
Vision, Modeling, and Visualization (2023)
T. Grosch and M. Guthe (Eds.)

N-SfC: Robust and Fast Shape Estimation from Caustic Images
— Supplementary Material —

Marc Kassubeck , Moritz Kappel , Susana Castillo , and Marcus Magnor

Institut für Computergraphik, TU Braunschweig, Germany
{kassubeck, kappel, castillo, magnor}@cg.cs.tu-bs.de

In this supplementary document, we provide more details on the
proposed methodology given in the main paper and implementation
details, along with further comparisons on the methods examined
in the main paper, additional results, and ablation studies for the
presented framework.
We will also provide the full code including dataset generation
scripts upon publication of this paper.

1. Method and Network Architecture

As mentioned in the paper, the simulation of the caustic image
(cf. [FSES14]) and subsequent gradient calculation through back-
propagation mainly depends on three hyperparameters: The number
of samples nl ; the number of distinct wavelengths associated with
each ray nw; and the smoothing parameter s, which represents a
trade-off between the minimum feature size, which can occur in the
caustic image and the sampling noise of the simulation. An overview
of further parameters and typical values can be found in Tab. 1.

Subsequent processing of caustic images is dependent on two
neural-network components, which belong to the same architectural
family, as depicted in Fig. 1. As mentioned in the main paper, both
networks share a structure similar to UNet [RFB15] as the main
component, and differ in a few blocks with respect to the input and
output. The denoiser includes a single Conv + nonlin block,
which expands the number of channels to cinit ∈ [1,32] channels for
the UNet part of the network. An equivalent block contracts those
channels after the UNet part of the denoising network. Note that the
number of input channels in the denoising network is given as 1,
even though the caustic images are multi-spectral with nw channels.
This means each channel is denoised independently, such that this
network is trained to handle simulation input with as few as one or
many spectral channels. Overall we consider a family of networks
for both the denoising and the update parts, which are parameterized
via the hyperparameters listed in Tab. 2. At training time we search
for the best network architecture over the parameter space defined
therein.

2. Datasets

Given our focus on the application of quality control in glass 3D
printing, all the physical values for the non-differentiable scene

Table 1: Non-Differentiable Scene Parameters. Note that non-
differentiable does not indicate an intrinsic limitation of the ap-
proach, but is meant to indicate that we do not optimize for these
parameters and thus chose not to compute gradients for them. The
last column denotes the values considered for the scene setup in
dataset creation and the final optimization loops.

Parameter Meaning Value
n× n Pixel resolution of height map (128, 128)
m×m Pixel resolution of caustic image (512, 512)
d ∈ R Base thickness of substrate 3mm
nl ∈ N Number of samples, i.e. light paths 1e6 and 16e6

nw ∈ N Number of wavelengths in simulation 3: {610nm, 530nm, 430nm}
s ∈ R Smoothing parameter for photon footprint 16.0
α ∈ R+ Angle of light emission 0 (collimated light)
Li ∈ Rnw

+ Radiosity of light source (1 W/m2 , 1 W/m2 , 1 W/m2)
Lp ∈ R3 Position of light source (0m, 0m, 1m)
Sp ∈ R3 Position of screen (0m, 0m, −1e−6m)
(hx ,hy) ∈ R2

+ Size of the base substrate (5cm, 5cm)

parameters were selected to match usual process values with current
technology. As mentioned in the main paper, it is crucial that the
training data accurately samples the distribution of real world values.
Thus, to define parameters for our dataset of glass substrates it is
beneficial to recall some parameters of the underlying production
process. The process works by depositing glass fibers of diameter
of roughly 0.4mm onto 3mm thick glass substrates, for which an
area of 5×5 cm is common. In our simplified setup, only the source
and the screen surface interact with the light paths. All parameters
regarding scene structure can be found in Tab. 1. The parameters
regarding sample count and resolution were chosen as a compromise
between quality and memory consumption. For more details about
the influence of each rendering parameter we refer to the work of
Frisvad et al. [FSES14].

