PlenopticPoints: Supplemental Material

Florian Hahlbohm Moritz Kappel

Jan-Philipp Tauscher

Martin Eisemann Marcus Magnor

Institut fiir Computergraphik, TU Braunschweig, Germany
{lastname } @cg.cs.tu-bs.de

1. Model Details

Pulsar Configuration. To compute the values for each pixel, Pul-

sar [LZ21] employs a differentiable blending function that asso-

ciates a blending weight b; with each sphere:
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Where o; is the opacity value of each sphere, z; € [0, 1] is the depth
value in normalized device space, d; is the normalized orthogonal
distance of the ray to the sphere center, and yis a scaling factor used
to make the scene more rigorous with respect to depth. During the
optimization, we exponentially decay the y parameter from 0.1 to
0.01 with the final value being used during inference. We choose
the same radius » = 0.0015 for every sphere and empirically con-
firm the validity of this choice. The value originates from the idea
that spheres should roughly have the size of a pixel if they are lo-
cated in the center of a scene with common size. Otherwise, we
mostly use Pulsar’s default parameters with the following configu-
rations for improved results. We set the number of spheres per pixel
receiving a gradient to 64 and use 0.001 for the parameter defining
the maximum allowed difference in color space for each pixel. Re-
garding the background color, we use a fixed value of 1.0 for each
of the 16 output channels.

U-Net Architecture. As described in the main paper, we make
three configurations to the original U-Net architecture [RFB15]:
Three instead of five down-/upsampling layers, no batch-
normalization layers, and average instead of maximum pooling
when downsampling. For the first modification, we omit the first
down-/upsampling layer as our input feature map has 16 chan-
nels (in contrast to the single channel used with the original ar-
chitecture) and thus the direct conversion to 128 channels is a fea-
sible solution to reduce computational requirements without loss
of quality. Additionally, we omit the last down-/upsampling layer
as we find that it not only increases computational requirements
but, most importantly, reduces the network’s generalization capa-
bilities due to overfitting. We visualize the resulting architecture
in Figure 1. Moreover, we experiment with using single convo-
lutions [ZD23] or gated convolutions [YLY*19, RFS22] instead
of the double convolutions used by Ronneberger et al. [RFB15]
Note that the terms single convolution, gated convolution, and
double convolution describe the core architecture of each down-

/upsampling layer. For our method, we found that single convo-
lutions [ZD23] are faster but result in lower image quality while
gated convolutions [YLY*19, RFS22] are slower and do not im-
prove image quality. We hypothesize the holes in our feature map
to have different properties compared to [ZD23] and [RFS22] be-
cause of distinct initialization strategies and therefore stick with
double convolutions.
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Figure 1: The architecture resulting from our modifications to the
original U-Net [RFB15]. We use average instead of maximum pool-
ing and omit batch normalization layers while employing shorter
contracting and expansive paths.

Spherical Harmonics Learning Rate Delay. We use a warm-
up strategy with spherical harmonic (SH) degree-specific learning
rates and delays. In Figure 2, we visualize the resulting learning
rate schedule for the three SH degrees used by our model. Our im-
plementation is based on previous work [BMT*21].

2. Additional Results and Comparisons

We provide per-scene results for the synthetic and real-world
scenes to enable in-depth comparisons of PlenopticPoints with rel-
evant baselines. Most importantly, we include results of multiple
point-based methods. We omit these in the main paper, as they are
unable to match the image quality of state-of-the-art methods for
single-object scenes. Instead they achieve different improvements
such as faster rendering performance or reduced model size. Fur-
thermore, we include qualitative results for all synthetic and real-
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Figure 2: Learning rate delay strategy for different degrees of
spherical harmonic (SH) functions. Initial learning rates are set
to 0.5/0.25/0.125 and exponentially decayed to 0.05/0.025/0.0125
respectively. The respective delay of 0/500/1000 iterations is imple-
mented as described in [BMT"21].

world scenes we used for evaluation of our method in Figure 4 and
Figure 5 respectively.

