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Appendix

1. Implementation details

We provide the implementation details with the code and data in the
supplemental material, along with the neural network architectures.
We refer to the guideline (i.e., README.md) to reproduce the re-
sults presented in this work. The code and trained models of our
experiments will be published upon acceptance.

2. Experiments

In order to acquire a training data-set for each scenario, we generate
a set of solution sequences of the given PDE problem. The PDEs
from our experiments work with a continuous velocity field v in
the two-dimensional space, i.e., v = [vx,vy]

T . Considering reference
simulations on regularly discretized grids, we focus on exploring la-
tent spaces (i.e., reduced representations) that are four times coarser
than the reference.

2.1. Karman vortex street

This first example targets a complex PDE problem within a con-
strained setup, where the velocity field evolves over time while being
constrained to be divergence free. We evaluate the incompressible
Navier-Stokes equations for Newtonian fluids:

∂v
∂t

=−(v ·∇)v− ∇p
ρ

+ν∇2v subject to ∇·v = 0 (1)

where p is the pressure, ρ is the density, and ν is the viscosity
coefficient. The reference simulation domain is discretized with
128×256 cells and a cell spacing of one using a staggered grid
scheme. We use closed boundary conditions for the sides and open
boundary conditions for the top of the domain; at the bottom, we
set a constant inflow velocity. The continuous inflow collides with
a fixed circular obstacle, which creates an unsteady wake flow that
evolves differently depending on the Reynolds number. For the
temporal discretization, the unit time step size is used. We generate
20 simulations of 200 steps each and randomly choose 5% of them
for the validation set and the remaining 95% for the training set. We
use Reynolds numbers in {90, 120, 140, 150, 160, 170, 180, 190,
200, 220, 290, 340, 390, 490, 540, 590, 690, 740, 790, 1190}, and
we skip the first 2000 time-steps in order to let the flow stabilize.
Both the least and most turbulent simulations of the training set are
shown in Fig. 1.

In order to make our training more stable, we use pre-trained
networks with eight integrated steps as warm starts for our final
models. Each training uses 100 epochs with a batch size of ten. The
learning rate starts from 4×10−4 and exponentially decays with a
decaying rate of 0.9 every ten epochs. If divergence happens while
training, we restart our training with a smaller learning rate. In this
example, we compare all the models trained with 16 integrated steps.
We also note that the encoder and adjustment models of ATO, the
corrector of SOL, and the solver of Dil-ResNet take the Reynolds
number as additional input.

The test set consists of six solution trajectories evaluated with
Reynolds numbers in {450, 650, 850, 1050, 1200, 1400}. Example
sequences of the test data and the inference results of different
models are shown in Fig. 2, for Re = 850, along with the spatial
distribution of the velocity error in Fig. 3.

As can be seen on Fig. 4, which shows the velocity and vorticity
error improvements of each model over the baseline, ATO presents
the best generalization capabilities. Fig. 5 shows the temporal evo-
lution of the velocity MAE and the distance between each model’s
reduced space and lerp(ref).

2.2. Decaying turbulence

This example tackles the same incompressible Navier-Stokes equa-
tions, but with vortices intialized all over the physical space that
slowly decay over time. In this scenario, the viscosity stays constant
(equal to 0.1) within the training and test data-sets. The reference
simulation domain is discretized with 1282 cells and a cell spacing
of one. Both the discrete velocity and pressure values are stored at
the center of each cell, and periodic boundary conditions are ap-
plied. For the temporal discretization, a time step size of 1.0 is used.
The training data-set consists of 20 simulations of 200 steps each,
which evolve from different initial velocity fields. We use randomly
selected 5% for the validation set and the remaining 95% for the
training set. An example sequence of the data is shown in Fig. 6. As
in the Karman vortex street case, we first train our models with eight
integrated steps as warm starts for the final models. We compare all
the models trained with 16 integrated steps.

The five test trajectories evolve from different initial velocity
fields on a domain identical to the training one. Fig. 7 shows the
inference results of the different models for one example, and Fig. 8
shows the spatial distribution of the error for the same example.
Fig. 9 and Fig. 10 (left) show that our ATO model improves the base-
line the most in both velocity and vorticity metrics, although SOL
+ SR shows a comparable performance. As shown in Fig. 11 and
Fig. 10 (right), its latent space representation is more distant from
the linearly down-sampled representation than the other models’,
yet it shows a similar or better performance.

