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Abstract

This paper handles the highly challenging problem of reconstructing the shape of a refracting object from a single image of its

resulting caustic. Due to the ubiquity of transparent refracting objects in everyday life, reconstruction of their shape entails a

multitude of practical applications. While we focus our attention on inline shape reconstruction in glass fabrication processes,

our methodology could be adapted to scenarios where the limiting factor is a lack of input measurements to constrain the

reconstruction problem completely. The recent Shape from Caustics (SfC) method casts this problem as the inverse of a light

propagation simulation for synthesis of the caustic image, that can be solved by a differentiable renderer. However, the inherent

complexity of light transport through refracting surfaces currently limits the practical application due to reconstruction speed and

robustness. Thus, we introduce Neural-Shape from Caustics (N-SfC), a learning-based extension incorporating two components

into the reconstruction pipeline: a denoising module, which both alleviates the light transport simulation cost, and also helps

finding a better minimum; and an optimization process based on learned gradient descent, which enables better convergence

using fewer iterations. Extensive experiments demonstrate that we significantly outperform the current state-of-the-art in both

computational speed and final surface error.

CCS Concepts

• Computing methodologies → Image-based rendering; Shape modeling; Machine learning;

1. Introduction

Recent advances in physics-based differentiable rendering have en-
abled to incorporate ever more complex light transport effects such
as caustics into inverse vision problems. Previously, these effects
had to be modeled by hand in a time consuming fashion, while read-
ily available gradients from differentiable rendering frameworks
allow application-specific reconstructions to focus more on effi-
cient regularization and general optimization schemes. One of these
application-specific examples is the Shape from Caustics (SfC) prob-
lem as formulated by Kassubeck et al. [KBC∗21], which deals with
the under-constrained problem of reconstructing the shape of a re-
fracting object from its resulting caustic image, i.e. the brightness
distribution as seen on a screen surface under illumination from a
known light source. Tackling this problem is enabler for many ap-
plications in inline quality control of optical components, especially
in the emerging field of integrated optical manufacturing, which is
fuelled by novel production processes such as laser glass deposi-
tion (LGD). The requirements on the feedback and quality control
loop necessitate taking the measurement in-situ, such as after each
printed layer, and being fast enough to take the reconstruction result
into account when the next layer is ready to be deposited. Only
in this way small deviations in previous layers can be adaptively
compensated, without unduly slowing down the production process.
Thus, such an inline measurement is not meant to replace estab-
lished high accuracy methods, but complement them in the most

time-sensitive cases. As a solution, SfC [KBC∗21] proposed an
optical measurement setup with no moving parts, which requires
only a single caustic image as the input to their classical constrained
optimization based reconstruction. However, when trying to adapt
the SfC method to the real production process, the reconstruction
algorithm revealed deficits in terms of reconstruction speed and
robustness. Furthermore, with the trend in fabrication to produce
smaller and smaller batch sizes down to batch sizes of one in individ-

ualized manufacturing, the control system needs to robustly assess
a large variety of possible shapes, which are not known a priori.

We address these problems by introducing two learned compo-
nents into the reconstruction loop: a denoiser and a learned gradient
descent scheme. Since the image formation simulation is based on
Monte-Carlo integration and unless a large amount of samples are
taken into account, the resulting caustics are invariably noisy, hin-
dering the forward simulation and backpropagation. Our denoiser
alleviates this problem by allowing us to fix the number of forward
simulation samples, keeping the runtime cost in check. Secondly,
our learned gradient descent scheme allows to leave out a signifi-
cant amount of gradient descent steps, while still producing results
with lower total shape error. We show empirically that this com-
bination allows to avoid spurious local minima, enabling more ro-
bust and faithful reconstructions. Source code, including all dataset
generation scripts, is available at https://graphics.tu-bs.de/
publications/kassubeck2023n-sfc.
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2. Related Work

As our work relates to differentiable and inverse rendering as well as
to computational caustic design, denoising, learned gradient descent,
and refractive reconstruction methods, we will group the related
works in the following into these categories:

