
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2014)
J. Bender, C. Duriez, F. Jaillet, and G. Zachmann (Editors)

Efficient Transfer of Contact-Point Local Deformations for
Data-Driven Simulations

M. U. Seiler1 and J. Spillmann2 and M. Harders3

1 Computer Vision Lab, ETH Zurich 2 VirtaMed AG 3 Interactive Graphics and Simulation Lab, University of Innsbruck

Figure 1: Examples of characteristic deformation details around a local contact: indented pillow, sheared skin, probed menis-
cus (left). Coarse meniscus tissue simulation enriched with pre-generated samples (middle). The proposed method can also
handle topological changes such as cuts (right).

Abstract
We present a new approach for data-driven deformation enrichment, which requires a much smaller set of exam-
ples. The central idea is to reuse deformation samples. This is done by transferring pre-generated examples from
one contact point to another, when the surrounding material as well as the induced deformation are similar. Our
similarity notion is derived from two descriptors that use multivariate Hermite polynomials as a basis. The first
descriptor comprehends information on the local material density near a contact point, which allows us to segment
an object into regions with similar material neighborhoods. At each characteristic location, multiple samples are
obtained for different interaction patterns. The obtained information is then encoded in the second descriptor –
the deformation descriptor. At run-time, the two descriptors are evaluated at the current contact point. Based on
the similarity to the example descriptors, suitable pre-generated data is selected, interpolated, and used to enrich
an object surface. We demonstrate our method in several applications and provide quantitative evaluations.

1. Introduction

Physically-plausible simulation of deformations during user
interaction is an important aspect of many virtual reality
systems. Examples include the interactive manipulation of
soft-tissue in surgical simulators or the interaction of a user-
controlled game character with its virtual environment. The
richness of the deformation directly impacts the fidelity of
the simulation. However, it is often difficult to find a good
trade-off between detailed deformations and high frame
rates; even more so if an object is subject to detailed and
non-linear deformations, such as wrinkling of skin or buck-
ling of incompressible shells (see Fig. 1).

One possibility to address this problem is to resort to
data-driven simulations. We follow a hybrid strategy similar
to e. g., [SSH12, SSH14], where a freely choosable coarse
simulation is enriched with pre-generated example deforma-
tions. At run-time, the state of the coarse simulation serves
as a key, which is correlated to the samples. Based on the re-
sulting coefficients, example details are injected to enrich the
surface of the object. However, such an approach requires
that a similar example key the current one can be found.
However, there are combinatorially many possible deforma-
tions of the coarse simulation grid. This state-space explo-
sion renders the example generation process uneconomic,
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and memory consumption can quickly become unmanage-
able.

Therefore, our proposal is to exploit similarities in order
to reduce the number of required examples. The fundamen-
tal observation is that deformations, such as wrinkles, often
resemble each other in similar regions of the same object.
Deformation details are typically influenced by the geometry
and material properties in a neighborhood around a contact
point as well as the induced external load. Commonly, one
exploits similarities in data by approximating it with a low-
rank basis, for example by using singular value decompo-
sition (SVD), see e. g., [JF03, FKY08]. However, it appears
somewhat counterproductive to first acquire a large amount
of examples only to discard most of it in a second reduc-
tion step. Especially in cases where the acquisition process
is expensive, minimizing the amount of required examples
becomes a key priority. Our assumption is that an a priori
available signal, such as geometry, allows to decide where
interesting behavior occurs, e. g., thin meniscus regions ex-
hibit more complex deformations than thicker ones.

To this end, we conceptually segment an object into re-
gions that likely exhibit similar surface deformations when
manipulated in the same fashion. This allows us to generate
examples once per region at an arbitrary representative ac-
quisition point. In order to classify regions and deformations
we employ meshfree numeric quantities commonly called
descriptors or signatures. In particular we use two descrip-
tors, the site descriptor to segment the object into similar
regions and the deformation descriptor to compute the simi-
larity between deformations. Subsequently, examples can be
transferred to other contact points if the descriptors match.

In order to transfer the actual deformations, we follow
the approach in [SSH12]. Geometric surface modifications
are represented via displacement textures, thus following a
meshfree paradigm. A consequent use of meshfree represen-
tations allows us to transfer examples from one site to an-
other and even support cutting by following the approach in
[SSH14]. In fact, the destination could also be part of a dif-
ferent object consisting of similar material and geometrical
structure. Summarizing, our contribution is a data-driven en-
richment method that exploits similarities for example reuse:

• We propose a local site descriptor to classify an object into
regions where we reuse the same examples. Subsequently,
we generate examples for each region separately.

• We propose a meshfree deformation descriptor that rep-
resents the local material deformation around the contact
point. This also supports topology modifications.

• At run-time we compute the site and deformation descrip-
tors at a contact point. This feeds into a correlation tech-
nique to compute blending weights, which are used to
compute blended example displacements to enrich an ob-
ject’s surface detail.

