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Figure 1: This example shows a time-dependent Vortex Cascade dataset rendered with low-pass filtered volumetric shadows (LPFV) [ASDW14].
The shadow’s softness, is adjusted with a single parameter – the filter kernel size (number in the bottom left). The proposed model computes a
perceived loss of information in the image L(I) (number in the bottom right). The bottom sequence shows images rendered with an increasing
softness of the volumetric shadows for comparison. We use an automatic parameter search to find the optimal parameter used for the center
top image. Note that all images are intended to be displayed to a standard observer, see section Sect. 4.1 for details.

Abstract
We propose a new reference-free method for automatically optimizing the parameters of visualization techniques such that the
perception of visual structures is improved. Manual tuning may require domain knowledge not only in the field of the analyzed
data, but also deep knowledge of the visualization techniques, and thus often becomes challenging as the number of parameters
that impact the result grows. To avoid this laborious and difficult task, we first derive an image metric that models the loss of
perceived information in the processing of a displayed image by a human observer; good visualization parameters minimize
this metric. Our model is loosely based on quantitative studies in the fields of perception and biology covering visual masking,
photo receptor sensitivity, and local adaptation. We then pair our metric with a generic parameter tuning algorithm to arrive at
an automatic optimization method that is oblivious to the concrete relationship between parameter sets and visualization. We
demonstrate our method for several volume visualization techniques, where visual clutter, visibility of features, and illumination
are often hard to balance. Since the metric can be efficiently computed using image transformations, it can be applied to many
visualization techniques and problem settings in a unified manner, including continuous optimization during interactive visual
exploration. We also evaluate the effectiveness of our approach in a user study that validates the improved perception of visual
features in results optimized using our model of perception.
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1. Introduction

In the last decades numerous visualization techniques have been
developed ranging from methods tailored for very specific problems
to more general approaches. Typically, these techniques all define
their own set of parameters which need to be chosen or adjusted to
obtain an image that best conveys the essential information from
the visualization data. However, determining an optimal or at least
well-working set of parameters is often non-trivial. For example
parameter settings might depend on the input data, like the pres-
ence of certain features, or scale. In addition, a user performing
a visualization task could be an expert in the application domain,
but might not be aware of the inner workings of parameters that
control the visualization itself. Sometimes tuning parameters is chal-
lenging even for visualization experts: When an image is presented
to the human visual system, the perception of one stimulus may
affect the presence of another leading to visual masking. This is
just one example of difficulties that arise as a result of the complex
interplay of features in data sets, transparency, illumination, and
shading. Moreover, different viewing conditions might affect the
quality of previously tested parameters, causing unexpected loss of
visual information.

In this paper, we present a novel method for automatically choos-
ing and optimizing parameters for visualization techniques without
requiring user interaction. Our method is purely image-based and
thus agnostic to the visualization technique or semantics of its pa-
rameters: we develop a perception-based model and corresponding
metric to quantify the loss of perceived information in the human
visual system when a user observes an image on the screen. The
model is built on quantitative findings in the fields of perception and
biology and utilizes established information theory operations. It en-
ables us to automatically search for visualization parameters which
minimize this loss and thus increase the visualized information. In
summary, our contributions in this paper are:

• We devise a model and corresponding metric to quantify the
perceived information relative to the displayed image and thus
the loss of information we seek to minimize.

• We show how this metric can be used to determine a set of well-
working parameters for a visualization and allows for background
optimization of the parameters during interactive visualization.

• We demonstrate the quality of our method predominantly for
direct volume rendering which provides several parameters to
control the visualization.

• We conduct a user study to verify the validity of our model of the
human visual system and perceptual loss metric.

Note that we distance our proposed approach from techniques that
look directly at the data set and apply some form of preprocessing
e.g. filtering or highlighting regions. Instead, we focus on reducing
visual artifacts in the rendered image, making this work immedi-
ately embeddable in any visualization framework. Considering the
image-based nature of our approach, we use the term visualization
technique to generally describe the mapping of a scientific dataset
to a 2D image.

In Sect. 2 we present previous work related to this paper. Sect. 3
describes our method in detail. In Sect. 4 we present and discuss
the results of our method when applied to different visualization
scenarios. Sect. 5 concludes the paper with future work.

2. Previous Work

In this section we discuss previous work on optimization of visu-
alization tasks, as well as on information theory and perception in
the context of visualization upon which our method is based on. For
a broader overview, Wang et al. [WS11] provide a comprehensive
introduction to information theory in visualization, and the surveys
by Tory et al. [TM04], and Haeley et al. [HE12] give a thorough
introduction into perceptual aspects.