Differentiable rendering describes a subset of the field of in-
verse rendering, i.e. estimating physically valid parameters from
imaging data, by means of a differentiable renderer. Those renderers
formulate the forward image formation process in a differentiable
manner and allow to efficiently compute gradients with respect to
relevant free parameters, which can in turn be used in gradient-
based local parameter search strategies. Redner [LADL18], Mit-
suba 2, Path replay backpropagation [NDVZJ19, VSJ21]and lastly
Mitsuba 3 [JSRV22] are increasingly efficient and fully featured
renderers but in their current iteration mainly use unidirectional
path tracing for image formation and are thus not applicable to our
caustics-based optimization problem without further adaptations.
Several other authors tackle the difficult problem of providing gra-
dients with respect to scene geometry, which is in the mesh case
not trivially differentiable due to visibility discontinuities. Of these
methods, Zhang et al. [ZMY∗20, ZYZ21] explicitly handle bidi-
rectional methods and even participating media, but a source code
release was missing at the start of this project. Unbiased gradient
estimators [BLD20, ZMY∗20] have been shown to be beneficial
in terms of convergence behavior and final parameter estimation
results [LZBD21], but for our problem even perfect gradients would
only achieve convergence to an improper local minimum in many
cases.Thus we focus our efforts on a learned gradient descent system
to circumvent those spurious local minima an achieve significantly
improve reconstruction for the 3D printing process at hand. We
follow the simulation approach from SfC [KBC∗21] for image for-
mation and gradient generation, as it in turn builds upon the work
of Frisvad et al. [FSES14], which allows for sharper caustic edges
with fewer samples, further reducing the computational burden of
the simulation.

Caustic design is stated as the problem of finding a refractor
or reflector, which produces a desired caustic image on a given
screen surface. Schwartzburg et al. [STTP14] define caustic design
as a two step process by first solving an optimal transport problem

and then calculating a heightfield achieving said transport. Mey-
ron et al. [MMT18] expand upon the theory of optimal transport
and provide a general algorithm for different computational design
tasks. Another widely researched approach is modeling the freeform
optics as the solution of a PDE [RM02, FFL16, WXL∗13]. How-
ever, regarding physical constraints on the shape, those methods
mainly enforce smoothness and reduced curvature to ensure phys-
ical realizability, whereas we are concerned with reconstructing
true shapes given data of achievable geometries. Thus our objective
more closely aligns with true general refractive reconstructions as
described below, while having a less restrictive setup.

Denoising plays an important role in many physics-based im-
age formation simulations [HY21], as the Monte-Carlo nature of
path-tracing-based methods quickly leads to correct but highly noisy
results, which clear up at the rate of the square root of the num-
ber of samples. Thus, filtering methods to alleviate the strain on
computational resources are a component of even commercial ren-

dering systems [Aut21]. With the rise of neural-network-based im-
age processing, state-of-the-art denoising methods often integrate
learned components into the processing pipeline. One can cate-
gorize these methods, based on whether they operate on the final
output image [KBS15, VRM∗18]or act deeper in the path tracing
process to predict global illumination effects [NAM∗17], like cal-
culating high-resolution radiance maps from low resolution sam-
ples [JK21]. Our method directly operates in image-space, however
we note that noise statistics of photon mapping methods differs from
regular unidirectional path-tracing due to the bias in the estima-
tor [ZWW∗20, ZXJ∗20]. In this case regular pre-trained denoiser is
expected to perform sub-par, thus we opt to create our own dataset
and network. By design, our denoiser performs a similar task to
learned density estimation [ZXJ∗20] as part of photon mapping
based image generation pipeline. However, we further incorporate
this denoiser into an inverse parameter estimation problem, which
has not been presented before to the best of our knowledge.

Learned gradient descent as a subset of meta-learning or learn-

ing to learn replaces the classical hand-designed optimizer with a
learned component [Sch93, YHC01, HYC01], improving ill-posed
inverse problems by including a prior on reachable solutions by mod-
ification of gradients. Additionally, larger parameter-specific steps
can be taken, allowing for faster convergence. We take inspiration
from recent work [ADG∗16, FBD∗19], which cast the optimization
trajectory as steps in a recurrent neural network, conditioned on
(approximate) gradients and other problem specific inputs. In con-
trast to these methods, we do not train our recurrent network with
truncated backpropagation through time, as this would necessitate
computation of second order derivatives of the simulator. Instead,
we use a simple point-wise training scheme, which we evaluate by
applying our network recurrently at test time and demonstrating,
that it has nevertheless learned to smoothly and efficiently minimize
the relevant error metric.