2. Related Work

Data-driven methods have for some time received increasing
attention in computer graphics, for instance in human pose
estimation [ACP02], crowd simulation [LCHL07] or wrin-
kle animation [RK13]. Our application domain is physically-
based simulation of deformations [NMK∗05]. Our work
can be classified as data-driven surface enrichment post-
processing. The basis of our method is a coarse real-time
simulation from which we obtain a smooth surface, that is
then enriched with pre-generated accurate deformations ex-
tracted from examples. It should be noted that our enrich-
ment approach is independent of the underlying real-time
deformation method. Any simulation that provides a set of
discrete displacements can be used.

Data-Driven Animation: In principle, there are two kinds
of data-driven simulations. In the first, the data influences the
course of the simulation, see e. g., [BBO∗09]. In this context,
the terms data and example are often used interchangeably.
Example-based materials [MTGG11, KTUI12] also belong
to this category of data-driven methods. In such methods,
a mesh with a constant high-resolution is used. This is in
contrast to the second kind of methods that produce a de-
tailed output, given a low-quality input. With [LCF00] as an
inspirational origin, many methods are one-way-coupled en-
richment algorithms that do not form a closed loop with the
simulation. One finds them in facial animation, cloth sim-
ulation, and recently elastic solids and fluids. In a way, all
methods use some sort of key to control some sort of exam-
ple blending. In Lewis’ case the key is based on angles be-
tween animation bones and a differential displacement field
is linearly blended. In contrast, [KV08] use directly the ver-
tex positions of bones. Similarly, marker positions are em-
ployed in facial animation in [BLB∗08, FKY08]. Alterna-
tively, [ZBO12] examines the stretch-ratio of simulation el-
ement edges to construct a cloth enrichment method. This
sub-category of data-driven garment simulation has attracted
considerable attention, starting with the work of [CMT05]
followed by [PZB∗09, dASTH10, KGBS11].

Our research is carried out in the context of surgery sim-
ulation. Where we follow [HHS08, SH13, SSH12] and ab-
stract the tool contact region into a single point. In order to
support cutting, we reuse the approach presented in [SSH14]
that uses a real-time influence map around cuts to handle dis-
continuities. As a significant improvement, our new method
does not fade out examples in regions where the object is cut
thanks to our localized mesh-free descriptor formulation.

Descriptors: Abstractly speaking, a descriptor is a set of
numbers that is produced from a given original quantity. In
general, the descriptor loses information, i. e., the quantity
cannot be reconstructed without error. However, this is ok as
long as it can be used to measure mutual similarity. In partic-
ular, shape descriptors are used in shape retrieval to define
similarity, see e. g., [TV04, BKS∗05].
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3. Overview

Our hybrid data-driven method enriches a smooth approx-
imate deformation of a virtual object – given by material
domain Ω ⊂ R3 – with additional details. The latter are
not simulated, but obtained by mixing pre-generated exam-
ple data. Hence, our method can be divided into two main
phases: first, the preprocessing phase that generates the ex-
amples, and second, the interaction phase that enriches a cur-
rent state using the examples.

The example generation is a major part of the pre-
processing phase and can be done in a number of ways, such
as computer-based simulation, real-world capturing, or man-
ual modeling. The i-th generated example is used to obtain
a differential displacement field d[i] : ∂Ω→ R3 that asso-
ciates a displacement vector with each point on the object’s
surface ∂Ω. For instance, d[i] could be obtained as the differ-
ence between a coarse and an accurate simulated surface, see
[SSH12]. We store d[i] together with other quantities, such
as the site descriptor that we will introduce later. Throughout
the remainder of this paper, we follow the convention that we
indicate quantities related to a pre-generated example with
index i as subscript and, if the data is obtained from the data-
base, with bracket notation [i]. In contrast, time-dependent
quantities stemming from the interaction phase are denoted
by a plain symbol without subscripts.

The real-time simulation is based on an approximate –
and therefore fast – deformation model, computed on a
coarse simulation mesh. A continuous time-dependent dis-
placement function u : Ω→ R3 is determined that updates
each rest-state material point x ∈ Ω to its deformed posi-
tion x+u(x) at time t (see Fig. 2). The real-time simulation
is used during the interaction phase. With it a coarse dis-
placement field u[i] is computed that is used for correlation.
In order to do this, we record the boundary conditions in-
duced by the tool, e. g., tool collision points, and apply them
as hard constraints while the real-time simulation runs. In
order to address the object’s surface, we introduce the time-
dependent surface deformation function s(x) : ∂Ω→ R3 :=
x+u(x) that is restricted to ∂Ω. The function s will be en-
riched with the previously generated examples.