Synthetic Experiment. Table 5, Table 6, and Table 7 show
per-scene results for the synthetic dataset by Mildenhall et
al. [MST*20] in terms of PSNR, SSIM [WBSS04], and
LPIPS [ZIE*18]. This includes the per-scene results of JaxN-
eRF [DBS20], Plenoxels [FKYT*22], Instant-NGP [MESK22],
and TensoRF [CXG*22], which we computed using the setup de-
scribed in the main paper. Additionally, we include the results of
numerous other recent approaches, for which we provide the source
of the reported values in the tables and roughly sort the approaches
by their publication date. Note that this collection of results is likely
incomplete, but may serve as an overview of approaches evaluated
on the synthetic dataset from NeRF [MST*20]. Among the addi-
tions are the original implementation of NeRF [MST*20], Mip-
NeRF [BMT*21], and Ref-NeRF [VHM*22], all of which are com-
paratively slow both with respect to optimization time and frames
per second during inference due to their MLP-based implemen-
tation. We also include the MLP-based Point-NeRF [XXP*22],
which is faster in terms of optimization time but employs expen-
sive volume rendering and is therefore still comparatively slow
during inference. In terms of voxel grid-based methods we add
PlenOctrees [YLT*21], SNeRG [HSM*21], and DVGO [SSC22].
Moreover, we include results of various point-based methods, for
which we omit comparisons in the main paper, as they are un-
able to match the image quality of state-of-the-art methods. In-
stead, they make significant contributions with respect to multiple
other highly-relevant aspects such as optimization time, model size,
and inference frame rate. Namely, these point-based approaches
are NPBG [ASK*20], a method by Zhang et al. [ZBRH22], and
SNP [ZD23]. Lastly, we include influential approaches that do not
fit the aforementioned categories in Neural Volumes [LSS*19],
Scene Representation Networks [SZW19], LLFF [MSOC*19],
NSVF [LGL*20], and MobileNeRF [CFHT23].

Real-World Experiment. For the sake of completeness and re-
producibility, we include an exemplary image and the sequence
number for each of the four selected scenes from the CO3D

dataset [RSH*21] in Figure 3. Per-scene results in terms of PSNR,

Figure 3: Exemplary images for the selected scenes from the
CO3D dataset [RSH*21]. We choose four scenes of which each
one is challenging for different reasons. CO3D sequence num-
bers from left to right: 590_88941_178115, 250_26779_55023,
618_100125_200129, and 34_1479_4753.

SSIM [WBSS04], and LPIPS [ZIE* 18] are included in Table 1, Ta-
ble 2, and Table 3. Here, we do not include results of additional
baselines apart from the ones used in the main paper. The used
setup for each baseline is described in the main paper.

Method | Car  Hydrant Plant Teddybear | Mean
JaxNeRF [DBS20] 30.61 37.36 27.91 35.42 32.83
Plenoxels [FKYT*22] 29.41 35.88 19.11 32.06 29.12
Instant-NGP [MESK22] | 30.44 34.62 20.74 34.83 30.16
TensoRF [CXG*22] 29.64 37.29 27.53 33.29 31.94
Ours 30.95 36.66 28.61 35.17 32.85

Table 1: Per-scene test set PSNRs on the four selected scenes from
the CO3D dataset [RSH*21].

Method ‘ Car  Hydrant Plant Teddybear | Mean
JaxNeRF [DBS20] 0950  0.989  0.941 0.979 0.965
Plenoxels [FKYT*22] 0.941 0986  0.880 0.968 0.944
Instant-NGP [MESK22] | 0.951 0985  0.881 0.979 0.949
TensoRF [CXG*22] 0945  0.988  0.936 0.969 0.960
Ours 0960  0.989  0.952 0.980 0.970

Table 2: Per-scene test set SSIMs on the four selected scenes from
the CO3D dataset [RSH*21].

3. Point Cloud Shape Analysis

In this section, we provide in-depth analysis of the point clouds
generated and used by our method. We show statistics for both the
synthetic and real-world scenes in Table 4. As Mildenhall et al.
provide the meshes they used to create the Realistic Synthetic 360°
dataset [MST™*20], we are able to generate reference point clouds
for these scenes. For each scene, we randomly sample 10243 points
on its mesh and round the positions to the vertices of the regular
grid resulting from our initialization procedure. We quantitatively
compare the initial and final point clouds P to these reference point
clouds P using an intersection over union (IoU) metric:

_|PnP|

IoU(P,P) = PUP|

@

From these statistics as well as additional qualitative analyses,
we can infer multiple things about the geometric accuracy of the
point clouds. Firstly, the initial visual hull-based point clouds are
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Method ‘ Car  Hydrant Plant Teddybear ‘ Mean
JaxNeRF [DBS20] 0.060  0.015 0.116 0.037 0.057
Plenoxels [FKYT*22] 0.074  0.023 0.204 0.072 0.093
Instant-NGP [MESK22] | 0.057 0.078 0.266 0.038 0.110
TensoRF [CXG*22] 0.064  0.017 0.126 0.056 0.066
Ours 0.035 0.011 0.068 0.027 0.035

