‘Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2014)
J. Bender, C. Duriez, F. Jaillet, and G. Zachmann (Editors)

Mechanical Modeling of Three-dimensional Plant Tissue

Figure 1: Simulating nano-indentation with Atomic Force Microscopy: a spherical probe indenting a three-dimensional plant

tissue.
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Abstract

Morphogenesis in a developing organism depends on the mechanics of the structural elements of the organism.
In plants, typical experiments involve indenting tissues with a probe and measuring the force needed to reach a
given depth. However, the heterogeneous structure and complex geometry of living tissues makes it a challenge
to determine how such measurements are related to mechanical properties of the tissue, such as elastic moduli
or internal pressure. Indeed, this task requires to perform a large number of direct mechanical simulations with
a mesh representing the tissue. Here we propose a framework to achieve this task, using the Simulation Open
Framework Architecture (SOFA) platform. We start from a realistic tissue structure corresponding to an early
flower bud. We use a mesh where cells are polyhedral-shaped and are made of a liquid under pressure and where
the faces separating two cells are thin elastic plates undergoing bending and stretching, and we model the inter-
action of this mesh with a spherical rigid probe. We obtain force versus depth curves that can be compared to
experimental data. Thus our framework enables a comprehensive exploration of how mechanical parameters and
probe position influence experimental outcomes, yielding a first step toward understanding the mechanical basis
of morphogenesis.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Physically Based
Modeling—

1. Introduction

Understanding morphogenesis, i.e. how organisms achieve
their final shape, is a scientific challenge that requires
the input of many disciplines. Gene activity prescribes
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shape [CRLM*04], but only indirectly since shape is
determined by the mechanical elements of the organ-
ism [MDBHI11]. Plants are well-suited to investigate mor-
phogenesis because their mechanics is dominated by a sin-
gle type of mechanical element, the cell wall [Nik92].
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Accordingly it is essential to quantify the mechanics of
cell walls, which, following experiments, depends on the
parametrization of mechanical models of tissues inter-
acting with probes [MBB13, RKS13]. However, available
models address only simple geometries such as a single
cell [VAVB12b] or a single cell layer [KWK™12]. Indeed full
3D models involve thousands of degrees of freedom, and the
exploration of the parameter space requires a number of di-
rect simulations that grows exponentially with the number
of parameters, raising the issue of the trade-off between pre-
cision and speed of simulations. We believe that Computer
Graphics simulation libraries are well adapted for this, and
we present an efficient computational framework to model
the mechanics of three-dimensional plant tissues indented
by a probe.

A plant tissue can be viewed as a tiling of a region of space
by cells that are approximately polyhedral and have a size of
a few micrometers. Each cell can be modeled as a liquid un-
der pressure, which is in the range 0.1-1MPa [Nik92]. This
pressure is contained by cell walls, which can be modeled
as thin elastic plates (thickness 0.1-1um) made of a poly-
meric material (elastic modulus in the range 1MPa—1GPa),
and which lie at the faces of the polyhedra. Early mechanical
measurements relied on macroscopic experiments that yield
the (apparent) elastic modulus of a tissue at a macroscopic
scale [Nik92].

In order to obtain mechanical properties at a cellular reso-
lution, experiments have been scaled down [Gei06, RKS13,
MBB13], notably by using micro- or nano-indentation meth-
ods, wherein a micrometric or nanometric probe indents the
surface of the tissue while force and displacement are mea-
sured. These indentation methods are named according to
how displacements are controlled and forces are measured;
Cellular Force Microscopy [KWK*12] was designed for
slightly larger displacement/forces than Atomic Force Mi-
croscopy (AFM), which is more suited to small scale / small
force measurements [PBG*11,RSD*09, MGT*11,FCS*12,
RRS*12, MMC* 14]. If the tissue were a continuous, homo-
geneous elastic body, it would have been straightforward to
deduce elastic modulus from indentation experiments using
standard contact mechanics [Joh87]. However, as plant tis-
sue is heterogeneous and is full of liquid-filled cavities, ex-
perimentalists need to resort to (sometimes unverified) as-
sumptions, for instance that the size of the probe enables the
measurement of local (e.g. wall-level) or global (e.g. cell-
level) properties of the tissue.