Optimization of Visualization Tasks Getting the best possible re-
sults of a visualization has been the focus of many works. Jänkicke
at al. use saliency [JC10], while Bramon et al. use information theo-
retic principles [BRB∗13] to evaluate visualizations of volume data.
Enhancing the visualization of flow by selecting streamlines and
viewpositions [TMWS13], finding good streamline seeds [XLS10],
or evaluating the carried information by line segment lengths [FI08]
and curvature [MCHM10] of streamlines. Behrisch et al. [BBK∗18]
provide an extensive survey concerning quality metrics that may be
used for different plots and types of information visualization.

Information Theory in Visualization Information theory is the
basis for many existing methods in computer graphics, and entropy-
based methods are used in the field of computer vision. Entropy-
based image processing has been applied to image segmentation
[TTL03, dAEMdA04], classification [JM04], and object recognition
[KON02,LSP05]. There are many visualization-specific applications
of information theory, of which we will give a short overview in the
following.

Image Quality Metrics The Visual Difference Predictor [Dal92]
is a mathematical model that assesses the image fidelity, the equiv-
alence of two images under certain display parameters and view-
ing conditions, implemented as a sequence of image processes.
Similarly, the Visual Discrimination Model by Lubin [Lub95] pre-
dicts the visual discriminability of images with a perceptual model.
Saghri et al. [JAS89] present an image quality metric that considers
background illumination and spatial frequencies. Visual Embed-
ding [cDSK∗14] provides a more general understanding of the rela-
tion between perception and structure in data. For a more in-depth
overview of image quality metrics, we refer to [LJ11].

Perception in Computer Graphics The role of perception for com-
puter graphics by Bartz et al. [BCFW08] surveys methods that apply
insights of human perception to all aspects of computer graphics,
rendering, animation, virtual/augmented reality, and visualization.
Threshold Maps, introduced by Ramasubramanian et al. [RPG99],
predict a per-pixel threshold for the probability of detecting visual
artifacts, and are the base of our perceptual model.

Parameter Selection All rendering techniques are driven by param-
eters and many different approaches exist to automatically select or
manipulate those parameters to approach a suitable result. Lindow
et al. [LBH12] present a method to linearize parameters based on
the mean structural similarity index MSSIM. This is a perceptual
similarity metric that can be easily converted into a distance measure.
They integrate over the parameter space and derive a function that
assures a linear change with respect to the used perceptual image
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Figure 2: We show the intermediate steps of our model for the perception loss L(I). The left image shows the original image I, a volume
rendering of a jet vortex. The center images show the images Jm and Js, each representing one realization of the distributions Pm for visual
masking and Ps for the sensor sensitivity. The distributions are realized by noise proportional to the Threshold Map (Sect. 3.2.1) and the just
noticeable difference (Sect. 3.2.2). We obtain the final answer from the human visual system J by performing a contrast enhancement with
respect to the observed variance in the image Js+m (Sect. 3.2.3). We obtain a quantitative measure of the information loss due to perception
from the relative entropy.

metric. Mindek et al. [MMGB17] extend this concept by guiding
the user, reporting back the normalization of the (non-linear) input
parameter. Bruckner et al. [BM10] make use of sampling and spatio-
temporal clustering techniques, generating an overview of variations
in their temporal evolution of physically based simulations for ef-
fects. Pineo and Ware [PW12] present a hill climbing algorithm for
2D flow visualizations. Their perceptual model is based on simulat-
ing the image processing in the retina and primary visual cortex with
a neural network. See Sect. 4.4.2 for a more detailed comparison to
our streamline selection example.

3. Method

Visualization techniques are usually controlled by a variety of pa-
rameters with diverse effects on the resulting images. Our method
strives to find visualization parameters, that minimize the loss of
visualized information due to processing by the human visual sys-
tem (HVS). We drive our optimization with a purely image-based
perceptual loss function (Sect. 3.1). This decouples our parameter
tuning from the specific underlying visualization technique.

The information loss can be modelled by uncertainties, introduced
in the different stages of the HVS (Sect. 3.2), shown in Fig. 2: Vi-
sual clutter, for example, introduces uncertainty as a result of visual
masking, which can be estimated using Threshold Maps [RPG99].
Noise proportional to the Threshold Map is not noticeable for a
human observer, when added to the pixels of an image I. Such uncer-
tainties are undesirable in visualizations as they “waste” precision
for displaying useful information. We develop our perceptual model
to account for visual masking and sensor sensitivity (adding noise
maps Jm and Js in Fig. 2), and finally contrast sensitivity by mod-
eling local adaptation of the HVS (locally rescaling to obtain J in
Fig. 2). Our model provides a distribution of perceptually equiva-
lent images P(J|I) rescaled to fully utilize visual channels, a model
output image J is a realization of P(J|I).

Finally, we quantify the loss of perception as the statistical dis-
tance of the two images J and I. The relative entropy lets us drive an

optimization algorithm, that adapts the current set of visualization
parameters (Sect. 3.3) to interactively minimize perceptual uncertain-
ties and thus maximize perceived information. Table 1 summarizes
our notation.