Several works tackle the reconstruction of refractive shapes by
proposing the inclusion of other sources of information.For example,
a recent work [LWL∗20] reports estimation of shape of general glass
objects with a differentiable rendering system utilizing multiple
views and Gray coded structured light. This approach achieves high
quality results of free form shapes, but the physical setup complexity
is beyond integration in existing manufacturing machines and the
scope of this paper. We restrict ourselves to a single view and an
arbitrary light source, but create a large dataset to build a prior
over achievable shapes. In the preparation of this dataset we are
related to but more specialized than Mousavi & Estrada [ME21],
who provide a general dataset for computer vision tasks for scenes
with transparent refracting objects.

3. Method

Following the approach of SfC [KBC∗21] we represent the solu-
tion space of our shape reconstruction as a heightfield h ∈ Rn×n

over the flat base substrate of known thickness d. To simulate the
resulting caustic image we place a light source above the substrate
and calculate the wavelength-dependent irradiance E ∈ R

nw×m×m
+

per pixel of a sensor surface below the substrate. The simulation
(cf. [FSES14]) and subsequent gradient calculation through back-
propagation mainly depends on three hyperparameters: The number
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Figure 1: Schematic sketch of in-situ feedback during production.

of samples nl , i.e. the number of paths outgoing from the light; the
number of distinct wavelengths associated with each ray nw; and
a smoothing parameter s, which controls the size of an elliptical
footprint over which the energy of each transported photon is dis-
tributed. The smoothing parameter represents a trade-off between
the minimum feature size, which can occur in the caustic image
and the sampling noise of the simulation. An overview of further
parameters and typical values can be found in our supplemental.

To illustrate a potential real-world application of this setup we
provide a sketch in Fig. 1, where this setup is integrated into a man-
ufacturing process, which concerns glass 3D printing by selectively
melting glass fibers onto a base substrate. The functional goal in
such a setup is validating the printed shape as specified by the part
designer and possibly correct for deviations in subsequent steps.
This is under special consideration, as functional tests of waveguide
structures require additional steps, such as cleaving of the beginning
and end of the fiber and precise placement of e.g. diodes and sensors
at each end of respective fibers, which are difficult to achieve in-situ.
Thus we propose a method, which does not directly measure such
transverse functional specifications, but rather use the longitudinal
caustic as a measure by which to infer adherence to design speci-
fications, for which such functionality is known to hold. Note that
the only moving parts are the ones which were already present in
the production process, we simply added the light source above the
substrate and a camera with appropriate field of view and focus dis-
tance below. While having the advantage of being easily integrable
into even existing setups, this also leads to added complexity for
the reconstruction process. We note that this production example
informs physical measurements and dataset distribution, but our
methodology is independent of this specific application case. We
see this methodology as a framework for a class of problems, where
camera and light placement, as well as the compute budget, restrict
the amount of data that is needed for reconstruction.

3.1. Underdeterminism of the Problem

We show that reconstruction of a refracting shape from a single
caustic image is severely under-constrained by considering a simple
2D toy example. Fig. 2 shows a ground-truth shape and resulting

Figure 2: Underdeterminism.The reconstructed shape, albeit near

perfect in the metric considered, is still far from the desired solution.

refracted light paths using a fixed refractive index as well as a recon-
struction using the Hausdorff metric between the point sets of ground
truth and estimated intersection. This can be thought of as roughly
equivalent to the irradiance-based metric in Sec. 3.2, when each light
path transports the same amount of energy. The result is obtained
by optimizing the height of the refracting shape with the (biased)
gradients of SfC [KBC∗21] and with the Adam optimizer [KB15]
of PyTorch [PGM∗19]. The initial guess was set to a flat surface.
When comparing the intersection distributions it becomes clear that
for this intersection plane the estimation has reached near perfect
parity, even with only very minor and local shape changes. Note
that this problem would also persist when using unbiased gradients,
which is in contrast to other recent work [LZBD21], which reported
convergence to better minima when using unbiased estimators. This
is because even the biased estimator finds a local minimum that is
close to a true global minimum in the given loss function; i.e. , the
main problem lies in the ambiguity of the loss landscape due to lack
of sufficient data, not in the quality of the gradients. Even though the
problem is exacerbated by the regular and fixed sampling scheme
employed in this example, the principle also holds when randomly
sampling new light paths in each step. Gradient-based schemes
can only rely on very localized information to locally adapt the
refractive surface patch responsible for the , like distance between
corresponding intersection points here or discrepancy between over-
lapping radiance patches during photon mapping in the full problem
considered in this paper. Thus every optimization progress, with
stable convergence, would converge to a surface, which is globally
much closer to the initial flat guess, because there is no indication
in any loss that operates on caustics, that rays have ’crossed over
each other’ as seen in the elevated focal point in the top of Fig. 2,
invalidating such solutions. Classical approaches to deal with this
problem are to include more data about the true light paths into
the problem. This could be achieved by obtaining the intersection
points (or equivalently caustic images) at different depths, coding
the light paths spatially by projecting different colors [WRHR11],
or temporally by projecting varying patterns [MK05], and capturing
multiple frames. However, as we do not wish to slow down the
underlying production process, for the rest of the paper, we consider
the case where only a single image under a given light source can
be obtained.
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Figure 3: Our processing pipeline includes differentiable building blocks and trained components. Height, Scene and Target Caustic

