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Abstract
We present a new approach for the visual representation of uncertain stream lines in vector field ensembles. While existing
approaches rely on a particular seed point for the analysis of uncertain streamlines, our approach considers a whole stream line
as seed structure. With this we ensure that uncertain stream lines are independent of the particular choice of seed point, and that
uncertain stream lines have the same dimensionality as their certain counterparts in a single vector field. Assuming a Gaussian
distribution of stream lines, we provide a visual representation of uncertain stream lines based on a mean map and a covariance
map. The extension to uncertain path lines in ensembles of time-dependent vector fields is straightforward and is also introduced
in the paper. We analyze properties, discuss discretization and performance issues, and apply the new technique to a number of
flows ensembles.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

Uncertainty representation is still one of the main challenges in
Visualization. While it is commonly accepted that the representation
of the underlying uncertainty of a data set is inevitable for a thorough
data analysis. It poses significant challenges to the visualization
because considering uncertainty results in a significant increase of
the data to be represented.

A common approach for uncertainty visualization is to show
some objects or features along with their confidence intervals. This
has been done for local objects, which describe data at a point like
scalars, vectors, or tensors, as well as for global objects, which con-
sist of integrated data like isolines, isosurfaces, or vortices. For each
of these, a significant amount of research has been conducted to
model and visualize the uncertainty. While established visualization
techniques differ in many aspects, they have one thing in common:
they do not increase the dimensionality of the data. One example
are isosurfaces of a 3D scalar field. Here, the cardinality of the set
of all uncertain isosurfaces is identical to the cardinality of “certain”
isosurfaces if each “certain” isosurface is equipped with an uncer-
tainty distribution. Adding uncertainty information to isosurfaces
does not produce more isosurfaces but gives additional information
to existing ones.

In this paper, we introduce a new model and visual representation
of uncertain stream lines in an ensemble of vector fields. Existing
solutions set a point of interest x in the domain and either consider
all stream lines starting from x or start some probabilistic integra-
tion from x. This gives different uncertain stream lines for every
choice of x, which leads to a higher number of uncertain stream

lines than “certain” stream lines. As an example, consider a 2D
steady vector field. The set of all stream lines is generated from a
one-dimensional structure (see, e.g, [RT12]): find a finite set of seed
curves such that stream lines starting from all points of these curves
cover the whole domain. Contrary, for an ensemble of 2D vector
fields, the set of uncertain stream lines – using existing definitions
– is two-dimensional: every point of interest in the domain results
in a different uncertain stream line. We consider this increase of
dimensionality when modeling uncertainty a serious drawback of
existing concepts. Not only does it increase the amount of data to
be analyzed, it is also not stable under perturbation, which limits
the information that is related to one stream line. While an uncer-
tain stream line gives uncertainty information also in a distance to
the seed point, a small change of the seed may change the global
behavior of the stream line drastically.

We present the first approach to representing uncertain stream
lines with dimensionality of “certain” and uncertain stream lines
being identical. The main idea is to consider not a point of interest
x but instead a whole parametric curve of interest x(t). Based on
this concept, we analyze not one particular curve of interest but all
stream lines of a vector field to be uncertain stream lines. As a result,
the (arbitrary) seed point of an uncertain stream line does not appear
as an artifact in the visualization since it does not bear any particular
information. Figure 1 illustrates the difference of existing concepts
and ours.

2. Related work

In this section, we give a brief review of uncertainty in visualization
and in particular for vector fields, stream lines and path lines.
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Figure 1: Uncertain stream lines. Left: Existing concepts depend
on the choice of a seed point (red), resulting in double-cone-like
uncertainty structures. Right: Our model does not depend on a seed,
resulting in tube-like uncertainty structures.

Uncertainty in Visualization

Finding adequate visual representations of uncertainty in scientific
data has created a large amount of research in the last decade. Un-
certainty can come from different sources that can be classified
into uncertainty observed in sampled data, uncertainty generated
by the modeling process, or uncertainty from the visualization pro-
cess [BHJ∗14].

