinality of the set
Mk, in general, varies and not always the same physical
points are tracked over time, such that the overall spatial
sampling density and coverage of the global motion signal
varies from one time point to another.
Furthermore, the sets of measurements Mk and Mk−1 define
the set of samples, denoted by Sk, from the output of the
function ( 2) at any discrete time point k. The spatial domain
Ω (defined in Eq. (2)) of the displacement function which
captures the motion of the breast (treated as an In instance),
is then the 3D subspace encompassing the breast interior
and bounded by the breast skin surface. Therefore, the
location of each sample s ∈ Sk could be either somewhere
on the breast skin surface or in the breast interior.
In order to sample the output of the displacement function
on the breast surface spatial domain, we attached small
electromagnetic bodies/sensors to the breast skin surface,
as illustrated in Figure 4. The 3D position of each attached
electromagnetic body/sensor defines the location of a
different sample from the output of the above-described
displacement function, on the breast skin surface spatial
domain. Furthermore, the sample values at these locations,
at a discrete time k, are based on the electromagnetic
tracking data, for the corresponding bodies/sensors, at the
discrete time points k− 1 and k.
In order to sample the output of the displacement function
on the breast interior spatial domain, we incorporated a real-
time ultrasound imaging device which is localized in the
electromagnetic tracking space. This is achieved by attach-
ing an electromagnetic body/sensor on the ultrasound probe,
as illustrated in Figure 4, which enables us to localize the
probe in the electromagnetic tracking space. Furthermore,
we compute the position (at a discrete time k) of the contact
point between the ultrasound probe and the breast skin
surface, based on the tracking data (at a discrete time k) for

the sensor attached on the probe and on a prior calibration
of the displacement vector from the sensor location to the
bottom mid point on the ultrasound probe. Moreover, we are
able to use the position of this contact point as an additional
sample location on the breast skin surface. Having this in
hand and using a prior information about the definition
of the ultrasound image space with respect to a 3D local
frame positioned at the above-described contact point, we
obtain the transformation between the ultrasound image
space and the electromagnetic tracking space. The real-time
ultrasound imaging device then captures the interior of the
breast by acquiring 2D images over time, as illustrated in
Figure 4. The 2D ultrasound images reveal distinctive breast
soft-tissue structures, which are identified and tracked over
time by a digital image correlation (DIC) variant of the
real-time capable algorithms by Isard et al. [IB98] and
Zhang et al. [ZGB10]. The position of every tracked point
in the ultrasound image space, within the identified and
tracked breast soft-tissue structures, is localized in the
electromagnetic tracking 3D space, as described above.
The 3D position of every tracked point, localized in the
electromagnetic tracking space, then defines the location of
a different sample from the output of the above-described
displacement function on the breast interior spatial domain.
The sample values at these locations, at a discrete time k, are
then based on the DIC tracking data, for the corresponding
tracked soft-tissue points, at the discrete time points k − 1
and k.

5. Motion Dynamics and Shape Information Sources

The motion, which the tracked instance In undergoes
between two discrete time points k − 1 and k, in general,
contains two components: a rigid-body displacement and
a deformation. The rigid-body displacement is composed
of a rotation and a translation component and it preserves
the shape and size of the tracked instance In, where the
change in shape and size is measured against the initial or
undeformed state S(t0). On the other hand, the change in
the deformation component of the motion is responsible for
any change in shape and size which the tracked instance
In undergoes between the two discrete time points. The
deformation component of the motion at time k has changed
with respect to the one at time k-1, if there is a nonzero
relative displacement between all or some of the points
which constitute the discrete representation of the tracked
instance In.
In our case, we need to model the dynamics of the motion
which the breast undergoes over time. Soft-tissue deforma-
tion modeling is a challenging task, because it involves a
major deformation component which is difficult to model
when the material properties of the tracked instance In