I Displayed visualization image (input)
J Model output image - simulation of processes in

the HVS until Visual Cortex, when observing im-
age I

∇I,∇J Gradient images storing all differences between
neighboring pixels (in CIELAB)

P∇I(x) Distribution of image gradients for computation
of the second-order (relative) entropy

L(I) Perception loss, information lost by human per-
ception

DKL(P ∥ Q) Kullback-Leibler divergence
P(J|I) Probability distribution of potential images J reg-

istered by a human observing I
Pm(Jm|I) Probability distribution modeling masking
Ps(Js|I) Probability distribution modeling sensor sensitiv-

ity
I( j),J( j) Pixel value at position j for any images I or re-

spectively J
ρo Parameter set being optimized
ρu Parameter set fixed by the user
ρm Parameters for the perception loss model
ρ Set of all parameters ρo∪ρu∪ρm

Table 1: Notation used throughout the paper.

3.1. Measuring Loss of Visual Information

In order to quantify the information content of images in a way
that accounts for spatial structure, we follow the common practice
of applying the second-order Shannon entropy [Lar16] to image
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data. We are concerned with the change of structural information
due to processing by the human visual system (HVS). Therefore,
rather than measuring absolute entropy based on the image gradi-
ent distribution P∇I(x) for an image I, we measure relative entropy
by way of comparing the distribution P∇I(x) of a displayed im-
age I to the altered distribution P∇J(x) of a perceived image J. The
Kullback-Leibler divergence [KL51] measures relative entropy in
that it quantifies the information lost by representing a distribution
P(x) in terms of a distribution Q(x):

DKL(P ∥ Q) := ∑
x

P(x) log
P(x)
Q(x)

. (1)

For our purposes, P(x) represents the displayed image I and
Q(x) represents the corresponding perceived image J, obtained from
our model simulating the HVS. In line with the second-order Shan-
non entropy, we set P(x) = P∇I(x) and Q(x) = P∇J(x). Thus, we
define our perception loss L(I) as:

L(I) := DKL(P∇I(x) ∥ P∇J(x)). (2)

The loss is zero if the distributions P∇I(x) and P∇J(x) are equal,
otherwise it grows with an increasing mismatch between them.

Implementation In order to compute the Kullback-Leibler diver-
gence in practice, we have to settle on a perceptually reasonable ap-
proach of computing image gradients for corresponding histograms.
We choose the CIELAB color space designed for (locally) per-
ceptual linearity. We construct a gradient histogram by evaluating
CIELAB color differences for all eight neighbors of each pixel.
Discretized to 6 bits per channel, the differences are aggregated in
compact histograms with 63 = 262.144 bins. The Kullback-Leibler
divergence is technically undefined for zero valued distributions,
i.e. for x with P∇I(x) = 0. A common solution is to set the corre-
sponding summation term to zero since limP→0+ P logP = 0. We
assume P∇I(x) > 0⇒ P∇J(x) > 0, since our model of the HVS
smoothes P∇I(x).

3.2. Modeling Uncertainties in the Human Visual System

Any visualization on any display device is ultimately processed by
the HVS and therefore subject to a multitude of additional adjust-
ments and measurement inaccuracies, caused by the optical and
sensory properties of the physical eye as well as by the neural cir-
cuitry after a signal was received from the photoreceptors. When
photoreceptors detect a stimulus X , their response is effectively a
random variable Y where the expected values of X and Y are pro-
portional (within a certain range), but Y is subject to noise [Bia87].
The variable Y is said to fluctuate as described by a probability
distribution P(Y |X) for a stimulus X , while E(Y ) ∝ E(X). We are
concerned with stimuli X due to visualization images I, which we
want to observe (with minimal loss) through the variable Y realized
by the computation of our model output image J.

In order to compute our perception loss L(I) for a displayed
image I, we model three particular effects as a sequence of im-
age operations on I resulting in the model output image J: Visual
masking, sensor sensitivity, and local adaptation. Systems of similar
form have been built to detect perceived image differences [Dal92],
salient regions [FRC10], or visual masking [RPG99]. Fig. 2 pro-
vides an overview of our simulation of the HVS: Given an input

image I, we first model visual masking (loss of information due to,
e.g., visual clutter) by applying Threshold Maps [RPG99]. Thus we
obtain a distribution Pm(Jm|I) of images Jm with tolerated error such
that they are perceptually indistinguishable from I. Analogously,
we model inaccuracy due to limited photoreceptor sensor sensitiv-
ity by a distribution Ps(Js|I). The resulting distribution of images
registered by the HVS is furthermore subject to local adaptation
to variance [BMD08] which we apply to realizations of the added
uncertainties. The relative entropy of the resulting model output J
with respect to the input image I provides the perception loss L(I).