There is a variety of techniques for uncertainty representation. A
standard way to model uncertainty is the assumption of probability
distribution functions (PDF) at the grid points. PDFs are visual-
ized in [ESG97, KLDP02, LKP03]. As an alternative, glyphs were
proposed for the visualization of uncertainty [Jon03, CR05, GS06].
Uncertainty is also represented by introducing ridges, roughness and
oscillations on surfaces or images [LFC02, GR04]. We refer to the
recent STAR [BHJ∗14] on uncertainty visualization for a detailed
review.

Local uncertainty in vector fields

Local approaches describe uncertainty as a feature that can be eval-
uated at a point inside the vector field domain without considering
the field’s “long-term” integral behavior. Sanderson et al. [SJK04]
describe patterns of uncertainty using a reaction-diffusion model,
while Botchen et al. [BWE05] introduce a texture-based visualiza-
tion technique, that represents local reliabilities by cross advection
and error diffusion. The same authors used additional color schemes
to emphasize uncertainty [BWE06]. Another approach by Zuk et
al. [ZDG∗08] uses bidirectional vector fields to illustrate the impact
of uncertainty. Hanser et al. [HKR∗18] provide an approach to an-
alyze 1D parameter sensitivity of time-dependent flow simulation
ensembles.

Uncertainty for stream lines and path lines

There exist several approaches to capturing global behavior of
stream lines and path lines for ensembles of vector fields in the liter-
ature. The perhaps simplest and most direct approach are spaghetti
plots which provide straightforward overviews but tend to produce
visual clutter [FBW16]. Mirzargar et al. [MWK14] introduce curve
box-plots for the visualization of curve-like features based on the
concept of statistical data depth. Otto et al. [OGHT10, OGT11]
present a topological approach that is based on the integration of
vector PDF. A related method by He et al. [HCLS16] for integrat-
ing uncertain stream lines is based on a Bayesian model. Hollister
and Pang [HP20] present a method to measure uncertainty and to
visualize member stream lines from an ensemble of vector fields

by incorporating velocity probability density as a feature along
each member stream line. Ferstl et al. [FBW16] derive stream line
variability plots by computing a probabilistic mixture model for
the stream line distribution, from which confidence regions can be
derived in which the stream lines are most likely to reside. For a
detailed overview of visualization on ensemble data we refer to the
recent survey by Wang et al. [WHLS18] give an overview

All approaches mentioned here have something in common: They
start with a particular seed point and consider all stream lines starting
from there. This gives a “sharp” structure near the starting point
that is blurred or spread out during integration (see Figure 1, left).
This makes uncertain stream lines depend on an initial, “certain”
decision: the placement of the seed point that is not assigned any
uncertainty.

3. A new approach to uncertain stream lines

In this section and in the remainder of this paper we use the
following notation: Given is an ensemble of n (steady) veloc-
ity fields v1(x), ...,vn(x) and their corresponding flow maps
φ1(x,τ), ...,φn(x,τ), where τ denotes the time interval. Furthermore,
N is the normal distribution.

3.1. An illustrating example

We start with a small example to illustrate the shortcomings of
existing approaches and provide a general impression of the new
approach.

We introduce a simple 2D vector field ensemble that consists of
the three vector fields

v1 =

(
cosα

sinα

)
, v2 =

(
cosα

−sinα

)
v3 =

(
p
0

)
(1)

with α = π

4 and p = 1. Figure 2 (top row) illustrates the ensem-
ble members. Note that all three ensemble members are constant
vector fields. How many stream lines are in v1,v2,v3? This is a
one-parametric family: each stream line of v1,v2,v3 has a unique
intersection, e.g., with the y-axis of the underlying coordinate sys-
tem. The y coordinate of the intersection with the y-axis can be
considered as a unique parameter for generating a stream line. And
seeding stream lines from all points of the y-axis covers the whole
domain with stream lines.