are inputs into the method and the updated Height is the final output. 1-5 display representative outputs of each step. 1 and 5 are scalar

valued and 2-4 are vector valued images with nw channels. This case displays the L2-norm over the channel dimension.

Given those constraints, the modelling has to include a prior on
the solution space to disambiguate solutions. The prior can be hand-
crafted [KBC∗21], or learned from data. We opt for the latter as
the generating process we consider (LGD) constrains the feature
size and makes very small rapidly changing structures like in the
reconstruction of Fig. 2 impossible. Furthermore, the integration into
such a manufacturing process allows continuous improvement of
the prior by adding newly manufactured and measured samples into
the dataset, making it an ideal candidate for continuous learning.

3.2. Pipeline Overview

Fig. 3 shows an overview of the processing steps of the proposed
method. Starting from an initial guess of the refractor heightfield and
other non-differentiable scene parameters, we compute the caustic
with a differentiable rendering module [KBC∗21] and pass the re-
sult through a learned denoising module. This caustic image is then
compared to the desired target caustic. After backpropagating the
gradient to the initial heightfield through the differentiable renderer,
this gradient is passed into an update module along with the initial
guess, the denoised caustic image, and the target caustic image, to
compute the final adjustment of the heightfield. The whole process
is then potentially looped until a pre-defined convergence criterion
is met. To be more specific, our non-differentiable scene parameters
define the rest of the scene setup, which interact with the light paths.
Summarizing these parameters as a vector θ ∈ R

nθ , we define our
rendering function as R : Rn×n ×R

nθ → R
nw×m×m
+ , where n× n

and m×m indicate the pixel resolution of the height map and the
caustic image respectively, and nw denotes the number of wave-
lengths in the simulation. Its output is the wavelength-dependent
irradiance E at the sensor plane. Note that, unlike many other image
processing tasks, we cannot impose an a priori upper limit on this
quantity, since it is largely dependent on the intensity of the light
source and focus due to the estimated geometry. Consequently, all
subsequent steps need to handle these full dynamic range images.
The first of these is the denoising network D, which is an end-

ofunction, D : Rnw×m×m
+ → R

nw×m×m
+ . The intuition behind this

component in the context of inverse problems is that usually com-
puting and memory budget is limited when trying to design a fast
feedback algorithm. This directly leads to limiting the number of
samples nl in image and gradient computation. However, the target
caustic is of a different distribution, because it is either obtained by

direct measurement or is a high quality simulation that is largely
devoid of noise. Recent work [ZGB21] suggests that unbiased noise
in gradient descent optimization is not the limiting factor, when com-
bined with appropriate optimizers, but note that in this case we have
additional bias in the simulation, due to using a photon mapping
variant [FSES14]. Thus, we make an effort to transform the esti-
mated caustic image into the same distribution as the target caustics
under consideration with the denoising component. An important
observation is that the adjoint of the denoising operator degrades
the gradient signal coming from the loss function and subsequent
update steps. Therefore, we exclude the denoiser from the backward
pass and replace it with an identity function.

4. Network Architecture

Subsequent processing of caustic images is dependent on two neural-
network components, which belong to the same architectural family
(see our supplemental). Both networks share a structure similar to
UNet [RFB15] as the main component, and differ in a few blocks
with respect to the input and output. The denoiser includes a single
Conv + nonlin block, which expands the number of channels
to cinit ∈ [1,32] channels for the UNet part of the network. An
equivalent block contracts those channels after the UNet part of the
denoising network.