On the same line, our denoising and updater datasets are both
rendered by drawing samples from distributions carefully chosen
to closely match the real data distribution. In particular, the line
samples are uniformly drawn from the ranges defined in Tab. 3 and
have a cosine falloff from their center to the edge of their width,
representing a fully fused glass fiber on top of the base substrate. To
get the final heightfield we add these line samples to simulate the
effect of printing a fiber on top of pre-existing ones.

The denoising dataset was created on a machine with a Xeon-E5

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-9520-875X
https://orcid.org/0000-0001-9507-5141
https://orcid.org/0000-0003-1245-4758
https://orcid.org/0000-0003-0579-480X


M. Kassubeck et al. / N-SfC - Supplementary Material

Figure 1: The network architectures are variants of the UNet [RFB15] architecture. The denoiser and updater network differ mainly in their
input and output computations. The coloring depicts, whether a block belongs to the code-path of denoiser or updater respectively and when
two inputs lead into a block, we concatenate along the channel dimension.

Table 2: Parameters for family of networks. Also see Fig. 1 for a graphical depiction for the family of considered network architectures.

Parameter Meaning Type Search Value Best Denoiser Best Updater
learning rate Learning rate of optimizer float ∈ [0.0001,0.1] 0.00151 0.005155
cinit Initial number of channels for UNet integer ∈ [1,32] 31 -
nonlin Specific nonlinearity to employ after convolutions – ELU, ReLU, PReLU, SELU PReLU PReLU

kdown Kernel size in downconvolution part of network integer ∈ [2,11] 5 9
kup Kernel size in upconvolution part of network integer ∈ [2,11] 2 9
ms Channel multiplier for each depth layer of UNet integer ∈ [1,8] 2 8
ns Number of skip connections; depth of UNet integer ∈ [1,4] 4 1
mdec Channel divisor in each output block integer ∈ [2,11] - 8
kdec Kernel size in each output block integer ∈ {2,4,8,16} - 4
λTV Total variation weight in loss for updater training float ∈ [5 ·10−10,5 ·10−9] - 9.81 ·10−10

1630 CPU and two NVidia Titan RTX GPUs with 24Gb memory
each, where it took roughly 17h. The generation of the 100000
samples for the updater dataset took about 30h on a Xeon-E5 1630
CPU and two NVidia RTX 3090 GPUs with 24Gb memory each.

2.1. Denoiser Training

We implemented the denoising component of the network using Py-
Torch Lightning [Fe19] and trained with this dataset, split randomly
into 90% training and 10% validation images. The loss function for

this training was the MSE loss between estimated denoised caustic
and the caustic image with 1.6 · 107 samples. We searched over
the hyperparameters as defined in Tab. 2 by minimizing this loss
over the validation set to find the best performing architecture. This
search was performed using the hyperparameter sweeps function
in [Bie20] with their implementation of Bayesian search [SLA12]
and hyperband early termination [LJD∗17] with a minimum of 5
epochs. All models were trained with Adam optimizer [KB15] until
the validation loss showed no improvement over the last 3 epochs.
The total compute time of the search was 5 days with 60 trained

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Kassubeck et al. / N-SfC - Supplementary Material

Table 3: Common Parameter ranges for heightfield generation and
offsets for the updater dataset

Parameter Primary Sample Range Perturbation Offsets
Number of lines {2, . . . , 30} None
Line Start [-2.5cm, 2.5cm]2 [-2.5mm, 2.5mm]2

Line End [-2.5cm, 2.5cm]2 [-2.5mm, 2.5mm]2

Line Width [0.1mm, 4mm] [-1mm, 1mm]
Line Height [0.1mm, 2mm] [-1mm, 1mm]

models over two machines. One being the afore mentioned Xeon-E5
1630 CPU and two NVidia Titan RTX GPUs with 24Gb memory and
the other equipped with a Xeon-E5 1630 CPU and two NVidia RTX
3090 GPUs with 24Gb memory each. The parameters of the best
performing model are listed in Tab. 2 and were used in all following
experiments.