How do established approaches for uncertain stream lines per-
form on this data set? Figure 2 (bottom row, left) shows a typical
application of spaghetti plots: A point of interest x0 is chosen and
all stream lines starting from x0 are visualized. Figure 2 (bottom
row, right a) shows the result of an uncertain stream line integration,
as done in [OGHT10] or [HCLS16]. These methods also depend on
the choice of a seed point x0, which results in a double-cone shaped
structure centered at x0. A similar statement holds for advanced
techniques like curve boxplots [MWK14] and stream line variability
plots [FBW16]: They also require picking a point of interest x0, and
consider all stream lines passing through this point, which similarly
results in a double-cone structure. This shows again that existing
tools for modeling uncertainty of stream lines are point-oriented:
they require fixing a seed point x0. As a consequence, the set of
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Figure 2: A simple ensemble consisting of 3 constant vector fields.
Top row: 3 ensemble members x1,x2,x3. Bottom row, left: spaghetti
plot starting from seed point x0. Bottom row, top right: uncertain
stream line integration, curve boxplots, stream line variability plots
starting from x0 create double-cone structures. Bottom row, bottom
right: analyzing a stream line of 1

3 (v1 +v2 +v3) to be an uncertain
stream line.

all uncertain stream lines is a two-parametric family: every seed x0
results in a different stream line representation.

Contrary to existing approaches, our method is not point oriented
but curve-oriented: We consider a parametric curve of interest x(t)
as input and analyze the confidence that x(t) is a stream line in
all ensemble members. In fact, our approach creates a parametric
covariance matrix C(t). The smaller |C(t)|, the more certain is
x(t) a stream line in all ensemble members. On the contrary larger
|C(t)| indicate a lower confidence of x(t) being an uncertain stream
line. In the example in Figure 2 (bottom row, right), a curve x(t)
is analyzed to be an uncertain stream line. As the former method
a is clearly point based and its extends are fast growing with two
cones. The uncertain stream line presented in Figure 2 (bottom
row, right) b shows a tube with constant extends which represents a
constant covariance C(t) along the analyzed curve. Details on how
to compute and visualize C(t) follow later in this paper.

Our approach does not only consider one particular curve of
interest x(t) but all stream lines of a vector field of interest w(x)
simultaneously. In fact, the curve of interest x(t) in figure 2 (bottom
row, right) is a stream line of the average field w = 1

3 (v1 + v2 +
v3). Note that the seed point of the uncertain stream line is of no
importance because the covariance matrix has a similar behavior
along the whole line and does not deviate near the particular seed.

In the following we introduce our approach formally. First, we
consider one parametric curve as input (section 3.2). Afterwards we
do a generalization to path lines 3.3).

3.2. One curve in a vector field ensemble

Given an ensemble of vector fields and their mean field w, we
consider a stream line of the mean field x(t) with t ∈ [ts, te] and want

x(t)

x(t + τ)

φi(x(t + τ),−τ)

di(t,τ)
curve xstream line of vi

Figure 3: Computation of di(t,τ).

to describe the confidence that x(t) is a stream line of v1, . . . ,vn.
The main idea of our approach is to consider all stream lines of
v1, . . . ,vn that pass through x(t). We test stream lines for a Gaussian
distribution and construct a parametric covariance matrix C(t). Our
approach is based on the definition of the vector function

di(t,τ) = φi(x(t + τ),−τ)−x(t) (2)

for t ∈ [ts, te], τ ∈ [ts− t, te− t], and i = 1, ...,n. On a high level, this
function is a measure on how strong a stream line of vi starting on a
curve point x(t + τ) moves away from the curve of interest under
integration. Figure 3 gives an illustration. We can interpret the field
di(t,τ) as follows: We consider a point x(t) on the curve of interest
and start a stream line integration of vi on the curve but at a certain
distance of this point: x(t+τ). From there we integrate a stream line
of vi over a time interval −τ : the difference of its end point and the
point x(t) is di(t,τ). If x(t) is a stream line of vi then di(t,τ) = 0.

In order to analyze the uncertainty at the point x(t), we do not
only consider the stream lines starting from one point of the curve
but from all points.