The update network directly starts with the first block of the UNet
part of the network, albeit with a fixed number of channels and a
different small output network that potentially contracts the chan-
nels over multiple steps and integrates information over a larger
receptive field. The general update scheme is motivated by the
success of learned gradient descent methods [ADG∗16, FBD∗19]
in solving ill-posed parameter estimation problems. The main
idea is to replace the classical gradient-based local update rule
xi+1 = S(xi −αi∇xi), with αi > 0 being the step size for step i

and S being projection operators and further heuristics arising
in constrained optimization [KBC∗21] with a fully learned up-
date rule: xi+1 = xi −U(xi,∇xi). This has the advantage that the
update network can learn an appropriate prior distribution, thus
avoiding unwanted local minima and taking larger adaptive steps.
In our specific case the updater is conditioned on the current
heightfield as well as its computed gradient and the simulated
as well as the target caustic image, scaled to the same spatial
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resolution (m = n). Independent processing of the channels as
in the denoiser is not applied here, since these channels are mu-
tually dependent of each other. Thus, we define the updater as:
U : Rn×n ×R

n×n ×R
nw×m×m ×R

nw×m×m → R
n×n.

Overall we consider a family of networks for both the denoising
and the update parts, which are parameterized via the hyperparame-
ters provided in our supplemental. At training time we search for the
best network architecture over the parameter space defined therein.
We additionally provide PyTorch Lightning [Fe19] code, which
includes all implementation details of our models.

The loss function we employ in Fig. 3 is the mean squared error
of irradiances and total variation of the estimated heightfield, so the
full objective function is

L(h, Ê) =
1

nwm2

nwm2

∑
i=0

(D(R(h,θ))− Ê)2
i +λTV

n2

∑
i=0

‖∇hi‖
2
2, (1)

where h is the heightfield θ non-differentiable scene parameters, Ê

the given irradiance of the target caustic image and λTV the weight-
ing term for the heightfield regularization. Note that in contrast to
our evaluation of the resulting height field error, we do not use a
relative error here, since the normalization by the L2 norm of the
ground truth caustic is nothing more than a fixed scaling of the first
part of the loss and does not change the optimization, aside from
having to re-balance both loss terms by adapting λTV .

4.1. Datasets

We provide two synthetic datasets in addition to the test dataset:
the denoising and the updater datasets. They both are rendered
by drawing samples from distributions carefully chosen to closely
match the real data distribution, by considering the LGD printing
process and the achievable fiber diameters. Instead of real fiber
networks, which engineers might design, we sample a large number
of height fields to cover a wide range of possible – albeit mostly
nonsensical designs – to further accurately simulate the effect of
printing a fiber on top of pre-existing ones, which might be the
case, when correcting for a printing mistake in a previous layer.
Consistently, the physical values for the non-differentiable scene
parameters were selected to match usual process values with current
technology. All details for the generation of the datasets as well as
explored ranges are provided in our supplemental.

For the denoising dataset we draw 50000 samples from the
heightfield distribution and render 2 caustic images with different
quality levels: one with nl = 106 light samples and one with nl

= 1.6 · 107 light samples. The first four entries of the dataset are
shown in Fig. 4. It is clearly visible that the filament lines create
complex caustic patterns when crossing over each other, giving the
denoising network many image patches to learn representative and
varied caustic patterns.

For the updater dataset we sample two heightfields from two
distributions. One is used to represent the initial heightfield in the
updater network, and the other (an offset of the current estimate) is
used as the target heightfield of the updater. We then render caustic
images for the current estimated heightfield and the target heightfield
and use the previously trained denoiser to produce respective caustic

Figure 4: Denoising dataset: we generate training data for our

denoiser by sampling random ground-truth heightfields from line

distribution (top), which are then used to render low quality (middle)

and high quality (bottom) caustics images. During training, we use

the low quality renderings as network inputs and the high quality

versions for supervision.

Figure 5: Updater dataset: similar to our denoising dataset, we

sample pairs of source and target heightfields to train our updater.

images. We further compute the MSE loss between the two to gen-
erate the gradient with respect to the currently estimated heightfield.
The current heightfield and its caustic, the target heightfield and its
caustic and the heightfield gradient are then saved for this dataset.
We generated 100000 samples using this procedure, from which the
first four can be seen in Fig. 5.