The detail enrichment in the interaction phase is achieved
by first using the real-time simulation to obtain the current
base-quantities, that is s, the descriptors, and the surface con-
tact point p. Based on this we compute the time-dependent
enrichment function e : ∂Ω→ R3 that associates with each
surface point a displacement. To compute e, we compare the
local material neighborhood and deformation around p to all
examples and mix the associated d[i] appropriately. Subse-
quently, e is employed to compute an enriched base surface

s̃(x) := s(x)+ e(x) (1)

that is more accurate and can exhibit considerably more sur-
face detail, thus increasing visual fidelity. Our enrichment

Figure 2: Example of an object (in dark red) deformed by
a probing tool (in light grey). The close-up depicts a single
material point with its rest-state positions x and its displace-
ment u. Examples can be reused at contact points that belong
to the same region. In order to determine the region of a con-
tact point p we analyze the geometry in its neighborhood.

function follows a contact-point-centric displacement map-
ping technique denoted stamping.

The stamp Ψ[i] : R2 → R3 is generated by projecting the
i-th example displacements d[i] to a surface-tangential plane
that originates at p[i]. Ψ is essentially a function that maps
two-dimensional local surface parameters to displacements.
Since we use a rather simple but fast orthogonal projection
as a mapping function, the current method works best for lo-
cally planar surfaces. By employing displacement mapping
the blended example displacements can be superimposed on
a surface at any desired point given a local frame B (see
Fig. 3).

Figure 3: Depicted is a slice through a deformable object
(e. g., an organ covered by skin providing tensile strength).
The surface forms a characteristic wrinkle pattern when dis-
placed laterally at a contact point p with a tool. The stamp Ψ

contains blended example displacements. The base surface s
is enriched with displacement d obtained from e. It involves
a mapping of the surface points to the stamp-coordinates
spanned by the surface tangential frame B.

The local frame B∈R3×3 is an orthonormal basis and orig-
inates always at a contact point. B[i] stands for the stamping
frame that is used for example i, originating at p[i]. It is a cru-
cial component of the algorithm since it defines the stamp-
space transform that controls how stamps are aligned when
added to a base surface s. The third column of B[i] is chosen
such that it aligns with the surface normal of ∂Ω at p[i]. We
describe how the remaining rotational degree of freedom can
be removed in a canonical way in Section 4.4.
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4. Descriptors

Before we introduce our descriptors, we highlight the ob-
servation that for many objects the occurrence of a typical
deformation pattern depends mostly on two factors: first, the
local object properties, such as geometric shape and mate-
rial parameters, and second, the locally induced loads, e. g.,
due to contact with a tool. Hence, we propose two types of
numeric descriptors: the site descriptor and the deformation
descriptor. In theory, all involved quantities could be merged
into a single descriptor, but then one would lose the ability to
transform and parameterize them independently, a capability
that we will make use of later. The site descriptor contains
information of the local material density ρ : R3→R+

0 . Simi-
larly, the deformation descriptor captures the information of
the local material displacement, i. e., the earlier introduced
three dimensional vector u. In order to compare descriptors
we need a similarity measure that is fast to compute, thus
allowing to quickly find similar descriptors. To this end, we
base our approach on an a localized orthogonal basis, specif-
ically on Hermitian moments, that we will discuss next.

4.1. Hermitian Moments

Mathematical moments have a lot in common with the well-
known statistical quantities of mean and variance. The mo-
tivation to use moments lies in the fact that they abstract the
underlying mesh structure. In particular, we use Hermitian
moments that are based on the Hermite polynomials that find
wide application, e. g., in quantum physics or image analysis
[SCER06]. They are interesting to us for two reasons: first,
they operate in a smooth and localized window defined by
a Gaussian weighting function (this property is not shared
with other orthogonal bases, such as Legendre or Cheby-
chev polynomials), and second, the inner product between
two functions is particularly efficient to compute, since, due
to orthogonality, most terms cancel out. Based on the inner-
product, simple and efficient similarity measures between
descriptors can be defined. For the same reasons, Hermite
polynomials are used in other contexts, e. g., [Gra49] and
more recently [YLZD11]. Next, we define the relevant key
properties.

Let Hn : R3 → R3n
denote the n-th multivariate Hermite

polynomial in 3D. The range R3n
already hints at the fact

that ordinary vectors and matrices will not be sufficient, but
that tensors – a generalization of matrices that can be under-
stood as multi-dimensional arrays, see e. g., [BW89] – are
required to represent moments of order three and more. One
way to calculate Hn is to use a Rodrigues formula [AO05]
that computes the polynomial components by taking partial
derivatives of the weighting function ω : R→ R+ that is de-
fined as

ω(r) :=
1

(2π)
3
2

exp

(
− r2

2

)
, (2)

where r ∈ R is the radius from the center of the evaluation

point. Following Rodrigues, one computes Hn by taking all
possible combinations of n partial derivatives of ω

Hn(r) :=
(−1)n

√
n! ω(||r||2)

∇⊗n
ω(||r||2) = [H . . .︸︷︷︸

n

] ∈ Rn3
,

(3)
where r = [ri] ∈ R3 = x− p, ∇ = [ ∂

∂xi
], and the operator

(·)⊗n denotes exponentiation using the tensor product or
dyadic product, e. g., [r⊗3]i jk = [rir jrk] ∈ R3⊗3⊗3. To ex-
emplify, we write down the second Hermitian moment – a
symmetric second-order tensor – representable as a matrix

H2(r)=
1√
2

 r2
1−1 r1r2 r1r3
r1r2 r2

2−1 r2r3
r1r3 r2r3 r2

3−1

=
[
Hi j
]
∈R3×3.

