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1. Mathematical Background

The goal of the supplemental material is to provide a brief
introduction to the concepts presented in the paper. To this
end, we will work with intuitive analogies and omit some
of the technicalities that would be required for a mathemat-
ically rigorous derivation. That being said, the property of
square-integrability, e. g., [Z2 f(x)?dx < oo for a function
f:R —=R,is often a necessary condition that we assume as
implicitly given.

As a quick outline, we will be working with instances of
Hilbert spaces. One can think of them as a vector space
equipped with an inner-product that in fact generalizes the
well known Euclidean space. Hence, we first repeat some
concepts from basic linear algebra and then use analogies to
carry over the intuitive understanding of vector bases to the
potentially less familiar concept of function bases. In par-
ticular, we will have a closer look at theories that circle the
orthogonal basis of the Hermite polynomials that is used in
the paper.

2. From Vectors to Functions

When we are working with Euclidean vectors, such as x €
R3, then we are often working directly with the components
written as

4.2
x=|-73|. (1)
1.5

In this notation, we abstract the fact that the vector compo-
nents are actually understood as coefficients with respect to
a basis

B = [ex]eyle;] 2)

where ey, ey, and e; are orthonormal unit vectors in R3. The
coefficients alone are in some sense meaningless until they
are anchored by a basis, i. e., x = 4.2ex — 7.3ey + 1.5e;. For
a vector y of arbitrary length n € N with the coefficients y;
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and basis vectors e; fori € 1,...,n we can write

n
y=Y v 3)
i=1

The same concepts translate to functions. Bases for func-
tions share many properties with bases for vectors, for ex-
ample they might also have the property of being orthog-
onal with respect to some inner-product analogous to two
Euclidean vectors being orthogonal if their respective dot-
product - that is the most commonly used inner-product - is
zero. Similar to the unit basis vectors e;, a family of n func-
tions ¢;(x) := sin(2mix) for i € 1,...,n can be used as a basis
to represent a particular subset G of all functions R — R by a
linear combination using n coefficients ¢; € R. One specific
element g : R — R € G takes the form

n n
glx):= Z cidi(x) = Z cisin(2mix). 4)

i=1 i=1
In this case, our basis is still a finite set of functions based
on doubling frequencies 27i. We can, however, take all fre-
quencies on the real line into account in order to be able to
represent a larger set H of functions that are linear super po-
sitions of sine functions. If one does this, the sum in equation
(4) turns into an integral. At the same time, we also replace
the coefficients ¢; with a function % (¢) : R — R. Then we

can write a particular element 2 : R — R of H as

h(x) = /0 * he(t)sin(2mtx)d. )

Note that the integration starts at 0 because the sine function
is symmetric, i. e., sin(x) = —sin(—x). We mention again,
that we cannot represent any function that maps from R — R
but only the ones that are elements of 7{ which have the lim-
itation of being odd functions that pass through the origin,
i.e., h(0) = 0 since all sine functions are odd and zero at the
origin no matter how high it’s frequency. More on this can
be found in the literature under the topics sine transform and
Fourier transform. The important thing here was really to
make a point that functions have bases similar to vectors.
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3. The Unit Basis for Functions

Next we look at a very interesting basis function: Dirac’s
delta function denoted by 8. In a way it serves as the stan-
dard basis for functions. It is, however, omitted in daily use
similar to the unit basis vectors for Euclidean vectors men-
tioned earlier. It can be defined purely axiomatically by stat-
ingVx e R:x#0 — (8(x) =0), i.e, it is O everywhere
except at the origin and its integral [°7_ 8(x)dx = 1 sums up
to 1. There are several ways to explicitly define such a func-
tion. However, a definition based on the Gaussian bell curve,

5 = lim . exp[ - ©)
x'icaoﬁGep 62’ ]’

simplifies many calculations. It is localized to a single
unique point in space, but, when transformed into the Fourier
basis evenly covers all frequencies. In this sense, & can be
seen as the opposite of a harmonic function that spreads
evenly in space but has a single frequency, i. e., it is a peak
at a single point in frequency space. The Dirac delta func-
tions is a basis that simply amounts to specifying the value
of f: R — R at any point using the coefficient function
fe : R — R since

10 = [ 8= £e(t) dt = £e(x) )

and it is thus seemingly of little use by itself. It can, however,
be used to formally define discrete samples of functions by
using a “comb” of Dirac functions.

The definition based on the Gaussian bell curve has a sin-
gle parameter 6 with which we can control the locality to
define a new function f : R — R that is low-pass filtered

2
f):= [ e ew (— = ) fede. @®)

Since ¢ can be modified continuously, it allows us in a way
to select how we would like to represent information. In the
limit 6 — O all the information is compressed to a single
point, by setting it to some finite value 6 > 0 we extend the
influence from a single point to a local region around x.

What makes the formulation very interesting is its ver-
satility in the context of linear operators, such as differen-
tiation, integration, or transforms to some frequency space,
e. g., to the Fourier space. As an example, we investigate the
first derivative of f with respect to x:

5l = [ s (—ﬂ)) d )

—x)? —x
::A—v%gw<—0&)>2%2XMﬂW>

The differential operator commutes with the integral and
thus we take the derivative of the exponential function with

respect to x. Similar mathematical concepts are, for example,
used in SPH-based fluid simulation.

4. Decomposing a Function

Similar to decomposing a vector into a linear combination
of its basis vectors we can decompose a function into a sum
of basis functions. We start again with the vector analogy.