are not well known. Furthermore, we need an appropriate
nonlinear motion model, which shall be able to predict, in
real time, the change in the motion deformation component
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from time k-1 to k. This kind of nonlinear models in addi-
tion impose the challenge of extracting appropriate motion
heuristics from the global motion signal sampling data Sk,
which are then used as boundary conditions by the nonlinear
motion fitting model. In other words, the nonlinear model
depends both on the time tk and on a number of carefully
selected boundary conditions to which the model is fitted,
when predicting the motion deformation component.
In order to achieve a realistic soft-tissue deformation mod-
eling, one needs to employ a physical model of the tracked
instance In. As pointed by Georgii and Dick [GD12],
physics-based modeling is preferred over simplified models,
because in a physics-based prediction model the accuracy is
much higher, at least, from a theoretical point of view, which
is especially important for our target medical applications.
Furthermore, finite elements are a well-known mathematical
tool for accurate modeling of the behavior of deformable
objects based on the theory of elasticity. When compared to
finite difference methods, which consider only the values
at discrete samples, the finite element methods take the
continuum within an element into account by providing
a well defined interpolation function. In this manner, a
higher accuracy is guaranteed. The degree of freedom of an
element is defined by the number of “free” vertices which
constitute the element, and the data values are only given at
these vertices. Without any loss in the generality of our state
formulation (1), we assume that the points which constitute
the state representation of the tracked instance In and all
the finite element vertices have 1-to-1 correspondence, and
each pair of corresponding points contain information for
the same physical point. In other words, the data values at
all the finite elements’ vertices will contain the predicted
complete motion state information at time k.
Having these arguments in hand for the suitability of this
nonlinear model for our particular problem, we decided
to incorporate the framework by Georgii and Wester-
mann [GW08,GW05] for physical simulation of deformable
volumetric bodies in real time, which is built upon the
physical laws of continuum mechanics. Their framework is
based on an implicit finite element method and it employs a
multigrid approach for the efficient numerical simulation of
elastic materials. Their proposed approach enabled us to do
efficient realistic and numerically stable simulation of het-
erogeneous bodies (described by tetrahedral or hexahedral
grids).
Regarding the set of boundary conditions at time k, de-
noted as Bk, we check if the influence measure of the
nearest-neighbor sample s ∈ Sk of every state point Pi

is above some threshold, and only then compute Ik(Pi)
and add the pair (Pi, Ik(Pi)) to the set Bk. The influence
measure is a function of the Euclidean distance between
the nearest-neighbor sample s ∈ Sk and the respective state
point Pi. Ik is the identified best interpolant on Sk, which
currently employs a simple nearest-neighbor interpolation
strategy.
An example of a finite element model of the CIRS triple

modality (X-ray Mammography, MRI, Ultrasound) breast
biopsy training phantom, is shown in Figure 5 right.

Figure 5: Breast phantom. Left to right: MRI scan with 4

markers (one on the back side); the finite element-based

model composed of tetrahedra elements which are extracted

from the MRI scan data on the left. The points in red are fix-

ated, i.e., the FEM-based nonlinear motion prediction model

considers these vertices as not moving.

The fixation points are chosen such that they reflect the
expected realistic behavior of the motion which the breast
phantom, shown in Figure 9, can undergo. The points Pi,
which constitute the state representation of the breast, have
1-to-1 correspondence with the tetrahedral finite element
vertices, as depicted in Figure 6. Furthermore, the set of

Figure 6: 1-to-1 correspondence between the points which

constitute the state representation of the breast on one hand,

and the tetrahedral finite element vertices on the other.

boundary conditions Bk are applied on the tetrahedral finite
element model on a per-vertex basis. We then compute the a
priori displacement estimate Ek(Pi) for all state points Pi for
which a boundary condition is not provided, while taking
into account the provided boundary conditions Bk. In this
regard, we employ a geometric multigrid solver on the tetra-
hedral grid to efficiently solve the resulting system of linear
equations [GLDW10]. As the finite element-based model
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is extracted from the MRI scan data, shown in Figure 5
left, and its material properties are set to match those of the
CIRS phantom, the a priori displacement estimate Ek(Pi)
is actually the fusion of the motion dynamics and shape
information sources at the state point Pi. Furthermore, the a
priori displacement estimate Ek(Pi) serves as a prediction of
the global motion signal at the state point Pi, at time k.