A defining feature of the multivariate Hermite polyno-
mials is that they form an orthonormal basis for function
spaces. Thus, we can approximate a function f : R3→ R by
a finite weighted sum of Hermite polynomials. To this end,
one first projects f onto each Hermite basis function and –
analogously to projecting a Cartesian vector onto its basis
vectors – obtains a set of coefficients which determine how
to scale each particular basis function. As in the given vector
analogy, the projection is based on inner products, which is
in the case of Hermite polynomials defined as

〈 f ,g〉H :=
∫
R3

ω(||r||2) f (r)g(r)dV, (4)

where g : R3 → R is a second function like f . Further, the
differential volume dV := dr1dr2dr3 is defined as the prod-
uct of the differential components of r. Naturally, the inner
product leads to a norm || f ||H :=

√
〈 f , f 〉H that will be of

use later. Given the inner product one can approximate f
with f̃ as a finite series of N + 1 multivariate Hermite poly-
nomials

f̃ (x) := 〈H, f 〉H︸ ︷︷ ︸
τττ0

H(x)+
3

∑
i=1
〈Hi, f 〉H︸ ︷︷ ︸

[τττ1]i

Hi(x)+ . . .

=
N

∑
n=0

τττn•Hn(x) (5)

where the individual coefficients are grouped in tensors τττn ∈
R3n

that contain the projection of f onto Hn. The formu-
lation makes use of the generalized dot product (•) that is
essentially a component-wise multiplication with the tensor
followed by summation (see Appendix A for details). More
information on tensors can be found in [KB09]. If we let
N →∞ in (5) then the approximation error becomes zero
for all practically relevant functions. In our case, we cut off
this approximation already at N = 3 which results in a good
local approximation to f due to the strong falloff of the ex-
ponential in (2).

As already mentioned, thanks to orthogonality, most fac-
tors cancel out from 〈·, ·〉H and we obtain a simple expres-
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sion

〈 f̃ , g̃〉H = 〈τττ,υυυ〉 :=
N

∑
n=0

τττn•υυυn, (6)

where υυυ encodes g. Also note that we use the tensor name (τττ
and υυυ) without indices as a symbol for the list of all Hermite
moments, e. g., τττ := (τττ0, . . . ,τττN) for an approximation of or-
der N. The inner-product 〈·, ·〉 serves as a short hand for the
sum of generic tensor dot products. Based on this, we can
write the Hermitian norm simply by || f̃ ||H = ||τττ|| := 〈τττ,τττ〉
where we introduce || · || as an analogous short hand to 〈·, ·〉.
We will make more use of these concepts later on when we
define the similarity measures for our descriptors.

To conclude this short introduction, Fig. 4 depicts two
Hermitian basis functions. The plots illustrate that low order
Hermitian moments are suited to extract local information
due to their mostly local support. In the next two sections
we will use the multivariate Hermitian polynomials to de-
fine localized descriptors for geometry and deformation.

Figure 4: Plot of two third-order multivariate Hermitian
basis functions in 2D. Depicted on the left is H111 = (r3

1 −
3r1)ω(||r||) and on the right H122 = (r1r2

2 − r1)ω(||r||).
Their smooth, localized shape due to ω is clearly visible.

4.2. The Site Descriptor

In general, the site descriptor can contain all static informa-
tion about the object in a neighborhood around its evaluation
point p. In this work, we only capture the density function
ρ : R3→R+

0 in a neighborhood around p. Note that the den-
sity function ρ(x) is 0 iff x /∈ Ω and, hence, it is discon-
tinuous. This makes it difficult to approximate it with the
smooth Hermitian basis. However, our goal is not error-free
reconstruction but computing similarities. By comparing the
components of the moments evaluated at different surface
points we can effectively quantify the similarity between re-
gions despite a large reconstruction error, see the evaluation
in section 6.1.

We define the n-th multivariate Hermite moment of ρ

around p as ρρρn ∈ R3n
for n ∈ N+ as

ρρρn :=
∫
R3

ω(||x−p||2)Hn(x−p)ρ(x)dV (7)

which corresponds to the inner product in (4) written in ten-
sor form and evaluated at p. Each moment can be understood

as a projection of ρ onto a set of orthonormal basis func-
tions by using the inner product 〈·, ·〉H that is the fundamen-
tal building block of (7). Note that the integration domain is
R3. However, since ρ is 0 outside of Ω one can restrict the
latter to Ω.