Analytical mechanical models were developed to go fur-
ther, but they are limited to simple configurations, such
as the indentation of inflated thin shells that are spheri-
cal [VAVB12b] or ellipsoidal [VAVB12a], or the indenta-
tion of a continuous elastic half-space with elastic modulus
depending on the distance from its plane surface [LBTO8].
Moreover, it appears that the determination of the field of
elastic moduli in a body from indentation experiments is ill-

posed, unless additional assumptions are made, such as ho-
mogeneity [Joh87], simple gradation of properties [LBTOS]
or existence of two types of materials [RSD*09]. Therefore
there is a strong need for realistic and efficient computa-
tional mechanical models than enable a comprehensive ex-
ploration of the parameter space. The more advanced studies
addressed a single layer of plant cells with a sub-wall reso-
lution [KWK*12], but such sub-wall resolution prevents a
comprehensive investigation of the parameter space.

Unlike previous studies, we address here the indentation
of realistic three-dimensional tissues. To do so, we use the
Simulation Open Framework Architecture (SOFA) software,
an open source library designed for physically based simula-
tions in the field of medical simulation and computer graph-
ics [FDD*12]. We illustrate our approach on the structure of
the early floral meristem, which is a very young flower bud
in the shape of a dome attached to the side of the shoot, and
which consists of a few hundred cells in the plant Arabidop-
sis. The model accounts for the cellular structure of the floral
meristem [FDM* 10, BCA*14], for cellular pressure, for the
mechanics of the cell walls considered as thin elastic plates
undergoing stretching and bending, and for the indentation
by a spherical probe. We use the same tissue structure as
in [BCA™14], but instead of modeling tissue growth, we re-
fine the mechanical model (e.g. by adding bending) and we
consider the indentation of the tissue. In the following, we
present the details of the structure and the model, a valida-
tion of the model, and then results that are discussed in the
light of available experiments.

2. Realistic structure of meristem

We reused a tissue structure obtained in [BCA* 14]. Briefly,
this structure was derived as follows. A floral meristem
(a young flower bud) from the plant Arabidopsis was im-
aged from confocal microscope and reconstructed in 3D
in [FDM™10]. Then the 3D image was segmented in small
volumes corresponding to cells [FDM*10]. Due to the noisy
nature of the original images, such segmentation cannot be
directly transformed directly in a mesh usable in a mechani-
cal model. Therefore, a Voronoi tessellation of 3D space was
constructed from the centers of mass of all cells: the faces of
polyhedra are defined from all points that are equidistant to
two centers of mass, as schematized in 2D in Figure 2. In
addition this mesh was closed using the surface of the seg-
mented floral meristem. Thus, [BCA* 14] obtained a 3D tes-
sellation where each polyhedron corresponds to a cell from
the original floral meristem.

We triangulated all faces to obtain our simulation mesh.
In view of the trade-off between precision and speed of sim-
ulations, we chose to use a mesh with the minimal number
of triangles, except near the point of impact of the indentor
where the triangles were subdivided 16 times in order to im-
prove precision where the model is most deformed. Overall,
the mesh consists of 500 polyhedra (cells) with 3000 ver-
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Figure 2: 2D Voronoi tesselation

tices, and more than 11000 triangles, each cell wall measur-
ing between 5 to 10 units of length for a whole structure
of around 80 units (see table 10). The radius of the spher-
ical tip of the probe measures between % of a cell size to
half a cell size. Figure 3, shows the floral meristem imaged
by confocal microscopy (left, [FDM*10]), the inside of the
simulated structure (right), and its whole structure together
with the simulated spherical AFM (bottom). The blue part is
considered to be fixed since it is linked to the stem.

Figure 3: Realistic structure of a meristem: top view of a
flower bud with cell contours marked in red; mechanical
structure generated,; simulation of a spherical probe indent-
ing the structure

3. Mechanical Modeling

The SOFA framework allows us to divide the simulation into
several components, represented in a graph as in Figure 4. At
the root of this graph are the default components controlling
the animation and the detection collision. A time integration

(© The Eurographics Association 2014.

solver which compute the dynamics of the whole simulation,
associated with a linear solver is added to this node, as well
as all our degrees of freedom which correspond to the ver-
tices of the mesh.

Then the meristem topology is filled with our triangulated
structure and the mass and bending force field, which are
acting on the whole meristem are to be found here. Then the
node split in two parts : the surface with the pressure and the
stretching, and the interior which reacts on stretching, but
not pressure.