As stated earlier, the vector x € R3 can be written as a
sum of orthonormal basis vectors X = cj e +cpe) + c3es.
The question is now how can one compute ¢ given X and
e1? The solution is well known and is a basic application
of the inner product for a,b € R3 as (a,b) = 21‘3:1ai¢i-
With a simple calculation it can be shown that ¢; =
(x,e1) ={cie;+crer+czes,e)) =(crer,e;)+(crez,e)+
(c3e3,e1) = (cier,e1) =ci(er,er) = cy. Note that, this only
holds for normalized bases, i. e., (e}, e;) = 1.

Analogously, one can define an inner product for a func-
tion space and use it to project a function onto its basis func-
tions. We reuse the same symbol (as it is clear from the con-
text which inner product is meant) and define it as

(o) = [ st an

for two real-valued (square-integrable) functions f and g.
We reuse our family of n basis functions ¢; : R — R to
demonstrate how to compute the corresponding coefficients

n

=00 = [ 000 dr and hus () = Y (5,61) ().

i=1
(12)
Which leads to our next topic: numerical integration.

5. Monte Carlo Fitting of Hermite Polynomials

In this section we briefly derive our Monte Carlo integration
scheme that we use to evaluate Hermitian moments. Note
that, we redefine some entities, such as f, g, and ¢ , but their
conceptual usage is consistent. To start, consider the problem

Ip€eR:= /Qf(x)dV (13)

of computing the definite integral I over a finite domain
Q C R? of a function f:Q—R.

By using Monte Carlo integration, I can be approxi-
mated by a finite sum S, as

V n
Io~Sn:=— ) f(x) (14

i=1
of n evaluations of the integrand f at sample points x; € Q
that are drawn uniformly from Q. Additionally, the result
is scaled with the volume per sample point % where V =
Jo 1dV is the volume of Q and n is the number of sample

points.
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However, one might be interested in solving an indefinite
integral, like

V n
o i= [ e0(0dV 28, =+ ¥ g(x)o(x).  (15)
i=1
that is the integral of a product of two functions g : R} —
R and ¢ : R3 — R. This leads to problems, since now the
volume V of the integration domain is not finite anymore.

In a next step we require that ¢ is a normalized kernel,
i. e., the indefinite integral of ¢ sums up to 1:

V n
L $(X)aV = ;Z (16)
This implies that

N an
Yl o(xi)
To give an example, ¢ could be a normalized weight function
like 0(x) = exp(—m x x). Note that it also holds for higher-
order (normalized) Hermite functions. By putting (17) into
(15), the integral Ips can be approximated with

v 1
n

M:

Iy~ 8= o—— (18)

1¢ X;) i=1
which does not contain an explicit reference to the volume
V of the integration domain anymore. However, quite a large
number of sample points are required to reduce noise. In fact,
the error is cut in half by taking four times more sample
points into account. Therefore, many samples are required to
obtain an accurate result. In the next section, we present the
least-squares method that is slightly more complex but yields
better results if only a handful of samples are provided.

6. Least-Squares Fitting of Hermite Polynomials

The goals is to approximate the function f with a finite set
of N multivariate Hermite polynomials (see section 4.1 in
[SSH14]) as basis functions ¢; : R? > Rforie 1,...,N such
that

F(x) = who(x). (19)

where x € R? and w = [w]; € RY is called the weight
vector with a dimension that matches the number N of ba-
sis functions. The basis functions themselves are stacked in
the basis vector ¢(x) : R — RN = [0 (x), ..., on (x)]” is ob-
tained by putting the ¢; for i € 1,...,n in a vector. In other
words, 0(x) contains the evaluation of all the basis functions
for the vector x.

The main task is to determine the unknown weights in w.
For this reason, we introduce the difference function

d(x) = w' o(x) — f(x) (20)

that can be used to define the squared approximation error e
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as

2 2
e:=ld(x)||z = (d(x),d(x))n = /de(x) o(|[x|2)aV
2D
where (-,-)p is the Hermite inner-product (see equation (4)
in [SSH14]) that utilizes the Gaussian bell curve ®(r) :=
(2m) 2 exp(—0.572).
Formally, w is the solution of an unconstrained quadratic
minimization problem
w = argmin(e) (22)
w
that we solve by setting the derivative %e = 0 by using the

zero vector 0 = [0, ...,0] € RV,

If f is now sampled n > N times one obtains n pairs of
the form (x;, f(x;)) for i € 1,...,n which leads to a discrete
version based on equation (21):

% <i1 <WT¢(Xi) —f(Xi))2 w(|xi|2)> =0 (23

Interestingly, this equation corresponds to the moving least
squares approach. By taking the derrivative and reordering
terms it can be written in matrix-form as the following linear
equation

o dw =t (24)

where the matrix
T

N 1 1
@R = o) (3 x1[2). 00 0 1)
(25)
contains the weighted basis vectors. An element-wise def-
inition of @ is also possible and would read as [®];; :=
0;(x;) ©(3|[xi|2). Similarly, the f(x;) are stacked into
T
N 1 1
PR i |700) 0051 ) 50) 005 ol )|
(26)
Note that, both times we use u)(%||x,\ |2) with an additional
factor of % to accommodate the fact that they are multiplied
back in the term & @ and ®'f.
Finally, one can solve for w by using inverse of
®T ® that leads to the well-known Moore-Penrose inverse

(®"®)~'®" which is the expected solution for a sum of
quadratic error terms:

w=(d'd) 't @7

After obtaining w, the approximation to f can be used to
solve other problems, like computing the indefinite integral

- Fx)o(|[x|[2)dV ~ [w]o. (28)

Stated differently, the first weight [w]y of the weight vec-
tor w corresponds directly to indefinite integral of f in the
weighted window of .
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