In practice, we approximate Ω with a discrete point cloud
given by M points xm ∈Ω. In fact, we simply use the points
of a uniform tetrahedral mesh that represents Ω. We then
solve the integral in (7) by employing a variant of Monte
Carlo integration that results in an averaged sum over the
discrete points xm:

ρρρn ≈ ηn

M

∑
m=1

ρ(xm)∇⊗n
ωm, (8)

where ωm := ω(||xm − p||) is the m-th weight and ηn :=
(−1)n (

√
n!∑

M
m=1 ωm)

−1 the corresponding normalization
factor of the n-th moment. Fig. 5 depicts an approximation
to ρ using the first two (up to ρρρ1) and the first four (up
to ρρρ3) Hermitian moments for three different density func-
tions. It can be seen that the approximation error ε is reduced
if higher-order moments are taken into account. Employing
higher-order moments also facilitates the capturing of mate-
rial asymmetries. In practice, we often chose to incorporate
the first four moments since this provides a good trade-off
between accuracy and speed.

There is one more crucial detail that has to be mentioned:
In order to evaluate our similarity measure the tensor com-
ponents need to be represented with respect to the same
frame. For example, if one wants to compute the difference
between two vectors a and b, then the components have to
be expressed with respect to the same basis before they can
be subtracted from each other to compute a measure like
||a−b||. Analogously, also the components of tensors need
to be expressed with respect to the same basis to evaluate
our similarity measure. To this end, all tensor components
are rotated to the frame B at p after evaluation by using the
rotation formula given in Appendix B. Hence, the descrip-
tors can be evaluated without first transforming all points to
B which is not even known at that time. Then, the obtained
components can simply be rotated to any desired frame - in-
cluding B once it is computed - thanks to the tensor property
of the descriptors.

Analogous to (5), given the tensors ρρρk one can approxi-
mate ρ with ρ̃ in the neighborhood of p by superimposing
a finite series of basis functions H scaled with the compo-
nents found in ρρρk. The approximations are then used to de-
fine the distance metric dρ that measures the mass difference
between the two approximations ρ̃ and ρ̃

′ with descriptors ρρρ

and ρρρ
′ that are evaluated at the two contact points p and p′:

dρ

(
ρρρ,ρρρ′

)
:= ||ρ̃− ρ̃

′||H = ||ρρρ−ρρρ
′||. (9)

Intuitively, this measures the sum of the squared difference
between ρ̃ and ρ̃

′ locally weighted with ω. By using the site
descriptor and its similarity measure we can now find con-
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ρ

ρρρ1

ε = 0.15 ε = 0.15 ε = 0.13

ρρρ3

ε = 0.11 ε = 0.12 ε = 0.12

Figure 5: Analysis of three different two-dimensional func-
tions ρ with range [0,1] in the first row: A flat region, a 90
degree corner, and a 45 degree corner. The following rows
depict the approximation with Hermitian moments. The row
ρρρ1 uses only the first two moments. The last row ρρρ3 depicts
a superposition using the first four moments. ε denotes the
average reconstruction error.

tact points that we assume behave in the same way when
deformed locally. Next, we need a way to measure similarity
between the various types of locally inducible deformations.

4.3. The Deformation Descriptor

Our goal is to devise a deformation descriptor (paired with
a similarity measure) analogous to the site descriptor from
the previous section. We are again opting for a localized
approach for much of the same reasons that we already
pointed out for the site descriptor. An additional rationale to
use a localized deformation measure is that it naturally ex-
tends to multiple interactive tools. Hence, we take the same
approach, except, that this time we do not analyze a sim-
ple scalar function, like ρ, but the three components of the
vector-valued displacement field u.

In order to obtain good results, our deformation descriptor
should be invariant under a super-imposed rigid body trans-
formation Rx+ t where R ∈ R3×3 is the (infinitesimal) ro-
tation tensor at x, i. e., RT R = I, and t ∈ R3 is a translation.
Intuitively, this means that the deformation descriptor evalu-
ated at a contact point p should not depend on how the object
is positioned and oriented in space, but only on the locally
induced deformation. One solution is to rely on the infinites-
imal rigid body transformation at p that plays an important
role in continuum mechanics [PB83]. It is commonly com-
puted by a polar decomposition of the deformation gradient
F = ∇u+ I = RS that yields the aforementioned infinites-

imal rotation tensor R, as well as S ∈ R3×3 that contains
the pure deformation. To this end, we use a moving least
squares approach to compute F based on the u(xm) and the
ωm as weights, see e. g., [MHTG05]. As a result, we obtain
an averaged translation t∈R3 and F at p with which one can
compute

ū(x) := RT (x+u− t)−x, (10)

which is the displacement field without the super-imposed
rigid body transformation at p, e. g., ū(p) = 0.