6. A Posteriori State Estimation

While computing the a posteriori position estimate of each
point Pi, part of the state representation (1) of the tracked
instance In (e.g., the breast phantom), we consider whether a
boundary condition is provided for that state point or not. For
all state points for which a boundary condition is provided
in Bk, we compute the a posteriori estimate as follows:

P̂i(tk) = P̂i(tk−1)+Ik(P̂i(tk−1)) (4)

while for those for which it is not provided as:

P̂i(tk) = P̂i(tk−1)+Ek(P̂i(tk−1)) (5)

where P̂i(tk−1) is the previous a posteriori position estimate
of the state point Pi. In other words, there are state points,
on one hand, whose nearest-neighbor motion signal sam-
pling point has a strong enough influence on them, while on
the other hand there are state points whose nearest-neighbor
motion signal sampling point does not have such a strong
influence on them. Therefore the a posteriori position esti-
mates of the former are computed using (4), while of the
latter using (5).

7. Real-time Virtual Navigation Information Update

The virtual navigation information, e.g., a prior diagnostic
MRI, shall be updated in real time according to the output
of our intelligent information fusion engine, such that it re-
flects the estimated current shape and internal structure of
the tracked breast instance. In our case, we decided to al-
ways display the MRI slice which corresponds to the current
US 2D image. Therefore, the output of our information fu-
sion engine at a discrete time k, i.e., the estimated state S(tk),
shall be used to update the prior MRI scan such that the cor-
responding MRI slice can be correctly sampled.
The prior MRI scan is taken at time t0, i.e., when the mo-
tion state of the tracked breast is S(t0). On the other hand,
we have the displacement field which describes the motion
of each state point Pi during the transition from state S(t0)
to state S(tk). We could first move the MRI voxels, such that
the 3D MRI scan reflects the estimated current shape of the
tracked instance, and then sample the MRI volume at the
plane corresponding to the US image plane. Alternatively,
we could sample the above-described displacement field on
the plane defined by the 2D US acquisition image, and then
compute the MR image value for each plane pixel by sam-
pling the MRI volume at the voxel which actually moved to

the same plane point (based on the previously sampled dis-
placement vector at the same pixel). We choose the latter ap-
proach for computing the corresponding MRI slice, because
it avoids unnecessary computations. However, the sampling
plane and the displacement field are both defined in the EM
world coordinate system. Meaning, we also need to trans-
form their descriptions to the MRI world coordinate sys-
tem, in which the positions of the MRI voxel are described.
Therefore, we need to compute the transformation between
the EM and the MRI world coordinate systems.
The relationship between the EM and the MRI Cartesian co-
ordinate systems, is found by using pair of measurements
of the coordinates of four points in both systems. The mea-
surements of the coordinates in the MRI world coordinate
system are given by the 3D positions of the four MR mark-
ers (see Figure 5) in the MRI world, while their coordinates
in the EM world coordiante system are acquired by point-
ing each of them with an EM-tracked sensor/pointer. The
transformation parameters (rotation, translation, and scal-
ing) are then found by employing the closed-form solution,
by Umeyama [Ume91], of the general absolute orientation
problem.
Figure 7 provides an example of a 2D US image together
with its corresponding 2D MR slice, where the 2D MR slice
is sampled, as described above, from the prior MRI scan of
the breast phantom.

Figure 7: US-MRI correspondence example. (Left to right)

current US 2D image; corresponding MRI slice with the

same extents as the current US 2D image; overlay of the

current US 2D image on the full corresponding MRI slice.