2.3. Forced turbulence

This case has the same experimental setup as the previous one,
but with an external force sequence g(x, t) that is added to Eq. (1).
This force sequence yields complex, chaotic evolutions of vortices
over time. We use a different force sequence for each simulation
trajectory, composed of 20 overlapping sine functions as follows:

gx(x, t) =
20

∑
i=1

ai sin(kiαi ·x+wit +φi)

gy(x, t) =
20

∑
i=1

ai sin(kiαi ·x+wit +φi)

(2)
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where ai is the amplitude, ki is the wave number, αi is the wave
direction, wi is the frequency, and φi is the phase shift. These values
are randomly sampled from uniform distributions as follows: ai ∈
[−0.1,0.1], ki ∈ {6,8,10,12}, wi ∈ [−0.2,0.2], and φi ∈ [0,π]. αi
is a random angle (∈ [0,2π]). The composed sine functions are, then,
evaluated over the domain mapped into [0,2π] for each dimension.

For the temporal discretization, a time step size of 0.2 is used.
The training data-set consists of 20 simulations of 200 steps each,
which evolve from different initial velocity fields with different
force sequences. We use randomly selected 5% for the validation set
and the remaining 95% for the training set. An example sequence
of the data is shown in Fig. 12. We use the models trained on
the previous decaying turbulence case as warm starts for our final
models, trained for 100 epochs. We compare all the models trained
with 16 integrated steps. The encoder of ATO shares its weights
for velocity and force in order to learn a unified operation for both
reduced representations.

The five test trajectories evolve from both different initial velocity
fields and different force field sequences. Fig. 13 shows the inference
results of the different models for one example, and Fig. 14 shows
the spatial distribution of the error for the same example. Fig. 15
shows that our ATO model improves the baseline the most in all
five test cases in both velocity and vorticity metrics, while its latent
space representation (Fig. 16) is more distant from the linearly
down-sampled representation than the other models’.

2.4. Smoke plume

This example represents a smoke volume of a circular shape, which
is slowly rising up producing interesting swirling motions. A buoy-
ancy force is produced by a passive marker field with a buoyancy
factor of 0.25 applied vertically. The training data-set consists of 20
simulations of 200 steps each with a time-step of 0.2, which start
from circular marker fields with a constant radius of 0.12, but evolve
differently due to the random initialization of the markers. We use
randomly selected 5% for the validation set and the remaining 95%
for the training set. An example sequence of the data is shown in
Fig. 17. For this case, we use more integrated solver steps than the
others. We first train our model with four, eight, and 16 integrated
steps as warm starts for the final model. We apply our ATO model
trained with 32 steps, for 100 epochs. Fig. 18 shows the inferences
of our ATO model for different initializations.

3. Neural Network Architectures

In this section, we detail our network architectures for each model.
We note that the practical implementations of all the models can be
found in the supplemental code.

The encoder of the ATO setup consists of two convolutional lay-
ers with 32 and 16 features each with a kernel size of five. Each
convolutional layer is followed by the Leaky ReLU activation func-
tion. A last layer with two features and the same kernel size but
without the activation infers the final encoded output. This model
has approximately 15k trainable weights.

The adjustment of the ATO setup and the corrector of SOL

([UBF*20]) employ an identical network model. This model con-
sists of a first convolutional layer with 32 features and a kernel size
of five, followed by five blocks of two convolutional layers with 32
features each and a kernel size of five. Each layer is followed by
the Leaky ReLU activation function, and each block is connected
to the next with a skip-connection. A last layer with two features
follows with the same kernel size yet without the activation. This
architecture has approximately 260k trainable weights.

The decoder used for the ATO setup and the super-resolution
model from Dil-ResNet + SR and SOL + SR are adapted from the
multi-scale architecture of [FFT19], such that the total number of
trainable weights is close to 97k.