To compute the deformation descriptor, we perform in
principle the same procedure as before, but now for each of
the three components of ū individually. That is, we compute
the Hermitian displacement moments µµµn ∈R

3×3n
analogous

to (8) via

µµµn ≈ ηn

M

∑
m=0

ū(xm)⊗∇⊗n
ωm. (11)

The zeroth moment µµµ0 is 0 since it corresponds to the av-
erage displacement in a region around p which has been re-
moved from ū. Consequently, it can be dropped. In prac-
tice, using second-order moments yields sufficient results,
since the local coarse deformations are sufficiently smooth.
Finally, similar to ρρρ, we express all tensor components in the
local frame B at p by using the rotation formula given in Ap-
pendix B. The approximation ũ of ū at p can now be written
as

ū(x)≈ ũ(x) :=
N

∑
n=1

µµµn•Hn(x−p) (12)

which approximates ū in the neighborhood of p.

In data-driven methods, the similarity between two keys,
e. g., between two deformation descriptors, is almost always
based on inner products. For example, the Euclidean metric
||a−b||2 for vectors a,b can be written as 〈a,a〉−2〈a,b〉+
〈b,b〉 by using inner products only. Consequently, it is suffi-
cient to define an inner product 〈·, ·〉u for a particular key that
can then be used to define most similarity measures, e. g.,

〈ũ, ũ′〉u :=
∫
R3

ω(x−p) ũ(x)T ũ′(x) dV = 〈µµµ,µµµ′〉, (13)

which states that the inner product between two Hermitian
approximations can be expressed as the sum of generic dot
products between coefficient tensors (also see equation (6)).
The reason for this simple expression is again the orthogo-
nality of the Hermitian polynomials.

Now that we have a fast inner product available that works
directly with the descriptor components we continue to de-
rive a similarity measure. Similar to [FKY08], we use the
normalized cross-correlation which can also be expressed by
only using inner products and norms. This shows the versa-
tility of our novel contact point-centric formulation since it
can easily be plugged into pre-existing methods. Our defini-
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tion of du is

du(µµµ,µµµ′) := 1− 〈µµµ,µµµ′〉
||µµµ|| ||µµµ′|| . (14)

4.4. The Stamping Frame B

Until now, we left the stamping frame B undefined. It
is, however, a crucial quantity for the stamping approach
[SSH12] since it determines how stamps are aligned when
applied at different contact points. It consists of three ba-
sis vectors [bx,by,bz] ∈ R3×3. We start by setting bz to the
surface normal at p. This leaves one degree of freedom,
namely an angle defining the orientation of the stamp. We
found that there is a simple solution that provides satisfac-
tory results at high performance. The idea is to remove the
remaining degree of freedom by requiring that bx point along
the first moment ρρρ1. The last column vector is then given
by by = bz× bx. This simple approach permits to define a
canonical frame in most cases. In theory, ρρρ1 does not al-
low to chose a preferred direction for certain configurations,
e. g., an infinite plane; in such cases, however, it does not
matter how the stamp is applied, since the neighborhood is
rotationally symmetric with respect to the surface normal. In
practice, there is always a slightly preferred direction due to
numerical imprecision.

5. Run-Time Method

In the interaction phase, the previously discussed concepts
are combined to build a complete method. We first evaluate
both the current site and deformation descriptor at p. Then,
we compute the dissimilarities dρ and du between the cur-
rent base state (ρρρ,µµµ) and all example base states (ρρρ[i],µµµ[i])
in the current stamping frame B. Similar to [MWLT13], we
combine the dissimilarities dρ and du into example blending
weights w = [wi] ∈ RN by using Gaussian kernels

wi := exp

(
−dρ(ρρρ,ρρρ[i])2

2σ2
ρ

− du(µµµ,µµµ[i])2

2σ2
u

)
, (15)

where ρρρ and µµµ are the current descriptors based on (p, u)
and ρρρ[i] and µµµ[i] are analogously the descriptors for the i-
th example. We determine the kernel-width parameters σρ

and σu by minimizing the cross-validation error against the
example data (see [SSH14] for a detailed evaluation). This
optimization is part of the pre-processing phase and is com-
monly finished in a few seconds with a simple brute-force
algorithm. However, if more parameters, e. g., Young’s mod-
ulus, would be added to the site descriptor then the number
of required examples would need to increase exponentially
with the number of parameters. Otherwise, meaningful re-
sults cannot be achieved due to the curse of dimensionality.
Thus we keep the number of parameters as minimal as pos-
sible.

The weights w could now directly be used to blend the
examples. However, better results can be achieved if an

additional interpolation step, such as radial basis function
(RBF) interpolation is used (see e. g., [FKY08]). In our case,
we follow the RBF method presented in [SSH14] to obtain
the interpolating weights w̃ = [w̃i] ∈ RN . The detail enrich-
ment is based on blending per-example displacement maps
Ψ[i](φ,ϕ) : R2→R3 that associate stamp coordinates (φ,ϕ)
to surface displacements. The blending of the per-example
stamps Ψ[i] is done for each contact point with the corre-
sponding weights w̃ via

Ψ(φ,ϕ) :=
N

∑
i=1

Ψ[i](φ′i ,ϕ
′
i) w̃i, (16)

where φ
′
i and ϕ

′
i are the transformed stamping coordinates

using the transformation Ti := BB[i]T that ensures a correct
alignment of the stamps. The surface is then enriched with
Ψ via displacement mapping (see e. g., [GH99]).