Based on this, we can compute the covariance matrix as

Ci(t) =
∫ te−t

ts−t
di(t,τ) di(t,τ)

T dτ

and

C(t) =
1
n

n

∑
i=1

Ci(t)a(t) (3)

where

a(t) =
(te− ts)2

4(t− ts)2−4(t− ts)(te− t)+4(te− t)2 (4)

With this, a parametric curve x(t) is characterized by a covariance
matrix function C(t). As Ci(t) grows quadratic towards the end for
linear vector fields, the weighting function a(t) compensates for this.
This is justified by the fact that we want to have control of the (in
worst case exponential) moving-off the curve of interest for longer
integration times. Figure 4 gives an illustration of all concepts: The
left figure shows a blue curve of interest x(t) on which we consider
a particular red point x(t0) for illustration. We want to compute the
covariance Ci(t0) for this particular point. For this, we sample 5
points x(t0−2∆t), x(t0−∆t), x(t0), x(t0 +∆t), x(t0 +2∆t) on x(t)
for some ∆t > 0 (black points, red point). From these 5 sample
points we integrate the vector field vi with the integration times
2∆t,∆t,0,−∆t,−2∆t, respectively, resulting in 5 end points (blue
points, red point). The right side of Figure 4 shows these end points
without seeds.

The main idea of our approach is to find their mean mi(t0) (green
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x(t)

x(t0)
stream lines of vi

φi(x(t + τ),−τ)

Ci(t0)

mi(t0)

Figure 4: Computation of point on mean curve mi(t0) and covari-
ance function Ci(t0) for a curve of interest x(t) at a particular point
x(t0). Black points are samples on x(t). Red curves are stream lines
of vi. Blue points are end points of integration of vi starting from
black points. Green point: mean mi(t0) of end points. Green ellipse:
their covariance Ci(t0).

point) and the covariance C(t0) which is depicted as green ellipse
here.

Properties of variance:

• The curve x(t) is a perfect stream line of v1, . . . ,vn iff C(t)≡ 0.
This follows directly from di(t,τ)≡ 0 if x(t) is a stream line of
v1, . . . ,vn.

• Invariance to time shift. Let x̃(t) = x(t + t̃) be a time shift
reparametrization of of x(t) in [ts − t̃, te − t̃]. Then we obtain
for the covariance function

C̃(t) = C(t + t̃) . (5)

This is due to d̃i(t,τ) = di(t + t̃,τ), which follows directly from
the definition of x̃(t).

This latter equation (5) describes an important property, which is
vital to our approach: All points on x(t) contribute in the same way
to computing C(t). There is no fixed point of interest and thus no
bias or artifacts from such choice. This property ensures that our
technique is truly curve oriented rather than point oriented.

3.3. Generalization to uncertain path lines

So far, we considered uncertain stream lines in ensembles of steady
vector fields. The generalization to uncertain path lines in ensem-
bles of unsteady vector fields is straightforward. Given the m-
dimensional time-dependent vector fields v1(x, t), . . . ,vn(x, t) and
the time-dependent field of interest w(x, t), we consider the (m+1)-
dimensional steady fields [TWHS05] for points x = (x, t) ∈ Rm+1

in space-time:

vi(x) =
(

vi(x, t)
1

)
and w(x) =

(
w(x, t)

1

)
(6)

and apply our approach described in the previous section 3.2 to vi(x)
and w(x). This gives the (m+1)-dimensional covariance field C(x)
with the following properties: The last line and column of C(x) is
vanishing. This follows from the fact that the last component of vi
and w is constant 1 and applying (2) and (3). Hence, the desired
m-dimensional covariance field C(x, t) is encoded as matrix blocks
in

C(x) =
(

C(x, t) 0
0 0

)
. (7)

4. Computation and visual representation

Given the ensemble members v1, . . . ,vn and the field of interest w,
For computing C(x) for a particular grid point, we require numerical
integration of (2)–(3). A simple quadrature is sufficient, with k
equidistant time samples [ts, te] and apply the midpoint rule. For
vector field integration and computation of the flow map, we use a
fourth-order Runge-Kutta scheme with adaptive time step.

Computing C(x) involves multiple parameters, which need to be
discussed: the integration time τ steers the length of the stream lines
of w that are analyzed. The longer τ , the more global is our approach.
The number of samples k steering the resolution of the resulting
uncertain path lines. Depending on the length of the seeding curve
higher values create smoother tubes as this relates to the number of
ellipses used. For the examples in the paper, we use k = 31 samples
while 15 were already sufficient for the GEFS and Red Sea dataset.
For all examples we used τ = 2 unless stated otherwise.