Lastly, we provide a test dataset with 10 samples. One with
hand-picked lines in the same distribution as the training data , but
not present in any training data set. This sample serves as direct
comparison with SfC [KBC∗21], where it acted as the main test
sample. Our test set also includes six further samples with varying
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Figure 6: Test set: we evaluate our framework on a dedicated test

set containing 10 heightfields of varying complexity.

complexity, i.e. with 5 to 30 random lines from the same distribution
as the training data, but not present in any training data set. Finally,
we include 3 creative commons gray-scale images converted into
heightfields and scaled to the same value range as the training data as
out-of distribution samples. The samples and resulting high-quality
(1.6 ·107 light paths) caustic images are shown in Fig. 6.

4.2. Evaluation and Metrics

We compare our method against SfC [KBC∗21] and (HC-
CCD) [STTP14]. All reconstructions are initialized with a con-
stant heightfield of d = 3mm. When comparing the accuracy of
different reconstructions, we report the relative heightfield L2 error:

Lrel(h, ĥ) =
‖h−ĥ‖2

‖ĥ‖2
, where h is the reconstruction result and ĥ is

the ground-truth heightfield. We chose this metric because it is in-
dependent of the absolute height of the ground-truth samples and
thus allows for a fair comparison of different methods. Furthermore,
we chose to not report perceptual metrics like SSIM [WBSS04], or
PSNR because they are not suited for comparing heightfields in the
context of production feedback.

As far as parameters are concerned, N-SfC is parameter-free
at test-time, whereas SfC depends on several hyperparameters,
namely αp, τp and γ for the variant with extended thresholded
nonlinear Landweber scheme and volume heuristic (called M2V1
in [KBC∗21]). Analogous to the network parameter search we op-
timize these parameters on the first test sample and leave them
constant for the remaining samples. We do the same for the recon-
struction parameters for HCCCD.

With respect to evaluating our method for iterated application,
the reconstruction quality depends on the number of update steps
and thus the choice of the stopping criterion. We compare four
choices for the stopping criterion of SfC and N-SfC, while for
HCCCD only the fully converged solution is available: Lrel after one
update step (iter. 1), for cases, where the reconstruction is severely
time-constrained; Lrel after 10 update steps (iter. 10), for a balance
between reconstruction quality and time. Lrel after full convergence
of the optimization (conv.); i.e. when time is no constraint. Lrel after
full convergence of the system, but reported at the time, when the

optimization has reached the minimal caustic image error, wrt. the
MSE (crit.). The names in brackets refer to the abbreviation used
in Tabs. 1 and 2. The last criterion (crit.) is of particular interest,
because it highlights the difference between caustic design methods,
such as HCCCD and surface reconstruction methods as well as the
feasibility of using the caustic image as a sole supervision signal.

4.3. Results and Comparisons

We present renderings of reconstruction results in Fig. 7, where we
increased the distance between screen and substrate for better visi-
bility. A full overview of numerical errors on the test dataset is given
in Tab. 1. From those results it is clear that SfC [KBC∗21] fails to
converge to a good reconstruction and is outperformed by N-SfC
under all considered criteria, only managing to slightly improve
upon the initial guess after with the iter.1 and crit. criteria. We hy-
pothesize that this is due to reduced smoothing of and subsequently
sharper and higher-dynamic range caustic images of our setup, when
compared to the original SfC paper. In contrast N-SfC can smoothly
decrease the shape error by repeated execution of update steps as
further illustrated in Fig. 8, which shows the convergence averages
and standard deviations of Lrel over 50 iterations. Despite not being
trained in a recurrent manner, the updater seems to have learned
a good representation of gradient descent dynamics, since for the
more complex samples the error continues to decrease as displayed
in the conv. and crit. columns in Tab. 1. However, this comes at the
cost of significantly increased runtime and lower performance in for
simpler samples, such that those criteria can not be recommended
for practical use. With respect to HCCCD [STTP14] we can see
that it generally outperforms SfC in most cases, the exception being
SfC after 1 iteration in Lrel metric. However, on average and in
most samples it is still outperformed by our full N-SfC method.
Lastly we wish to address runtimes of our method compared to
SfC and HCCCD. This is not a trivial comparison, since the former
failed to converge on our test cases and the latter is only present
as a CPU implementation. However, the authors of SfC reported
note a runtime of 2.95 min for 72 iterations on a heightfield, which
is structurally very similar to our first test set sample, albeit with
different scene parameters, such as increased smoothing. All sam-
ples, when reconstructed with HCCCD took more than 15 minutes
with several hundred iterations each, which would not benefit much

Table 1: Comparisons on the relative heightfield reconstruc-

tion errors of our method with several stopping criteria against

SfC [KBC∗21] and HCCCD [STTP14], according to Lrel. Green

highlights absolute per-row minima, while red highlights errors,

which exceed the the error of the initial (flat heightfield) guess.