Finally, a simulated AFM (arigid sphere) enters in contact
with the structure.

The main elements of this graph: the time integration
method, the finite elements representing the stretching, the
pressure, and the bending force field are described thereafter.

Each child node whose mechanical structure (i.e. vertices,
deformation gradient...) relies on the displacement of its me-
chanical parent, is displaced via what we call mapping and
is described in Section 3.2.1.

0O Visualstyle displayFlags
@ DefaultPipeline DefaultCollisionPipeline
@ BruteForceDetection Detection
@ MinProximitylntersection Proximity
@ DefaultContactManager Response
@ DefaultCollisionGroupManager Group
O EulerimplicitSolver ODE Solver
O CGLinearSolver Linear Solver
B MechanicalObject degrees of freedom
= meristem
O TriangleSetTopologyContainer all triangles
O MechanicalObject all vertices
B FastTriangularBendingSprings bending force field
[ MeshMatrixMass meristem mass
B LinearMapping mapping with DOFs
=-Q surface
O TriangleSetTopologyContainer surface triangles
B MechanicalObject surface vertices
O SurfacePressureForceField pressure
O TTriangleModel collision triangles
B SubsetMapping mapping with all vertices
O BarycentricShapeFunction barycentric shape function
=-{) deformation node
O TopologyGaussPointsampler sampler
B MechanicalObject deformation gradient
B LinearMapping mapping vertices to deformation gradient
=-() strain node
B MechanicalObject strain
B CorotationalStrainMapping mapping defo gradient to strain
@ HookeForceField Hooke force field
=-Q inside meristem
O TriangleSetTopologyContainer inside triangles
B MechanicalObject inside vertices
O TTriangleModel collision triangles
B SubsetMapping mapping with all vertices
O BarycentricShapeFunction barycentric shape function
= deformation node
O TopologyGaussPointsampler sampler
O MechanicalObject deformation gradient
B LinearMapping mapping vertices to deformation gradient
=) strain node
@ MechanicalObject strain
B CorotationalStrainMapping mapping defo gradient to strain
@ HookeForceField Hooke force field
=) indentor
B MechanicalObject tip of indentor
3 UniformMass indentor mass
O ConstantForceField force applied to indentor
O TsphereModel collision sphere

Figure 4: Our Sofa Graph
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3.1. Time Integration

Our physical vertex-based model undergoes forces and the
corresponding displacements are computed by solving par-
tial differential equations. Based on the work of [BW98], we
use a full implicit Euler solver (coupled with a conjugate gra-
dient solver), which gives us the equations of motion through
the corresponding forces. Each vertex has some coordinates
x; and velocity x; = v;. If we denote by x = (x;)i=1..», the
principle of the dynamics yields the following general equa-

tion:
d (x d (x v
i (x) “a () - (M—‘f(x, v>) M

with M the mass matrix and f a function dependant on the
displacements and velocities. The implicit backward Euler
method then writes, with a spatial discretisation:

d (Ax . vo + Av @
dt \Av) — T\ M7 f(xo + Ax,vo + AV)

A first order Taylor expansion in f is given by:

f(xo+Ax,vo +AV):fo+?Tfo+a—fAv 3)
X o

and solving for v, this can be rewritten as:

I—tM'D— M 'K)Av ="' (f +1Kvg) (4

where T denotes the time step, K the stiffness matrix (K =
3—{) and D, the damping matrix (D = %). To enter in more
detail the derivation, we refer the reader to [BW98].

We have chosen D as the popular Rayleigh assumption:
D = oM + BK. But notice that, as we are seeking a static
solution, the displacement of the tip of the AFM induced by
a certain amount of force, the influence of D is negligible.

The mass matrix is lumped and dependent on the mesh:
for each triangle, we compute the mass by multiplying the
mass density by the area of the triangle and report one third
to each vertex.

The stiffness matrix depends on each force field, i.e. finite
element, pressure, bending, and is computed for each force
field. In the general form, it can be written as:

_9fi
Klj = E
with
oW
U

with W being the potential energy of the corresponding force
field.