4.1. Visual representation

We need to show a stream line of interest φ(x,τ) of w within the
time interval [ts, te] with its covariance function C(φ(x,τ)). For
the visualization of the covariance C, we first encode individual
samples C(φ(x,τ)) at τ as ellipse/ellipsoid centered at x(φ(x,τ)).
These ellipsoids can represented implicitly by

xT C−2x−1 = 0 (8)

or explicitly by

r→ Cr (9)

with parameter points ||r||= 1 on the unit circle/sphere. For varying
τ , this results in a sweeping ellipsoid that generates a tube-like
structure, which can be interpreted as a generalized canal surface.
While the general and precise computation of canal surfaces is non-
trivial [PP97], we found that a fairly simple discretization scheme
suffices for the purpose of visualization: We take k equispaced time
samples in [−ts, te] and compute covariance matrices C1, . . . ,Ck and
approximate the canal surface by pairwise convex hulls

k−1⋃
i=1

conv(Ci,Ci+1) , (10)

where conv denotes the convex hull of the two ellipsoids. An alter-
native visual representation consists in a spaghetti plot of all stream
lines starting from φ(x,τ) in all ensemble members. While this
visualization may give a good overview of a stream line and its
uncertainty, it has two potential drawbacks: Firstly, it suffers from
visual clutter, as n · k lines have to be drawn close by each other.
Secondly, the sampling density on the curve of interest – steered
by k – influences the visual representation in different ways. While
increasing k increases the numerical accuracy of C, it has a contrary
effect on the visualization. This is due to the increase of visual clut-
ter in the spaghetti plots arising from the increased the number of
curves displayed.

With these ingredients, several exploration scenarios are possible.
One is to interactively move a single stream line of interest. Another
one is considering multiple such stream lines simultaneously in the
desired area.
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4.2. Parameters

The presented algorithm has some parameters. We use k as the
number of equidistant samples along the domain [ts, te] to discretize
the integral in equation 3. To create a seeding structure in the form
of a stream line, a position in space and time x is needed. For the
visual representation, the ellipsoids have to be sampled at discrete
points. A sufficient amount of points in the examples stated here
were 15 or 31 samples.

5. Results

We evaluate our method for three flow ensembles: an analytic flow
of two sinks with a saddle, a numeric ensemble simulation of current
in the Red Sea and a worldwide weather forecast. As the analytic
flow ensemble consists of steady flows only, we are computing
uncertain streamlines. In contrast the numeric ensemble flows are
unsteady which enables us to compute uncertain path lines. The Red
Sea data set was generated by Toye et al. [TZG∗17] and was used
as a benchmark in the IEEE SciVis contest in 2020. It spans 30 days
and consists of 50 high resolution ensemble members with a total
size of of 1.5 TB.

5.1. Two Sinks with Saddle

Before we demonstrate this technique on unsteady flows like the
ocean simulation of the Red Sea or wind prediction by the Global
Ensemble Forecast System, we would like to introduce a steady
ensemble data set. This data set consists of two sinks with a saddle
in the middle with a slight offset in each ensemble member:

v1(x) =
(

x(1− x)(1+ x)
−y

)
(11)

v2(x) =
(
(x+ 1

10 )(1− x)(1+ x)
−y

)
v3(x) =

(
(x− 1

10 )(1− x)(1+ x)
−y

)
Figure 5 shows a set of uncertain stream lines at the top. The arrows
show the mean of the vector fields. The dark green ellipsoids are
very thin due to the identical y component of all ensemble members.
The uncertain stream lines are all seeded at the same height indicat-
ing uncertainty and flow behaviour at different regions. The center
one is enhancing the saddle structure and its uncertainty due to the
shifted critical point. The uncertain stream lines to the left and right
become thinner as they approach the sink, as all ensemble flows have
the same sink positions. This also show that uncertain stream lines
are well defined near critical points. The bottom of Figure 5 shows
an example with the former method with cones for comparison. It
can be observed, that all cones diverge with increased integration
time but the very right one. This creates overlapping and makes it
therefore more challenging to understand the flow. The cones are
also only a representation for the exact seeding point without any in-
formation for its close proximity. A minor advantage is less overlap
of the uncertain stream line while its major advantage is its retained
dimensionality. With lower dimensionality our method reduces the
search space by one and enables the explorer to use less uncertain
stream lines to cover the same area of interest. All uncertain path
lines in this section are computed with a 90% confidence interval.