Design Choices While our perceptual model only considers parts
of the complex HVS, we demonstrate that the simplicity of our
proposed system based on image operations allows good reasoning
about important boundary cases for robust optimization (Sect. 3.2.5),
such as the preservation of interesting areas while penalizing regions
with little information. We omit advanced visual attention or saliency
modeling [BI13] concerned with selection mechanisms and a notion
of relevance of visual information to the human brain. Thus, our
model optimizes for concentrated studying of visualization images
more than for perception at a glance. However, deployment of atten-
tion may strongly depend on task demands [TBHS03] while we aim
for wider applicability.

3.2.1. Visual Masking by Threshold Maps

An important goal of visualization is the minimization of visual
clutter: A high density of high-frequency detail makes it difficult
to discern visual features and structures. This phenomenon of un-
certainty due to visual masking has been modeled by Threshold
Maps [RPG99], predicting the maximum luminance error for every
pixel a human observer can tolerate. Threshold Maps build on three
characteristics of the human visual system: Threshold sensitivity,
defining the smallest noticeable luminance difference on a given
background; contrast sensitivity, defining varying sensitivity depend-
ing on spatial frequencies in an image; and finally, contrast masking
which elevates the threshold of luminance sensitivity non-linearly
in response to certain contrast patterns. For their screen model, we
assume faithful linear reproduction (i.e. a gamma-corrected display),
given the maximum LCD brightness in cd/m2 and the contrast ratio
of the screen. Threshold Maps can be computed in real-time and
naturally fit into our model of perceptual uncertainty: We use their
predicted distribution Pm(Jm|I) of perceptually indistinguishable
images to model the corresponding perceptual uncertainty and steer
our optimization away from visual clutter.

3.2.2. Sensor Sensitivity by Just Noticeable Differences

In order to account for the sensitivity limits of photoreceptive cells,
we follow the common practice of modeling sensor noise [Bia87].
Human perception adapts to the intensity of stimuli to increase
the dynamic range of signals that can be registered. As a conse-
quence, the just noticeable difference (JND) in luminance, which
is barely distinguishable above sensor noise, is a function of adap-
tation luminance. We compute it based on the contrast sensitivity
function (CSF) of human perception by Barten [Bar89] (as also
used internally by Threshold Maps [RPG99]): The JND in lumi-
nance is the contrast threshold obtained as the CSF’s reciprocal,
evaluated for an adaptation luminance and the spatial frequency of a
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single pixel. We compute adaptation luminances in a 1°-diameter
solid angle [RPG99, LRP97] where contrast sensitivity is maximal,
yielding a conservative estimate. Like for Threshold Maps, a dis-
tribution Ps(Js|I) corresponding to sensor noise, and realizations
thereof, are then easily obtained from uniform noise scaled to the
JND.

Tristimulus Sensitivity We extend the JND in our model from
luminance to color differences. The CIELAB color space was de-
signed for matching color distances with perceived color differences.
For each pixel, we construct a sphere around its CIELAB color
coordinates such that the radius corresponds to the JND we com-
puted based on adaption luminance. We then convert to the linear
CIEXYZ space and thus obtain an anisotropic probability distribu-
tion for colored JND noise. Please refer to the supplemental for our
derivation.

3.2.3. Local Contrast by Local Adaptation

Larger flat areas in visualization images require additional work
by the HVS to discern subtle color differences which we want to
minimize. Garvert and Gollisch [GG13] analyze how two kinds of
local adaptation occur within the receptive field of ganglion cells
which process visual information in the retina: First, adjustment
to the local mean brightness, which we already covered by the
JND. Second, adjustment to the variance of encountered stimuli.
The mean and variance of stimuli in the receptive field fully char-
acterize this effect [BMD08]. We model the latter adaptation by
a variance normalization filter applied to the output Js+m of the
preceding steps of our model, i.e. Pm+s(Jm+s|I) = Pm(·|I)∗Ps(·|I).
We compute the mean µg and variance σ2

g within the receptive field
of a fictive ganglion cell g and obtain the final values J( j) of our
model by a mean-preserving contrast enhancement:

J( j) =
Js+m( j)−µg( j)

σg( j)
+µg( j). (3)

This operation is applied in LMS color space where the tristimulus
values represent the receptor responses of the three types of cones
in the human eye. The local adaptation parameters σ2

g ( j),µg( j) are
estimated using a Gaussian weighting kernel while sampling the
neighborhood around each pixel j. This is motivated by Enroth-
Cugell and Robson [ECR66] who arrive at a Gaussian function
when tracing the receptive field of a ganglion cell by measuring the
sensitivity falloff. We set the standard deviation of this Gaussian
field, based on the peak contrast sensitivity of HVS, to a 1°-diameter
as in the previous section.