Table 3: Per-scene test set LPIPS scores on the four selected scenes
from the CO3D dataset [RSH*21].

far from optimal as shown by the IoU metric (see Table 4). Sec-
ondly, our method is able to remove many incorrect points during
the optimization. Thirdly, the final point clouds produced by our
method are still vastly different from the reference point clouds.
Qualitatively, we observe that this is mostly due to points inside
of objects not being removed during the optimization. Note that a
learned representation does not necessarily work better when given
the reference point clouds compared to creating one during its op-
timization.
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Grid Resolution Before Optimization After Optimization Reference
Scene #Points TIoU #Points ToU #Points
Chair (254, 258, 374) 4,056,338 0.101 1,529,012 0.129 420,091
Drums (483, 370, 319) 4,041,106 0.151 275,909 0.133 609,984
Ficus (261, 409, 610) 4,043,133 0.130 2,611,687 0.129 527,438
Hotdog (352, 355, 109) 4,069,466 0.088 686,584 0.068 458,012
Lego (194, 345, 232) 4,040,533 0.266 676,830 0.266 1,076,451
Materials (435, 351, 89) 4,064,838 0.236 2,212,395 0.163 961,130
Mic (517,512, 493) 3,234,306 0.150 2,790,702 0.115 483,825
Ship (281, 281, 193) 4,039,149 0.065 479,796 0.158 270,164
Car (344, 144, 173) 4,038,196 2,277,090
Hydrant (165, 354, 204) 4,041,107 3,817,755
Plant (180, 281, 242) 4,040,173 N/A 1,915,470 N/A N/A
Teddybear (228,292, 193) 4,044,900 2,800,520

Table 4: We report per-scene statistics regarding the size and shape of the point clouds generated by our method. As we are unable to
generate a suitable reference point cloud for the real-world scenes, the loU metric is not applicable.

Method Source Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
LLFF [MSOC™* 19] [MST™*20] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22 24.88
NV [LSS*19] [MST*20] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
SRN [SZW19] [MST*20] 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60 22.26
NPBG [ASK*20] [XXP*22] 26.47 21.53 24.60 29.01 24.84 21.58 26.62 21.83 24.56
NeRF [MST*20] Publication 33.00 25.01 30.13 36.18 32.54 29.62 3291 28.65 31.01
JaxNeRF [DBS20] Ours 34.07 25.03 3043 36.86 33.27 29.90 34.53 29.35 31.68
NSVF [LGL*20] [BMT*21] 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93 31.74
Mip-NeRF [BMT™*21] Publication 35.14 25.48 33.29 37.48 35.7 30.71 36.51 30.41 33.09
PlenOctrees [YLT*21] Publication 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71
SNeRG [HSM™*21] Publication 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97 30.38
Plenoxels [FKYT*22] Ours 33.96 25.34 31.83 36.40 34.08 29.13 33.26 29.60 31.70
DVGO [SSC22] Publication 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13 31.95
Ref-NeRF [VHM *22] Publication 35.83 25.79 3391 37.72 36.25 3541 36.76 30.28 33.99
Point-NeRF [XXP*22] Publication 35.40 26.06 36.13 37.30 35.04 29.61 35.95 30.97 33.31
Instant-NGP [MESK22] Ours 35.75 25.90 33.09 37.35 36.12 29.57 35.13 30.10 32.88
TensoRF [CXG™*22] Ours 35.67 25.99 33.95 37.30 36.35 30.10 34.53 30.74 33.08
Zhang et al. [ZBRH22] Publication 32.98 25.53 29.01 34.56 31.33 28.01 33.82 27.01 30.28
MobileNeRF [CFHT23] Publication 34.09 25.02 30.20 35.46 34.18 26.72 32.48 29.06 30.90
SNP [ZD23] Publication 30.49 22.78 2543 33.24 27.94 26.02 28.80 25.07 27.47
Ours Ours 35.35 25.59 32.68 37.18 33.00 29.27 35.07 28.40 32.07

Table 5: Per-scene test set PSNRs on the Realistic Synthetic 360° dataset [MST*20)].
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Figure 4: Qualitative results for the Realistic Synthetic 360° dataset [MST*20]. We select a viewpoint from the test set of each scene and
show the output of each baseline. We would like to highlight the more accurately represented drum heads as well as the less blurry reflections
on the metal ball.
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Figure 5: Qualitative results for the CO3D dataset [RSH*21]. We select a viewpoint from the test set of each scene and show the output of
each baseline. Note the cleaner object boundaries of the plant as well as the less blurry reflections on the car.