X4

Figure 5: classical implementation of finite element

3.2. Finite Element force fields

Each cell wall of the meristem is triangulated and has an as-
sociated finite elements force field, representing the stretch-
ing of the structure, i.e. the forces and displacements in the
plane of the element. The usual way to compute some tri-
angular finite element, as stated in [ZC67], is to compute
the forces acting on each vertex of the triangle from the dis-
placements of these vertex, through the deformation gradi-
ent of the element as shown in Figure 5. Usually we start
with the displacements of the 3 vertices, then we compute
the deformation gradient of the element, F = g—; with x the
displacement of the vertices and dX refers to the spatial dif-
ferentiation. Then the strain measure, which is, in our model
a corotational strain

e = %[RTF+FTR} -1 )

with R being the rotational part of the deformation gradient
F.

Then from this strain, we calculate the stress thanks to a
material law like the isotropic Hooke’s law that we have used
combined with a corotational strain.

o = Mr(e)l+2ue 6)
with A and u the Lame coefficients.

Finally, applying the transposed of the strain-
displacement matrix usually called B to the stress converts
this stress into forces : f = BTo.

This computation is decomposed in several layers in the
SOFA framework. Instead of applying the transposed of the
strain-displacement matrix to the stress, which gives us di-
rectly the forces per vertex, the stress tensor produces a gen-
eralized force at the deformation gradient level, which is

(© The Eurographics Association 2014.



R. Malgat / Mechanical Modeling of Plant Tissues 63

P Control nodes @ Shape functions

o !zj mprs
]
D

e ma;:iplng
Strain [+ ¢+ ¢]
PP € é0o
measures [ .. Material law

Figure 6: three levels of hierarchies in FE force field

Figure 7: finite element modeling

in turn converted to vertex forces. The communications be-
tween layers are called mappings (a generalization of hard
bindings introduced by [SSIF07]). The computations tra-
verse the layers up and down as shown in Figure 6. This
allows more flexibility in the implementation, since we can
change only one component in the SOFA graph, to choose,
for instance, a non linear material law instead of a isotropic
Hooke’s law at the bottom layer, or a Green Lagrange strain
instead of a corotational strain as mapping between the mid-
dle and bottom layer.

The total stretching energy is given by :

W:%/&G )

Therefore the integrated stress is given by %—‘Z and the as-
sociated forces on the vertices of our elements are given by:

p__ow _ _dr'delow ®
T 9x  dx dF 0e

Then then generalized forces undergone by the stress tensor
take the form aa—vg, which is the integrated stress, and these
forces are moved upward to the parent degrees of freedom

(i.e. the vertices located at the top of this hierarchy) by the
. T T
transpose of the Jacobian: g—; , and [ZTI; .

Without any prior knowledge on cell wall properties, we
have chosen to implement a uniform isotropic elastic mate-
rial.
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3.2.1. Mappings

We use the mappings between each levels of the SOFA scene
graph. These elements allow to compute the coordinates of
a child with respect to one or more parent coordinates. The
independent degrees of freedom (DOF) are on the top of the
hierarchy. The mapping relation writes :

xe =T (xp(1),X) ©)
with X the initial mechanical state.

The velocity at the child level is given by the jacobian of
the mapping :

ve =Jvp (10)

withJ = aa—‘z Note that the positions and velocities are prop-
agated top-down (from parents to children), while forces are
moving bottom-up. The principle of virtual work states that
the power of the force must be the same at the two levels,
which gives the following relation :

fr=J"f (11)

Mass and stiffness matrices can be transferred bottom-up.
For instance, if the mass matrix is defined at the child level
M., its counterpart at the parent level is defined by : M, =
JTMLJ.

3.3. Pressure force field

In addition to the finite elements model, we add inner turgor
(hydrostatic) pressure, making the assumption that the pres-
sure is regulated by the plant so that it is uniform in all the
cells. This is equivalent to applying the pressure only on the
surface elements. We thus apply a force to each vertex that
is proportional to the area of the triangle considered and also
proportional to turgor pressure, directed along the normal to
the element (See Figure 8).

The force applied to vertex i is thus given by :

1
Pi=34p (12)
with A; the area of the triangle j to which the vertex i be-
longs, and p the constant turgor pressure in the floral meris-

tem.