Figure 5: Uncertain stream lines with k = 31 for vector fields u1(x)
, u2(x) and u3(x) with different methods. The quiver plot shows
the normalized flow direction of u1(x). Top: uncertain stream lines
with multiple seeding structures covering the domain. Bottom: old
method of uncertain stream lines. The dark green ellipsoids clarify
the underlying geometry which is used to compute the tube-like
structure.

5.2. GEFS Data Set

The second data set stems from the Global Ensemble Forecast Sys-
tem (GEFS) by the National Oceanic and Atmospheric Administra-
tion. It consists of 21 ensemble members, which span 15 days and
cover the whole world. We take a closer look at a subset, covering
the Indian Ocean and compare the former method 6 with ours 7. The
integration time of all path lines in the top images of both figures
are four days. Path lines are color coded by their ensemble member
and rendered half transparent in order to make all of them visible.
The bottom image of figure 6 shows cone-like uncertain path lines
of the former method. They only give information about the flow
behavior originating from a single starting point. The top of figure 7
shows the spaghetti plot for all path lines seeded by the red curves.
We use the mean curves of the former method as seeding curves for
our method. There are now 21 · k path lines for every seeding curve
resulting in an even more cluttered visualization. We used k = 15
here. The image below shows the corresponding uncertain path lines
of our method, visualizing tubes that represent the expansion of path
lines around the mean curve. The density of the transparent path
lines may indicate the outlines of the tubes below. It can be observed
that most of the tubes, especially above the Indian Ocean stay rather
thin, indicating similar flow behavior among the ensemble mem-
bers. Nevertheless there are some cone like structures above east of
Africa with our method but in the inverse direction in comparison to
the former method. This indicates converging instead of diverging
behavior. Cone-like structures in our method are therefore a result
of changing similarity in flow behavior rather than being an artifact
of increasing integration time. Due to the increased number of un-
derlying path lines, outliers have less impact, resulting in overall
smaller tubes and less overlap of tubes. Therefore more information,
higher reliability and less overlap can be archived by our method.
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Figure 6: Top: Spaghetti plots of wind flow above the Indian Ocean
based on the red seeding points. Bottom: Uncertain path lines vi-
sualized based on the path lines from above resulting in cone-like
structures.

5.3. Red Sea

The Red Sea data set contains 50 ensemble members. Therefore
the spaghetti plots and uncertain path lines are more cluttered than
in the GEFS data set. We use an integration time τ of three days.
We take a closer look at the Gulf of Aden as it is features multiple
eddies. The former method in figure 8 and our method in figure 9
are seeded on a regular grid. The seeding curve for our algorithms
is again the mean curve from the former method in order to create
a comparable covering of the domain. Both spaghetti plots overlap
strongly, so that it is almost impossible to assign a single path line to
a seeding point. With more path lines along the seeding curve, tubes
tend to be smaller with our method, making it easier to recognize
eddies and their extent.

5.4. Performance

All algorithms were implemented in C++ using the VTK and CGAL
libraries. As every data set consists of different numbers of ensem-
bles and differences in the representation of the vector field, we
measured the computation timings separately for each data set. The
former method as well as our method were implemented with the
use of pre-calculated flow maps. Table 1 shows the dimensions
used for the Red Sea and Indian Sea Flows and their corresponding
times to precalculate the flow maps. We do have to add, that our
approach does need a second flow map for the back integration.
Therefore our method takes double the effort and time to get the pre-
calculated flow maps. With the pre-computed flow maps available,
all visualizations can be computed in less than 5 ms. This allows for

Figure 7: Top: Spaghetti plots of wind flow above the Indian Ocean
based on the red seeding curves. Bottom: Uncertain path lines
visualized based on the path lines from above resulting in tube-like
structures.

interactive visualizion of uncertain stream and path lines within the
pre-calculated domain.