Method Source Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
LLFF [MSOC*19] [MST*20] 0.948 0.890 0.896 0.965 0911 0.890 0.964 0.823 0911
NV [LSS*19] [MST*20] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
SRN [SZW19] [MST*20] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757 0.846
NPBG [ASK*20] [XXP*22] 0.939 0.904 0.940 0.964 0.923 0.887 0.959 0.866 0.923
NeRF [MST*20] Publication 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
JaxNeRF [DBS20] Ours 0.975 0.928 0.968 0.978 0.968 0.952 0.987 0.872 0.954
NSVF [LGL*20] [BMT*21] 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854 0.953
Mip-NeRF [BMT*21] Publication 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882 0.961
PlenOctrees [YLT*21] Publication 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884 0.958
SNeRG [HSM™*21] Publication 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865 0.950
Plenoxels [FKYT*22] Ours 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.889 0.958
DVGO [SSC22] Publication 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879 0.957
Ref-NeRF [VHM*22] Publication 0.984 0.937 0.983 0.984 0.981 0.983 0.992 0.880 0.966
Point-NeRF [XXP*22] Publication 0.984 0.935 0.987 0.982 0.978 0.948 0.990 0.892 0.962
Instant-NGP [MESK22] Ours 0.986 0.941 0.983 0.984 0.983 0.951 0.990 0.898 0.965
TensoRF [CXG*22] Ours 0.985 0.938 0.983 0.982 0.983 0.953 0.988 0.898 0.964
Zhang et al. [ZBRH22] Publication - - - - - - - - 0.945
MobileNeRF [CFHT23] Publication 0.978 0.927 0.965 0.973 0.975 0913 0.979 0.867 0.947
SNP [ZD23] Publication 0.962 0.913 0.933 0.977 0.949 0.939 0.972 0.866 0.939
Ours Ours 0.986 0.947 0.982 0.985 0.975 0.960 0.991 0.891 0.965

Table 6: Per-scene test set SSIMs on the Realistic Synthetic 360° dataset [MST"20].
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Method Source Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
LLFF [MSOC*19] [MST*20] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218 0.114
NV [LSS*19] [MST*20] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
SRN [SZW19] [MST*20] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299 0.170
NPBG [ASK*20] [XXP*22] 0.085 0.112 0.078 0.075 0.119 0.134 0.060 0.210 0.109
NeRF [MST*20] Publication 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
JaxNeRF [DBS20] Ours 0.035 0.085 0.038 0.079 0.040 0.060 0.019 0.185 0.068
NSVF [LGL*20] [BMT*21] 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162 0.047
Mip-NeRF [BMT*21] Publication 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138 0.043
PlenOctrees [YLT*21] Publication 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144 0.053
SNeRG [HSM*21] Publication 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156 0.050
Plenoxels [FKYT*22] Ours 0.031 0.067 0.027 0.038 0.029 0.057 0.015 0.134 0.050
DVGO [SSC22] Publication 0.027 0.077 0.024 0.034 0.028 0.058 0.017 0.161 0.053
Ref-NeRF [VHM *22] Publication 0.017 0.059 0.019 0.022 0.018 0.022 0.007 0.139 0.038
Point-NeRF [XXP™*22] Publication 0.023 0.078 0.022 0.037 0.024 0.072 0.014 0.124 0.049
Instant-NGP [MESK22] Ours 0.020 0.072 0.023 0.032 0.018 0.061 0.013 0.131 0.046
TensoRF [CXG*22] Ours 0.026 0.077 0.024 0.035 0.021 0.060 0.022 0.140 0.051
Zhang et al. [ZBRH22] Publication - - - - - - - - 0.078
MobileNeRF [CFHT23] Publication 0.025 0.077 0.048 0.050 0.025 0.092 0.032 0.145 0.062
SNP [ZD23] Publication 0.049 0.081 0.050 0.036 0.057 0.072 0.025 0.167 0.067
Ours Ours 0.016 0.050 0.016 0.022 0.026 0.041 0.007 0.125 0.038

Table 7: Per-scene test set LPIPS scores on the Realistic Synthetic 360° dataset [MST*20].