Figure 8: Meristem with pressure represented by arrows
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3.4. Bending force field

Finally, computing the bending energy reveals that at low
pressure (in plasmolyzed state), bending cannot be neg-
ligible. Therefore we implemented the bending model of
[PMTO06], which remains quite accurate for low bending,
with low computational cost. In [PMTO06] the bending is
represented via linear springs depending on the curvature
between two elements. Their idea is to compute a "bend-
ing vector" linearly dependent of the vertices positions. This
vector is then applied as a force proportionally to the bend-

ing stiffness of the surface.
el — —
_ if ﬂ £
A 1 /
™ /
!/ /
Y /

. | i
|/
initial configuration N4

Figure 9: linear bending

This model introduces a bending stiffness, which acts lin-
early on the forces per vertices. As we are seeking physical
parameters, this stiffness must not be chosen arbitrarily, but
rather defined from properties of the cell walls.

To scale this bending stiffness, we restart from the equa-
tions of elastic thin shells [LL70], from which we get the
moment per unit of length of bending forces applied to a
shell:

3
jyp——_ 1 (13)

T 12(1-v2
with E the young modulus, % the thickness of the shell, v the
poisson ratio and 7y the radius of curvature. This can be put
in correspondance with [PMTO06] where the moment is given
by:

M = luy (14)

with / the length of the edge between two adjacent triangles,
u the bending stiffness.

By identification the bending stiffness is:

EW
HE =) as

3.5. Simulated AFM

Our simulated AFM is a simple sphere of diameter compa-
rable to cell size. We apply a given force in one direction or-
thogonal to the meristem and we quantify the depth reached
by the sphere at equilibrium.

3.6. Physical parameters

The main physical parameters of the simulation are summa-
rized in table 10. Two different sets of independent parame-
ters constitute our model : on the one hand, the geometrical
parameters (cell length, cell wall thickness), and on the other
hand, the material parameters (Young modulus, Poisson ra-
tio, pressure constant and bending stiffness).

We have scaled our parameters, in order to respect the ra-
tio of experimental data.

E L
1<—=<1000, —~=0.1
- P h
with L the size of a cell, and / the thickness of its wall. The
poisson ratio was chosen so that the material is almost in-
compressible, while the bending stiffness was calculated ac-

cording to equation 15.

4. Validation in a simple case

To validate our method, we implemented Atomic Force Mi-
croscopy on a single plane shell, for which we can compare
our curves to analytical results. This simplified model also
allows us to find the good trade-off between precision and
rapidity of the simulation, as it enables us to tune different
criteria, as the number of subdivision steps for the triangles
indented, or the precision at which we stop the simulation.
The typical dimensions of the plane are that of a cell in the
meristem mesh.

Figure 11: Simplified model used for validation, without
and with pressure

Our simplified model is a square plate undergoing stretch-
ing and possibly submitted to a pressure force pressure (Fig-
ure 11) and the AFM indentor is also represented as a sphere.
This simplified model does not take any bending into ac-
count since we want to compare it to analytical formulae
from the literature.

In Figure 12 the sensitivity to the pressure can be seen.
The force-displacement curves are straight lines when the
plate is submitted topressure, which is in agreement with the
analytical model in [VAVB12a], and the slope of these lines
depends on the value of pressure; whereas Figure 13 shows
that, with zero pressure the curve is well approximated by
cubic function cx®, which is in agreement with the analytical
model given in [LL70].

(© The Eurographics Association 2014.



R. Malgat / Mechanical Modeling of Plant Tissues 65

Young modulus (E) | Pressure (P) | Poisson ratio (v) | Bending stiffness (u) | cell length (L) | wall thickness (/)
model 50 - 1000 Pa 0-40 Pa 0.49 1.8-35]J 5-10m 0.7m
experimental 1 - 1000 MPa 0.1-1MPa unknown unknown 5 um 0.1-1um

Figure 10: Table of typical physical parameters
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Thus, the simplified model captures the properties of the
structure, i.e. the internal pressure and the elastic modulus
of the cell walls. The indentation process is also completely
reversible as we have chosen to implement an elastic law
(Hooke’s law for the finite elements) as can be seen in Fig-
ure 14: the curve representing indentation almost perfectly
matches the de-indentation one, which also demonstrates the
convergence of the simulations.

An other advantage of this structure is that it allows us to
tune parameters such as the criteria to stop simulations (see
Figure 15): when the positions and velocities of the vertices

(© The Eurographics Association 2014.
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Figure 15: sensitivity of curves to precision criteria

For the subdivision of the triangles of the mesh, we have
tried different levels of refinement, (as can be seen in Fig-
ure 17) and followed the process described in Figure 16.
Each original triangle is split into 4 smaller triangles, whose
vertices are the original vertices and the middles of the
original triangle’s edges. The geometrical properties of the
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subidived topology is closed to the previous one and does not
lead to degenerate triangles (having great disparity in edges’
length).