3.2.4. Model Output Images and Distribution

The distribution P(J|I) of model output images J resulting from our
full model of uncertainty in the HVS for a visualization image I is:

P(J|I) = σ
−1
g [Pm(·|I)∗Ps(·|I)]

(
σg (J−µg)+µg

)
. (4)

Any particular model output image J obtained from the visualiza-
tion image I after evaluating Eq. (3) is a realization of this distri-
bution P(J|I). In our implementation, we first compute the images
Jm and Js with scaled per-pixel-noise (Sect. 3.2.1 and 3.2.2) and
add them both to the input I. After, we perform the local adaptation
(Sect. 3.2.3) on the result. From this result J and the original input I

we get the quantitative metric by computing the Kullback-Leibler
divergence (Sect. 3.1).

3.2.5. Model Quality and Pathological Example Cases

Our perception model considers a simplified subset of the complex
processes in the HVS. Particularly, adaptation to variance is a com-
plicated mechanism for which specific linear-nonlinear models have
been built [BMD08, GG13]. However, the choice of our simple im-
age processing steps works in our favor when reasoning about the
overall behavior of the derived perception loss. Based on the analy-
sis of a few pathological example cases of display images I as shown
in Fig. 3, it becomes easy to grasp how the image transformations
work together in a way that penalizes plain, low-contrast image ar-
eas, while detecting and preserving structural information in varying
and high-contrast areas. In the shown model output images J we can
see that uniformly colored areas are turned into noise (left column),
resulting in large perception losses L(I). The sensor sensitivity noise
and the local variance adaptation work together to identify regions
with low information content. For white noise inputs, the loss is
driven by visual masking and local adaptation. Checker patterns
with varying frequency, transition from a domination of masking
in the high-frequency image areas to variance adaptation in the
lower-frequency areas. Finally, a real-world example (right column)
demonstrates all transformations working together to retain and thus
reward structured, shaded input areas over unshaded input.

3.3. Automatic Parameter Selection and Optimization

In order to obtain good visualizations from complex, parameterized
visualization techniques, we look for a configuration of parame-
ters ρ that minimizes the perception loss L(I). To drive the search
for good configurations of optimized parameters ρo based on our
loss function L(I), we build on the online auto-tuning algorithm
proposed by Tillmann et al. [TPKT16] and extensions to support
discontinuous behavior changes [PTWT17] in our optimized visu-
alization techniques (Sect. 3.3.1). To retain maximum user control
where necessary, we partition the set of parameters ρ controlled
by our method into free, automatically optimized parameters ρo,
user-controlled parameters ρu, and model calibration parameters ρm.

Model Parameters ρm need to be predefined, so that our model
of perception loss works as intended. For this, the specifications of
the screen and work environment need to be configured, namely
the screen’s resolution and viewing distance as cycles per degree
[RPG99], and the screen’s contrast ratio and maximum brightness
in cd/m2 [Bar89]. We assume these parameters to be (roughly)
constant for a once established work environment.

Optimized Parameters ρo is a vector of every visualization param-
eter, that is updated by our optimization algorithm. Real-, integer-
valued as well as nominal types are supported, as long as a valid
domain is specified. Every parameter in ρo is initialized with a
random value inside its respective parameter domain.

User Parameters ρu is a vector of every visualization parameter,
that is still controlled by the user, e.g. the camera position. Sect. 3.3.2
discusses how the optimization is reacting to user-incited changes.
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L(I) = 10.5

L(I) = 11.05

L(I) = 1.93

L(I) = 3.81

L(I) = 10.16

L(I) = 9.05

Figure 3: We show the results of the perceptual model in simple example cases (loss values, lower is better). Left (top and bottom): uniform
colored regions are turned into noise and yield a high return of L(I) because no features are present. Center top: noise is turned into noise and
yields a low return for L(I), which is in accordance with our model and information theory (uniform noise maximizes the entropy in an image).
Center bottom: small checker patterns in the top cause visual masking and are consequently turned into noise; the score of L(I) is better than
in the uniform color cases because edges are recognized as features. Right: not shaded vs. shaded; the values of L(I) suggest that the shaded
version yields more features and improves perception.

3.3.1. Optimization Algorithm

We use the auto-tuner proposed by Tillmann et al. and Pfaffe et al.
as our parameter search. Their work focuses on tuning performance
parameters for the optimization of acceleration structure building
heuristics for ray casting [TPKT16] and automated choice among
several algorithms [PTWT17] for improved runtime. The approach
is based on the Nelder-Mead search algorithm [NM65], a heuristic
search that iteratively tightens the nodes of a simplex in parameter
space around the predicted optimum. For each iteration, the search
algorithm proposes a set of values for the parameters ρo to be
explored. We pass these parameters to the visualization technique to
obtain a corresponding tentative display image I, and subsequently
compute a model output image J by realizing our model output
distribution P(J|I), passing the resulting loss L(I) back into the
search algorithm. Its convergence criterion is based on the size of
the parameter-space simplex and is met once all simplex nodes
fit in an ε-sphere around a predicted optimum. Note that multiple
configurations may also lead to visually similar results for some
visualization techniques (see Sect. 4).