6. Results

We describe a number of experiments carried out to illustrate
the performance of our proposed method.

6.1. Site Descriptor Evaluation

This experiment demonstrates the discriminative capability
of the site descriptor. The descriptor is evaluated for all sur-
face vertices in several tetrahedral meshes, with an order up
to N = 3. Subsequently, we cluster all descriptors by using
dρ as distance measure for the standard k-means algorithm
[Ste56]. This effectively leads to a segmentation of the object
into regions, each consisting of points that have a similar lo-
cal material neighborhood. In Fig. 6 we show the clustering
results for some shapes. Different regions are rendered with
different colors. It can be seen, that the descriptor is able to
discriminate thinner from thicker parts, as well as corners
and edges, and large flat or round regions. It should be men-
tioned that these regions are only used for visualization pur-
poses and not explicitly in our method. Nevertheless, the vi-
sualization is provided during example acquisition, serving
as a guide to select appropriate interaction points. Finally,
note that the transition between regions does not have to be
considered in our algorithm.

6.2. Deformation Descriptor Evaluation

In this experiment we illustrate that our deformation descrip-
tor is capable of discriminating various local deformation
modes. To this end, we evaluate the descriptors up to order
N = 2 at the same contact point on the top of a cube with
edge length 2 that is deformed with different deformation
modes. The resulting pair-wise dissimilarities are listed in
Tab. 1. The resulting cross-dissimilarity matrix is symmetric
and has a diagonal with all zeros. Deformation 8 is simply
a rotated version of deformation 7. Since our measure is in-
variant under rigid body transformation, they are considered
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(a) (b) (c)

Figure 6: Evaluation of the site descriptor’s discriminative
capability. In (a): the segmentation of the pillow shows the
large interior part for which one can use the same example.
In (b): a top view of a lateral meniscus with 13 (conceptual)
regions. In (c): the descriptor is able to differentiate between
flat regions at various distances from the edges and corners.

equal. The results indicate that using µµµ1 and µµµ2 yields a mea-
sure that differentiates sufficiently well between deformation
modes.

Table 1: Cross-dissimilarities dµµµ (with σµµµ = 0.8) of defor-
mation descriptors for a set of synthetic example deforma-
tions.

dµµµ 1 2 3 4 5 6 7 8

1 rest state 0.0 4.1 4.1 4.2 4.1 5.7 4.1 4.1
2 bent up 4.1 0.0 8.0 4.3 4.2 6.9 3.0 3.0
3 bent down 4.1 8.0 0.0 4.0 4.2 4.0 4.3 4.3
4 twisted 4.2 4.3 4.0 0.0 4.2 7.4 3.7 3.7
5 tapered 4.1 4.2 4.2 4.2 0.0 5.7 4.2 4.2
6 stretched 5.7 6.9 4.0 7.4 5.7 0.0 5.0 5.0
7 dented 4.1 3.0 4.3 3.7 4.2 5.0 0.0 0.0
8 rotated 7 4.1 3.0 4.3 3.7 4.2 5.0 0.0 0.0

6.3. Performance Evaluation

The performance of our example correlation is such that a
synthetic data-base with 1000 examples is handled in about
0.2 milliseconds (single 3GHz CPU, SIMD optimized). In
practice, we use typically between 5 and 10 examples at run-
time that are handled in the order of 10 microseconds. The
weights are then sent to the GPU where we measured similar
results to the ones reported in [SSH14].

6.4. Sampling Density Evaluation

A common question in data-driven approaches is that of how
many examples should be used? In this experiment, we pro-
vide one way to answer this question. We use the pillow ex-
ample and take an increasing amount of examples at uni-
formly sampled contact points. To measure the effectiveness

of adding more examples, we perform a leave-one-out cross-
validation and plot the measured RMS error, see [SSH14].
This quantity is a good measure for the generalization er-
ror, i. e., how well the system generalizes to a new, untrained
example. Fig. 7 reveals an elbow-like curve of diminishing
returns. Such a slowly decreasing generalization error is an
indicator that enough examples are present.
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Figure 7: RMS error for an increasing number of examples.

6.5. Meniscus

The driving application of our developments is surgical
simulation. The key target is the real-time reproduction
of detailed deformation behavior of knee menisci during
arthroscopy. For this application, our proposed approach al-
lows us to reduce the number of examples to only seven,
which are then transferred to appropriate similar sites. Note
that in the case of the meniscus, deformation details such as
folds mainly appear on the thin sections near the inner rim.
Therefore, we acquire examples only in this region.