Figure 16: process to subdivide a triangle of our mesh

The curves converge quite rapidly after a given number of
subdivision steps. We thus stop the subdivision process when
the differences between the curves is small enough. How-
ever, small triangles require a small the time step to avoid
oscillations (which slows down convergence). A good trade-
off has then to be found between the number of subdivisions
and the precision, in order to obtain enough accuracy but
with sufficiently fast algorithms. Increasing the number of
subdivision steps beyond this level does not improve preci-
sion, which led us to stop the subdivision process at 16.

Figure 17: Different levels of subdivision

Using the SOFA framework, the whole force vs displace-
ment curves of AFM on a single plane is computed in less
than a minute with sufficient precision of 1E-3 .

5. Results and Discussion
5.1. Efficiency

‘We need fast algorithms because we are seeking at the same
time precision and sufficiently smooth curves (typically a
hundred of static equilibria computed to plot one curve).

We first used a structure with a mesh that is roughly uni-
form. In this case, the simulation converges quite rapidly:
less than a minute to get each static equilibrium with high
precision. However, the mesh deformation near the probe is
unrealistic; in particular contact is lost between the probe
and the structure because the triangles are too large.

Therefore we refined the mesh near the probe. The great
difference in triangle size in the mesh makes it necessary to
use an accurate linear solver with a very low error. Com-
puting a single equilibrium configuration then takes several
minutes.

5.2. Force-displacement curves

To study the sensitivity of the meristem model to mechanical
factors, we plotted many force versus displacement curves,
with (turgid state) or without internal pressure (plasmolyzed
state), with different positions of the probe.
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0 2 4 6 8 0
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Figure 18: Without pressure: indentation in the cell middle

or at the edge

1000
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900 near anticlinal wall
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Figure 19: With pressure: indentation in the cell middle or
at the edge

Inspection of these curves shows that the higher the Young
modulus, or the pressure, the higher the force needed to in-
dent down to the same depth. In the pressurized state, curves
are roughly linear, with a higher slope near near cell edges
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(near anticlinal wall, i.e. walls perpendicular to the surface).
In the unpressurized state, the curves are nonlinear, also with
a higher average slope near anticlinal walls. We also observe
higher differences due to the structure at higher forces and
higher displacement when no pressure is applied, while the
pressurized state tends to make the curves more uniform re-
gardless of the inner cell walls, which means that we are
more sensitive to the pressure than to the elastic modulus
in these states. Curves in pressurized state tend to be more
linear too.
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50 b
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Figure 20: Indentation in the cell middle, for different pres-
sure values

5.3. Range of parameters

As potentially thousands of degrees of freedom are involved
in such 3D model, the problem of fitting physical parame-
ters with respect to simulation and experimental data is of-
ten ill-conditioned and not invertible. However, dimensional
analysis allows us to compare the ratio between forces and
displacement, obtaining by solving many direct problems.

To get non-dimensional parameters we scaled the forces,
F, with respect to Young Modulus and cell length, and the
indentation, /, with the cell length :

F

[F]:m

Experimental data without internal pressure (plasmolyzed
state) were obtained by [PBG™11], where a typical displace-
ment of 0.5um was observed for a given force of around 1uN.
Replacing these parameters in % gives us around the same
value as our model, where, for a typical displacement of 10%
of cell size also, we need an amount of force of around 400N,

for a Young modulus of 1000Pa.

Our model is thus positioned in an acceptable range of
values.

(© The Eurographics Association 2014.

5.4. Concluding remarks

Exploring the space of parameters from the model indicates
that different factors play a major role in AFM measure-
ments. The key factors as shown by the force-displacement
curves are :

e tip size of the AFM,

e properties of the structure, i.e. elastic modulus, turgor
pressure,

e localization of indentation : near anticlinal walls or in the
middle of cells.

However these factors are combined, which means that
experiments require a careful interpretation, since none of
these parameters can be isolated from the others to entirely
explain the curves obtained. The framework that we present
here allows a comprehensive exploration of all assumptions.
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