The chosen search algorithm [TPKT16] converges quickly for a
large class of cost or loss functions, although globally optimal re-
sults are not guaranteed. Due to a stochastic component in the search
algorithm however, multiple trial runs can be used to enumerate mul-
tiple options. Although in general any parameter search algorithm
could drive this optimization, our decision was determined by its
fast convergence, robustness, and efficiency, causing low overhead
on top of interactive visualization. Also, the variance introduced by
the stochastic realizations in our model to compute the loss L(I) is
handled well, due to the auto-tuners’ design to work with noisy in-

puts occurring in runtime measurements, which are naturally subject
to fluctuation.

3.3.2. Online Parameter Optimization

For interactive exploratory sessions, we allow the algorithm to run
in parallel to visualization after converging to suitable initial param-
eters. As user parameters ρu change during exploration (including
virtual camera locations, light sources, as well as specific visual-
ization technique parameters), we interactively re-optimize free
parameters ρo to search for new, more suitable configurations.

Online Parameter Validation and Restart We continuously track
the impact of user parameter changes on the perception loss L(I): If
parameter changes cause deterioration of the loss beyond a given
threshold, we reset the optimization. We keep track of the best-
scoring configuration before and after the restart to ensure good
visualization quality. Listing 1 states the high-level online parameter
optimization algorithm. We use α = 1.05 to determine the threshold
for restarting the parameter search.

Temporal Coherence Due to some of the heuristics used in the
search algorithm, proposed parameter configurations may some-
times change erratically. We mitigate this issue in two ways: As
shown in Listing 1, online re-optimization only ever applies new
parameter configurations that score better than the previous configu-
ration and we also maintain user control by manually pausing the
optimization.

Parallel Optimization Our perceptual loss model is implemented
in CUDA, which allows parallel computations in separate command
streams. In order to minimize the overhead of online optimization,
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Algorithm 1 Online Auto Tuning

1: loop ▷ score from last iteration
2: (params,converged)← tuner.next(score)
3: score← perception loss (params)
4: if converged ∧ score > α ·best then
5: restart parameter search
6: else if score < best then
7: best← score
8: ρo← params
9: show (ρo∪ρu) ▷ Always presents currently best

we run the optimization with low priority in parallel to the interactive
visualization. Thus visualization stays responsive, while the compu-
tations required for image scoring can run fully asynchronously.

4. Results

In this section we will discuss the results for different scenarios
in direct volume rendering, including the optimization of single
and multiple parameters. In particular, we will show a parameter
sensitivity analysis and the results of a user study supporting the
validity of our model of perceptual loss. Finally, we will highlight a
selection of applications outside direct volume rendering to prove the
generality of our approach and show the limitations of the proposed
technique in such contexts.

4.1. Setup

The model parameters ρm are the same for every setup. We assume
a linear reproduction with common LCD brightnesses, i.e. around
300 cd/m2 with a contrast ratio around 400 : 1. The angular resolu-
tion of 94 pixels per degree was derived from a viewing distance of
0.8m to a 4K resolution 27 inch LCD monitor. To assess the acces-
sibility of our method, tests were run on a modest workstation with
an Intel Core i7 3.4 GHz CPU with 16 GB RAM, and an NVIDIA
GTX 980Ti GPU. The image resolution matched the 4K screen.

Implementation We implemented a visualization framework in
CUDA featuring volumetric rendering and streamlines, alongside
our perceptual model since the computations mainly comprise image
convolutions, per-pixel operations and histogram reductions, which
are all suitable for massive parallelization on a GPU. Our model
computations run asynchronously to the main visualization process,
retaining stable real-time performance even in online optimization
scenarios. Since our perceptual model is an image-space technique,
our cost is independent of both the dataset size and the visualization
technique cost, resulting in overhead only proportional to the screen
resolution. Even when using a modest setup to perform visualization
tasks, we can present an image rendered by a converged set of
parameters after three to four seconds.