8. Concurrency and Parallelism Aspects

In order to make the estimation of the motion, a tracked in-
stance In undergoes over time, possible in real time, we had
to extensively parallelize each information source generation
component as well as the overall information fusion engine.
When striving for performance, programming in terms of
threads (using low-level APIs) can be an inconvenient way
to do multi-threaded programming. Logical tasks are a more

c© The Eurographics Association 2014.

95



Kocev et al. / Information Fusion for Real-time Motion Estimation in Image-guided Breast Biopsy Navigation

Figure 8: Depiction of the communication flow in our intel-

ligent information fusion system.

appropriate choice, because they match better parallelism to
available resources, have a faster start-up and shut-down,
have a more efficient evaluation order, improved load bal-
ancing, and they provide higher-level thinking. Therefore,
we have employed the IntelrThreading Building Blocks
(IntelrTBB) library [Int], which supports scalable paral-
lel programming using standard ISO C++ code. We define
three different IntelrTBB-based logical tasks which can be
described as follows:

1. a task which generates 2D ultrasound (US) images and
electromagnetic tracking data in real time;

2. a task which performs the US-US image correlation in
real time, and

3. a task which performs the fusion of the motion dynamics
and the shape information sources (finite element-based
simulation), i.e., the a priori motion estimation, in real
time.

The communication and the synchronization between the
different logical tasks is handled by a so called Manager

unit (depicted in Figure 8), which we have implemented in
addition. Furthermore, we had to devise a smart data man-
agement system to handle all data generated by the different
tasks in a thread-safe manner.
The sampling of the displacement field (described in sec-
tion 7) on the plane defined by the 2D US acquisition image,
is extensively parallelized using OpenMP [OARB]. Further-
more, the 2D sampling of the prior MR image, based on the
above-described sampled displacement field, is performed
on the graphics processing unit (GPU).

9. Results and Discussion

The presented information fusion algorithm has been tested
within our devised breast biopsy navigation system, depicted
in Figure 9. This figure demonstrates the functionality of our

information fusion engine, when estimating the global mo-
tion of the CIRS triple modality breast biopsy training phan-
tom in real time.
The resolution of the input ultrasound (US) image, as shown
in the top-left image viewer on the computer screen in Fig-
ure 9, is set to 512×512. Furthermore, the ultrasound acqui-
sition depth is set to 120 mm.
The bottom-right image viewer, as depicted on the computer
screen in Figure 9, shows an overlay of the two displacement
vectors (capturing the local motion of the tracked breast le-
sions in the ultrasound image space) on the input US image.
In this example, the global motion signal sampling data set
Sk contains two samples from the output of the displacement
function 2 on the breast interior spatial domain. Their sample
values are set with the values of the overlaying displacement
vectors, shown in the bottom-right image viewer on the com-
puter screen in Figure 9, transformed to the EM world coor-
dinate system. The set of boundary conditions Bk, at time k,
are then extracted from the set Sk and used as Dirichlet con-
ditions [GLDW10] in the finite element model of the breast
phantom.
The breast phantom is fixated with five pins. Two of them
can be observed in front, while the remaining three cannot be
seen because one is below (in the middle), and the other two
behind the breast phantom (see Figure 9). One could also
observe the virtual representation of these fixation points,
rendered as red spheres, in the virtual scene containing the
finite element model of the breast shown in the bottom-left
image viewer on the computer screen in Figure 9, or more
clearly in Figure 5.
For the performed tests, we used the following parameter
configuration of the breast phantom finite element model:

Parameter Value/Type
Integration Type Dynamic Euler
Strain Type Corotated Cauchy Strain
Stiffness 1000
Poisson Ratio 0.48
Density 1000
Damping 2.5
Time Step 0.033
Number of VCycles 1