Our method also permits the transfer of details between
similar objects. In our simulation, we for instance reuse
the samples from the medial meniscus mesh on the lateral
meniscus of the same patient (see Figs. 8(a) and (b)). Tech-
nically, the acquired details could also be reused for differ-
ent patients. Finally, the proposed strategy can also serve
as a first basis for handling multiple tools, as illustrated in
Fig. 8(c). However, in the current formulation results are
only plausible when the tools are not in close proximity;
otherwise stamp interferences might occur. This issue will
be addressed in future work.

(a) (b) (c)

Figure 8: Lateral meniscus with transferred examples (a)
originally generated for a medial meniscus that is now rup-
tured next to an example (b). To some extent, even multiple
tools can be supported (c).
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6.6. Captured Pillow

In this experiment, we employ real-world captured deforma-
tions and examine the transfer to different geometries. The
example data is obtained and modelled using the 3D scan-
ning software ReconstructMe† and a suitable sensor. Inter-
mediate states of the acquisition and modelling process are
illustrated in the top row of Fig. 9. After capturing a par-
tial surface we mark the deformed contact point p[i]′ on the
mesh and register the partial scan with the base mesh of the
pillow. After generating a displacement map using a stan-
dard 3D modeling tool, we compute the descriptors. The site
descriptor is simply given by fρ(p[i]), while fu has to be
determined by running a real-time simulation of the pillow
object. In the simulation we displace p[i] to p′[i]. This re-
sults in a corresponding base deformation u[i] that we use
to evaluate µµµ[i]. The final data-driven enrichment simulation
of the pillow runs at 14ms per frame. An example deforma-
tion with surface details is depicted in the Fig. 9(c). Finally,
we also examined the transfer of deformations to different
geometries. In the bottom row of Fig. 9 an enriched smaller
pillow is shown. Lastly, to demonstrate the versatility of the
approach, we show the transfer of captured details to a cubic
(pillow) geometry.

(a) (b)

(c) (d)

Figure 9: We scan the surface of a real pillow (a). Note
that a partial scan with reasonable quality in the stamping
region, is sufficient for our purposes (b). Results at run-time
are shown in (c). As a limit case, we apply the pillow exam-
ples to a cube. In (d) the enriched result.

7. Discussion

Our approach is quasi-static and contact point-centric, which
is in general a good abstraction for our main application of
tool-based surgery simulation. Nevertheless, the technique is
less suited for situations where larger areas are in contact or
dynamic scenarios. However, our method could be extended

† http://www.reconstructme.net

to arbitrarily shaped contact regions by adding an additional
descriptor based on the Hermitian moments of the contact
region’s shape.

Theoretically our method can handle multiple boundary
conditions since our descriptors are local. However, the sup-
port, e. g., for multiple tools, is still rather rudimentary since
examples are only acquired with one tool and all other
boundary conditions are implicitly present, e. g., all our ob-
jects are standing on a surface in their undeformed state. The
issue might be resolved by combining our approach with
other pre-computation methods, such as [KKN∗13].

Finally, the proposed method can also handle topologi-
cal changes. Due to the mesh topology independence of all
involved quantities an object can undergo dynamic modi-
fications, such as cutting or tearing, without impairing our
method. In contrast to [SSH14], our method works with lo-
cal similarities, and as long as locally similar regions exist,
our method will simply continue to enrich even cut objects.

8. Conclusion

We have presented an extension to data-driven approaches
that enrich coarse simulations with pre-generated example
deformations. In contrast to previous work, we allow for the
reuse of example deformations at contact points whose local
material neighborhood is similar to the one of the original
recording location. This is achieved by consequently em-
ploying meshfree quantities: First, the Hermitian moment
basis represents local quantities, such as material density
and displacement, and are used to implement the correla-
tion phase, and second, displacement stamps for surface de-
tail enrichment. Hence, we can effectively transfer examples
even between different objects of the same material. As fu-
ture work, we plan to improve the support for multiple tools.
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Appendix A

The generalized dot product is a coefficient-wise multi-
plication followed by summation of as many dimensions as
available. It allows for simple linear mappings from a tensor
T = [Ti1...iN ] of order N using a tensor S = [Si1...iM ] of order
M. The resulting tensor R = [Ri1...i|M−N| ] = T•S is of order
|M−N|, e. g., in the case of M = N a scalar which is the
expected result of a dot product. In the case of M ≥ N it is

Ri1...iM−N = ∑
j1,..., jN

Ti1...iM−N j1... jN S j1... jN . (17)

Appendix B

Basis transformation of tensors is required to transform
descriptors into the stamping frame B with the transfor-
mation T = [Ti j] ∈ R3×3. For an n-th-order tensor G =

[G j1... jn ] ∈ R3n
the transformation to G′ = [G′i1...in ] ∈ R3n

is
given by

G′i1...in = ∑
j1,..., jn

G j1... jn Ti1 j1 . . .Tin jn . (18)
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