4.2. Loss Landscape and Efficacy for Volume Rendering

In the following, we look at the visualization results and the corre-
sponding parameters chosen by our method in the context of direct

volume rendering. A particular challenge is posed by multiple pa-
rameters with similar impact in parts of the parameter domain, such
as optimizing the intensity of multiple light sources simultaneously.
Our volume renderer implements emission-absorption along with
the Phong illumination model and includes low-pass filtered volu-
metric shadows (LPFVSs) as described by Ament et al. [ASDW14].
LPFVS is an efficient technique that improves the readability of
direct volume rendering visualizations by controlling the softness of
shadows, such that the directly visible structures are less impacted
by visual masking due to high-frequency shadows. The softness of
shadows is controlled by a cone angle parameter inside which light
visibility is filtered for each point in the volume. The diffuse and
specular albedo of the Phong illumination model are retrieved from
the transfer function and multiplied with their respective global dif-
fuse and specular coefficient when evaluated; the specular exponent
is also globally configured for the whole dataset. In all experiments,
initial parameter values were selected randomly in the range of their
defined intervals, relieving the user of the cognitive load required
for setting them up.

4.2.1. Indirect Shadow and Contrast Optimization

The LPFVS technique, which can improve contrast and shadows
in direct volume rendering, is a good test case for the optimization
efficacy for parameters with non-trivial optimal values. In Fig. 1,
our method automatically reduces hard shadows that would cause
visual masking and avoids dark or unlit regions. Simultaneously,
we observe that the optimizer retains some structure in the shadow
rather than trivially overblurring all shadow detail.

Robustness of Convergence for Multiple Parameters We test
optimization efficacy for multiple free parameters with intertwined
effect on the resulting images by adding material parameters and
light intensity to be optimized alongside the cone angle. The Nelder-
Mead search may get stuck in a local minimum of the perception
loss L(I), resulting in different viable solutions. We refer to Fig. 1
and Fig. 4 in the supplemental material for this section. We set
up two experiments: in the first, we optimized cone angle, diffuse
and specular reflectance, and the exponent of the Phong model; in
the second, we also included the intensity of the light sources. All
runs converge to useful parameter sets with slightly varying yet
similar images and perceptual loss. We found that the optimizer’s
performance drops particularly when many choices of ρo similarly
influence the rendered image. On average, the algorithm converged
after 47 iterations in the first experiment and 72 in the second.
Encouragingly, the automatic selection of all five parameters ends
with similar results as with hand-tuned light intensity.

Parameter Sensitivity We analyze the impact of optimized param-
eters on the loss function L(I) by performing a parameter sensitivity
analysis, computing variance-based sensitivity indices [SAA∗10] Si
for the Vortex Cascade Dataset:

light specular diffuse cone angle
Si 0.28 0.21 0.18 0.11

Light source intensity has the highest impact, cone angle the lowest
impact on our loss function L(I). We can explain this by observing
that adjusting only the cone angle at first reduces visual masking and
later over-blurs the volumetric shadows; the remaining parameters,
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Figure 4: Shows the percentage of participants choosing the same
better image as computed by our proposed perceptual loss met-
ric. The image pairs have been sorted by decreasing difference in
perceptual loss Dab. With smaller Dab the distribution of agreeing
participants becomes more uniform.

instead, may cause drastic, global changes in the resulting image.
For example, different configurations of the light source intensity
may cause the image to be completely black or render the volume
completely white.

4.2.2. Online Parameter Optimization

Fig. 8 in the supplemental material shows an image sequence show-
casing the online parameter optimization in a scene containing a
volumetric dataset and a single light source. The optimization selects
the smoothing kernel size for volumetric soft shadows and a diffuse
material coefficient. After an initial automatic parameter selection,
the scene is rotated until the dataset is positioned between the light
source and the view position, causing high-frequency patterns from
shadows to overlay the colored structure of the surface. The subse-
quent increase in perception loss triggers a new parameter search,
resulting in a newly optimized set of values. The complete process
can also be seen in the supplemental video.

4.2.3. Other Applications in Volume Rendering

We showed the optimization of parameters concerned with lighting
and shadows in volumes. On top of that, we applied our optimization
method also to tuning a transfer function to a volume dataset as well
as selecting interesting viewpoints. We describe these scenarios in
the supplemental material.

4.3. User Study

We conducted a user study to empirically verify the validity of
our model of the human visual system and perceptual loss metric.
We deliberately chose the scenario to avoid manually dialing in
rendering parameters and comparing resulting images as this process
is complicated and tedious for study participants. Also, user-tuned
parameter sets are generally not comparable, especially in scenarios
where decreasing opacity or increasing light source intensity are
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Figure 5: Shows the average time in seconds and the number of
switching back and forth between images before a participant makes
a decision on the better image. The image pairs have been sorted by
decreasing difference in perceptual loss Dab. With smaller Dab, par-
ticipants spent more time and the number of comparisons indicates
the higher insecurity in their decision.

investigated, and would introduce significant complexity to the study
evaluation. Moreover, acquiring a meaningful number of data points
for the variety introduced in such a case would require the total
number of participants to increase significantly, which is out of the
scope of this work. We, therefore, chose a simple AB testing of
24 image pairs with 21 participants with normal or corrected to
normal vision in a controlled environment with consistent room
illumination and a calibrated monitor. The image pairs (Ia, Ib) were
taken from a pool of pre-rendered images of the vortex cascade with
the same experimental setup as described in Sect. 4.2.1. The same
set of image pairs is shown, however the order of pairs is randomly
permuted for every participant. Only a single image is shown full
screen at a time, and it is possible to switch back and forth between
the two images of the current pair as often as needed. For every
image pair, the participant has to decide on a winner, being defined
in this context as:

• better recognizable geometric detail,
• better perception of spacial depth,
• less disturbing visual artifacts.