Flow n lat lon k τ Time
Two Sinks
with Saddle

3 100 50 31 2 850 ms.

Red Sea 50 23 35 15 72 h 32 min.
Indian Sea 21 100 50 15 72 h 2 h 8 min.

Table 1: Flow maps pre-calculation time measurements for the
Red Sea and Indian Sea. All measurements were taken on a Ryzen 9
3950x 16-core processor.

6. Discussion

Gaussian distribution: Our approach assumes a Gaussian distribu-
tion of the stream lines. This is a popular standard assumption that
is common and widely covered in the literature. This is the reason
for our choice. We are aware that the assumption does not always
hold, and alternative distributions may be more appropriate or even
required. However, in our opinion a discussion of different distri-
butions and adaptation of our model is beyond the scope of this
work.

Relation to existing approaches: Our approach is related to exist-
ing approaches in several ways. On the one hand, we can modify
our approach from a curve oriented one to a point oriented one by
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Figure 8: Top: Spaghetti plots of ocean movements in the Gulf of
Aden based on the red seeding points. Bottom: Uncertain path lines
visualized based on the path lines from above resulting in cone-like
structures.

considering a special field of interest: for w(x) = 0, all curves of in-
terest are actually points of interest , resulting in di(t,τ) = φi(x,−τ),
e.g., a stream line of vi starting at x. With this, m(x) , C(x) col-
lect information only from all stream lines starting from x, similar
to point-oriented techniques. On the other hand, most existing ap-
proaches that we classified as point oriented are generic in the sense
that they require a set of curves in a common parametrization as in-
put. Instead of considering only stream lines starting from a common
point (as done in [MWK14], [FBW16], [WHLS18]), one may feed
the algorithms with spaghetti plots constructed by our approach.

Alternative design decisions: Instead of designing a global ap-
proach as done here, an alternative but similar approach is a more
local and thus faster: instead of integrating stream lines from x(t),
only the flux of the ensemble members across x(t) is considered.
With this, the result would only depend on vi on the stream line of
w through x. At first glance, this seems attractive. However, we pro-
vide a simple counter-example to show that this can give different
information.

We consider another simple example consisting of two families

Figure 9: Top: Spaghetti plots of ocean movements in the Gulf of
Aden based on the red seeding curves. Bottom: Uncertain path lines
visualized based on the path lines from above resulting in tube-like
structures.

of three ensemble members with constant parameters α and p:

v1 =

(
cosα

sinα cosπy

)
, v2 =

(
cosα

−sinα cosπy

)
, v3 =

(
p
0

)
(12)

and

v1 =

(
cosα

sinα

√
eπ|y|

)
, v2 =

(
cosα

−sinα

√
eπ|y|

)
, v3 =

(
p
0

)
(13)

For both ensembles in (12) and 13) we analyze the curve of interest

x(t) =
( 1

3 (p+2cosα)
0

)
, (14)

which is a stream line of both 1
3 (v1 +v2 +v3) and 1

3 (v1 +v2 +v3).
For this example, the flux of v1,v2,v3 over x(t) is identical to the
flux of v1,v2,v3, respectively. Our approach gives different results
for the ensembles in (12) and (13).

7. Conclusions and Future Work

We introduced an approach to representing uncertain stream lines in
ensemble of vector fields by considering curves of interest instead
of points of interest. This way, we obtain global representations
with the same dimensionality as “certain” stream lines. There are
different roads for future research:
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Figure 10: Counter-example: A more local approach would not
work. Top left row: ensemble members (13). Top right row: ensemble
members (12). Bottom left: uncertain stream line for 13. Bottom
right: uncertain stream line for 12.

• Non-Gaussian distributions: Instead of a Gaussian distribution,
more involved distributions may be included.

• Alternative representations of sweeping covariance matrices: In-
stead of a sweeping ellipsoid representation for C(φ(x,τ)), alter-
native representations such as superquadrics [Kin04] are possible.

• Uncertain stream surfaces: While the extension of our approach
to uncertain stream surfaces requires the solution of a number of
problems, we do not see a fundamental reason that hinders the
extension of our approach.
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