Having set the finite element model with the above infor-
mation, we are able to compute the a priori displacement
estimate Ek(Pi) for all state points Pi for which a boundary
condition is not given.
Then, we are able to compute the a posteriori position esti-
mate for all state points Pi, as described in Section 6.
Furthermore, we are able to continuously update the prior
diagnostic image (in this example an MRI image), based on
the real-time output of our fusion algorithm, as described
in 7. In the top-right image viewer on the computer screen
in Figure 9, one could observe that the updated diagnostic
MRI image map reflects the true shape and internal structure
of the examined breast (see also Figure 7). In this way, we
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Figure 9: Hybrid Image-guided Breast Biopsy Navigator. (Please see the accompanying video material.)

can actually claim that we are also able to provide a hybrid
image-guided (in this example US-MRI-guided) biopsy nav-
igation.
We analyzed the real-time performance of our information
fusion system on a desktop PC (Intel(R) Core(TM) 2 Quad
CPU Q9000 @ 2.00 GHz 2.00 GHz, 4 GB RAM, Win-
dows 7 Professional 64 bit) and obtained that on average we
achieve 20-30 updates of the current state per second. The
non-constant update rate is mainly due to the concurrent na-
ture of the different components in the information fusion
engine.
However, the accuracy of our information fusion system has
only been visually inspected in our laboratory setting using
the CIRS phantom and not yet for estimating the motion of
deformable human organs in an intervention room. In fu-
ture work, we plan on first validating the results of our in-
formation fusion algorithm against simulated ground-truth
global motion signal values. One could simulate the ground-
truth global motion signal using the finite element model
of the soft-tissue tracked instance. Then one would need to
sample the ground-truth global motion signal at locations
which do not necessarily correspond to the state points Pi,
and use these samples as ground-truth global motion signal
samples. These samples would constitute the motion mea-
surements information source which will be fused with the
dynamics and the shape information sources by our fusion
engine. The result will be then compared against the above-
specified ground-truth global motion signal. For an overall
system validation, we plan on generating the ground-truth
navigation information for a certain number of time points

(e.g., by acquiring MRI scans of the deformed soft-tissue
tracked instance at the respective time points) and comparing
it against the updated virtual navigation information (e.g.,
the deformed prior MRI scans) based on the output of our
information fusion algorithm at the respective time points.

10. Conclusion and Future Work

We devised an intelligent information fusion engine for real-
time estimation of the motion that a tracked instance un-
dergoes over time. The engine fuses the tracked instance’s
motion dynamics, motion measurements, and shape infor-
mation sources. As a result, all available knowledge in the
information space is combined.
We incorporated electromagnetic bodies/sensors for sam-
pling the global motion signal on the deformable organ’s sur-
face spatial domain. For sampling the global motion signal
on the deformable organ’s interior spatial domain, we used
an appropriate real-time US-US image correlation algorithm
which identifies distinctive soft-tissue structures and tracks
them over time.
By employing a finite element model, we were able to best
model, based on the theory of elasticity, the dynamics of the
motion which a deformable organ undergoes over time. Us-
ing this nonlinear motion model, we were able to predict, in
real time, the change in the motion deformation component
from time k− 1 to k.
We showcased the feasibility of our devised information fu-
sion engine by employing it for capturing the global motion
of a breast phantom during an image-guided biopsy. In this
way, we enabled the real-time update of the biopsy planning
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navigation data according to the posteriori estimate of the
global motion. In return, the real-time changes in the shape
of the breast are always reflected in the navigation informa-
tion.
As we assumed error-free measurements and modeling, our
a posteriori position estimates depend either only on the in-
terpolated displacement or only on the a priori displacement
estimate. In other words, currently we do not model the un-
certainties neither in the electromagnetic tracking nor in the
US-US image correlation data. In future work, we plan on
quantifying these uncertainties and including this knowledge
in the information space. This will enable us to incorporate
the uncertainty information source in the a posteriori state
estimation, such that a proper (always assuring consistent
and conservative a posteriori position estimates) uncertainty-
aware information fusion is possible.
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