Except for three, all participants come from a scientific background.
The field of expertise of 5 participants is computer graphics, while
the remaining belong to chemistry, physics, and mechanical engi-
neering in equal parts.

We examine image pairs using Dab = |L(Ia)−L(Ib)|, the absolute
difference in perceptual loss between image Ia and Ib. If Dab is
large, we expect a high consensus of participants voting for the
same image Imin = min(L(Ia),L(Ib)). This expectation is rooted in
the fact that one image is very close and the other very far from
the optimum, hence the better image should be an obvious choice
for the participant. Conversely, if Dab is comparatively small, the
choice becomes less evident. The expectation, in this case, is a more
uniform distribution of the participant’s picks. During the study
evaluation, we saw that a similar difference in loss between two
images is invariant of their good or bad quality. Fig. 4 shows this
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Figure 6: Automatic selection of streamlines with our optimization technique: we generated 1500 streamlines with the double gyre synthetic
dataset. The left image is split in two: the upper left-hand side shows all streamlines unfiltered, while the lower right-hand side shows 80
streamlines selected with uniform random sampling. The right image instead shows a subset of 80 streamlines selected by our optimization.

correlation by plotting the quota of participants agreeing with the
perceptual loss metric over Dab. We can further support the claim
of small Dab resulting in difficult decisions in Fig. 5 showing that
participants needed longer time and more switching back and forth
between images until they made their decision. In 88.1% of the time,
the participants chose Imin. When removing the 5% percentile of
image pairs with the smallest Dab, participants agreed 92.1% of the
time, while with a 25% percentile removed the agreement raised
to 95.2%. The combined results of this study, lead us to conclude
that our metric L(I) can reliably predict the decision of a human
observer in this experimental setup.

4.4. Extension to other Visualization Problems

We also applied our model and optimization to other scenarios,
i.e. tuning for specialized output devices and streamline selection.
Given the generality of our approach and simple integration into
existing visualization pipelines, we show that it can be applied
to such scenarios, when tailored techniques are not available or
required.

4.4.1. Colorimetric Characteristics of Displays

Any imaging device can be characterized by a transformation from
the device color space (usually RGB) into one that describes the
perceived color (CIEXYZ or CIELAB) and vice-versa. Moreover,
incorporating different tone reproduction curves calibrated to the
device in use is straightforward. Since our model requires only the
CIELAB format as input, we can specifically optimize the visual-
ization result to any display device. For example, we could tailor
the visualization to a standard LCD, specifically calibrated displays
for medical applications, or different viewing conditions (office vs.
outdoor). Images showing the difference between applying the tone
reproduction curve before and after optimization can be seen in Fig.
7 of the supplemental material.

4.4.2. Streamline Selection

We can construct a similar scenario as presented in Pineo and
Ware [PW12] to select streamlines from a set of previously gener-
ated streamlines. Our optimization problem is defined as a selection
from a boolean vector that represents whether a streamline is shown

or not. We can observe that the optimization quickly arrives at a
point where the number of streamlines is roughly decided. Due to
the abundance of local minima, configuration oscillate, leading to
an unstable image. Therefore, we opt to terminate the optimization
after the number of selected streamlines and L(I) is stable enough,
see Fig. 6. This suggests that our model L(I) can be applied to other
visualization problems and adapted to handle massive amounts of bi-
nary parameters. Note that compared to the neural network approach
in [PW12], our method further allows for shading optimization and
seamless use on 3D streamlines datasets.

5. Conclusion and Future Work

We introduced a model and a corresponding metric to estimate the
loss of perceived information in (visualization) images accounting
for visual masking, sensor sensitivity, and local adaptation of the
human visual system. We laid the foundations for how this metric
can be used to infer optimized parameter configurations for visual-
izations such that the perception of essential features is improved.
Also the models’ ability to generalize to different visualization prob-
lems and other applications, e.g. flow or information visualization
with many more parameters, was demonstrated. The image based
nature makes this model especially easy to integrate into existing
rendering pipelines. It would be interesting to pursue a more sophis-
ticated perceptual model. A model including color perception could
further improve visual loss predictions for the parameter search and
therefore the quality of visualization results. With spatio-temporal
featuers and visual attention modeling one could adapt our approach
to improve visualizations of time dependent datasets.
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