2.2. Updater Training

The reasoning behind the sampling for the updater dataset is that
learned gradient descent schemes are usually trained in an unrolled
fashion with multiple consecutive update steps being supervised by
ground-truth data. Unfortunately it proved to be computationally
infeasible to generate a new simulation and gradient after each
update step while simultaneously optimizing for the best network
architecture. Thus, we opted to create a larger dataset and train
the updater point-wise by comparing the resulting height field to
the target height field after a single step. We hypothesized that this
dataset contains enough varied image patches to let the network learn
the dynamics of a learned gradient descent scheme and generalize to
repeated execution at test time. The rest of the training framework
like dataset split, computational setup, etc., is the same as for the
denoising network. Total compute time was 20 days with 89 trained
models, with the best parameters as reported in Tab. 2.

3. Comparisons

We provide complete renderings of the full test set containing the
ten heightfields considered in the comparisons and evaluation of our
method mentioned on the main paper, which have been modified for
better visibility in Fig. 2. Along with these ground truth renderings,
we also provide the corresponding reconstructions of SfC [KBC∗21]
in Fig. 3 and our full model in Fig. 5. It is clear that SfC struggles
with the high-frequency components in the caustics, resulting in
narrow and steep reconstructions. Further, we provide renderings of
the reconstructions of HCCCD [STTP14] in Fig. 4. Please note that
this method is prone to changing the thickness of the base substrate,
which is not very visible in Fig. 4, but better appreciated in the
numerical evaluation in the paper.

4. Ablations

We provide renderings of our ablations, i.e. the updater trained
without the denoiser in place and the updater without the gradient
information from the differentiable renderer in Fig. 6 and Fig. 7.
Comparing these reveals, that little visual difference is present in
these model variants at the displayed steps, but further numerical

analysis in the paper reveals differences in the convergence dynamics
between them.

References
[Bie20] BIEWALD L.: Experiment tracking with weights and biases, 2020.

Software available from wandb.com. URL: https://www.wandb.
com/. 2

[Fe19] FALCON W., et al.: Pytorch lightning, 2019. Software available
from pytorchlightning.ai. 2

[FSES14] FRISVAD J., SCHJØTH L., ERLEBEN K., SPORRING J.: Photon
differential splatting for rendering caustics. Comput. Graph. Forum 33, 6
(2014), 252–263. 1

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. In Int. Conf. Learn. Represent. (2015). 2

[KBC∗21] KASSUBECK M., BÜRGEL F., CASTILLO S., STILLER S.,
MAGNOR M.: Shape from caustics: Reconstruction of 3D-printed glass
from simulated caustic images. In IEEE Winter Conf. Appl. Comput. Vis.
(2021), pp. 2877–2886. 3, 4

[LJD∗17] LI L., JAMIESON K., DESALVO G., ROSTAMIZADEH A., TAL-
WALKAR A.: Hyperband: A novel bandit-based approach to hyperparame-
ter optimization. The Journal of Machine Learning Research 18, 1 (2017),
6765–6816. 2

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-Net: Convo-
lutional networks for biomedical image segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI) (2015),
Springer, pp. 234–241. 1, 2

[SLA12] SNOEK J., LAROCHELLE H., ADAMS R. P.: Practical bayesian
optimization of machine learning algorithms. Advances in Neural Infor-
mation Processing Systems 25 (2012). 2

[STTP14] SCHWARTZBURG Y., TESTUZ R., TAGLIASACCHI A., PAULY
M.: High-contrast computational caustic design. ACM Trans. Graph. 33,
4 (2014). 3, 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://www.wandb.com/
https://www.wandb.com/


M. Kassubeck et al. / N-SfC - Supplementary Material

Figure 2: Ground truth renderings of the test set in a modified scene for better visibility. Please note that optimization assumes a flat screen
surface and significantly less distance between substrate and screen.

Figure 3: Renderings of SfC [KBC∗21] reconstructions after one update iteration.

Figure 4: Renderings of HCCCD [STTP14] reconstructions.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Kassubeck et al. / N-SfC - Supplementary Material

Figure 5: Renderings of N-SfC reconstructions after ten update iterations.

Figure 6: Renderings of N-SfC reconstructions without the denoiser after ten update iterations.

Figure 7: Renderings of N-SfC reconstructions without the local gradient information after ten update iterations.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.