The Dil-ResNet model is adapted from the architecture of the
state-of-the-art network model proposed for turbulent flow problems
[SFK*22]. This model has a first convolutional layer with 32 features
with a kernel size of three and no activation. It is followed by four
identical blocks of seven convolutional layers with 32 features each
with a kernel size of three and varying dilation rates from one to
eight (respectively: 1, 2, 4, 8, 4, 2, 1). Each layer is followed by
the ReLU activation function, and each block is linked to the next
via a skip-connection. A last layer with two features follows with
the same kernel size yet without the activation. This model has a
similar number of trainable weights as the adjustment model’s (i.e.,
260k). We note that a larger model did not improve the performance.
Contrary to the other models, Dil-ResNet is trained for only one step
at a time and uses a MSE loss.

For the Karman vortex street and smoke plume cases, we adopt
zero-padding, and for the forced and decaying turbulence cases,
which use periodic boundary conditions, we use periodic padding
for all models.

4. Training hyper-parameters

In this section, we detail the choice of hyper-parameters for the
different trained models.

Firstly, the code of the SOL model from [UBF*20] was re-
leased publicly, which enabled an easy reproduction of their ex-
periments. Secondly, the learning setup of the Dil-ResNet model
from [SFK*22] was precisely described in the article. We exten-
sively tested the various hyper-parameters and chose the Dil-ResNet
model over Con-Dil-ResNet (i.e., without the additional loss con-
straint) because it performed better in our physical scenarios. For
training, we chose a Gaussian noise with σ = 0.01 for all scenarios.
Lastly, for our ATO setup, we chose the depth of the models by
making a compromise between performance and runtime/resources.
For the learning rate and batch size, since the physics solver made
the models harder to train, we chose the values that best stabilized
our training. Our loss being divided in two terms of different or-
ders of magnitude (a high-resolution term and a low-resolution
one), we set λhires to 1 for all scenarios and λlatent = 1 for the
Karman vortex street case, λlatent = 1 = 10 for the decaying turbu-
lence, λlatent = 100 for the forced turbulence and λlatent = 10 for
the smoke plume.
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Figure 1: Two examples from the training data-set of the Karman vortex street scenario: Re = 90 and Re = 1190.
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Figure 2: Restored frames of different models for the Karman vortex street scenario with Re = 850.
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Figure 3: Absolute error in velocity for the different models, for the Karman vortex street scenario with Re = 850.
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Figure 4: Velocity (left) and vorticity (right) error improvements for six different Reynolds numbers between 450 and 1400. The highest
Reynolds number used for training is 1190. The ATO model generalizes better than the others.
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Figure 5: MAEs of recovered velocities (left) and distances of the reduced spaces to the down-sampled reference (right) over time for the
Karman vortex street scenario.
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Figure 6: Example frames from one simulation of the training data-set of the decaying turbulence scenario.
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Figure 7: Example frames of a test case for different models for the decaying turbulence scenario.
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Figure 8: Absolute error in velocity for the different models, for the decaying turbulence scenario.
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Figure 9: Velocity (left) and vorticity (right) error improvements for the decaying turbulence scenario. The ATO model improves the baseline
the most for every test case.
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Figure 10: MAEs of recovered velocities (left) and distances of the reduced spaces to the down-sampled reference (right) for the decaying
turbulence scenario.
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Figure 11: MAEs of recovered velocities (left) and distances of the reduced spaces to the down-sampled reference (right) over time for the
decaying turbulence scenario.
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Figure 12: Example frames from one simulation of the training data-set of the forced turbulence scenario.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



C. Paliard et al. / Exploring Physical Latent Spaces for High-Resolution Flow Restoration

Frame 10 Frame 50Frame 30 Frame 70 Frame 110Frame 90 Frame 150Frame 130

S
O

L
 +

 S
R

A
T

O
(o

ur
s)

R
ef

.
D

il
-R

es
N

et
 

+
 S

R

1.0

-1.0

0

Figure 13: Example frames of a test case for different models for the forced turbulence scenario.
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Figure 14: Absolute error in velocity for the different models, for the forced turbulence scenario.
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Figure 15: Velocity (left) and vorticity (right) error improvements for the forced turbulence scenario. The ATO model improves the baseline
the most for every test case.
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Figure 16: MAEs of recovered velocities (left) and distances of the reduced spaces to the down-sampled reference (right) over time for the
forced turbulence scenario.
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Figure 17: Example frames from one simulation of the training data-set of the smoke plume scenario.
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Figure 18: Example frames from our ATO model for two test cases of the smoke plume scenario.
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