Test

Img.

Initial

Error
HCCCD

SfC N-SfC
iter. 1 iter. 10 conv. crit. iter. 1 iter. 10 conv. crit.

1 0.1954 0.1549 0.1918 0.4273 0.4271 0.1917 0.1652 0.1104 0.1448 0.1447
2 0.1102 0.0890 0.0991 0.4844 0.4869 0.0991 0.1003 0.1118 0.1536 0.1344
3 0.1477 0.1244 0.1333 0.4599 0.4604 0.1333 0.1225 0.1182 0.1592 0.1589
4 0.1538 0.1280 0.1379 0.4195 0.4201 0.1379 0.1285 0.1260 0.1710 0.1710
5 0.2770 0.2588 0.2613 0.4055 0.4068 0.2613 0.2419 0.1477 0.1576 0.1609
6 0.3061 0.2835 0.2887 0.3835 0.3855 0.2887 0.2640 0.1497 0.1660 0.1510
7 0.3984 0.3845 0.3832 0.3955 0.3939 0.3832 0.3578 0.2103 0.1870 0.3578
8 0.2346 0.2269 0.2133 0.3467 0.3455 0.2133 0.2143 0.1281 0.1104 0.1151
9 0.2823 0.2791 0.2700 0.2955 0.2940 0.2700 0.2701 0.1972 0.1711 0.1711
10 0.2372 0.2219 0.2081 0.3697 0.3680 0.2081 0.2109 0.1278 0.1304 0.1302
Avg. 0.2343 0.2151 0.2187 0.3989 0.3988 0.2187 0.2076 0.1427 0.1551 0.1695
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Figure 7: Qualitative Reconstruction results. Please note, that

while SfC may at times seem to more faithful caustics, the main

point of comparison is the height field, as this is the design variable,

which is supposed to be measured in a production environment

(Sec. 3).

from GPU acceleration due to its sequential nature. We however
created all of our reconstructions in only one to ten iterations with
an average iteration time of 1.6 sec per iteration, which is an im-
provement factor of 11 to 111 in speed compared to SfC and a factor
of 56 to 560 compared to HCCCD for the iter. 1 and iter. 10 criteria.
This advantage diminishes for the conv. and crit. criteria, since the
runtime is dominated by the up to thousands of iterations required
for full caustic image convergence.

4.4. Ablation Study

In the following, we ablate parts of our processing to illustrate the
influence of single components. We trained a variant of our best
performing updater network with the direct output from our render
module, leaving out the denoiser. We denote this variant as N-SfC

w/o den. in Tab. 2. While, at first glance, leaving out denoising does
not significantly impair the reconstruction, and even outperforms
our full model on a quantitative basis in the best performing iter. 10

Table 2: Ablations on the relative heightfield reconstruction errors

of our method with several stopping criteria, according to Lrel.

Green highlights improvement over and red highlights decreases

over the full method with the same stopping criterion as Tab. 1.

Test

Img.
N-SfC w/o den. N-SfC w/o grad.

iter. 1 iter. 10 conv. crit. iter. 1 iter. 10 conv. crit.
1 0.1618 0.0696 0.2021 0.0833 0.1633 0.1154 0.1456 0.1456
2 0.1025 0.0904 0.0921 0.0923 0.0996 0.1213 0.1559 0.1558
3 0.1229 0.0874 0.0989 0.0989 0.1211 0.1262 0.1611 0.1611
4 0.1318 0.1078 0.2811 0.1328 0.1266 0.1315 0.1706 0.1709
5 0.2407 0.1303 0.2510 0.1663 0.2400 0.1495 0.1576 0.1668
6 0.2612 0.1382 0.2682 0.1487 0.2618 0.1505 0.1630 0.1575
7 0.3545 0.1917 0.2344 0.3545 0.3558 0.2101 0.1892 0.3558
8 0.2198 0.1527 0.1622 0.1342 0.2121 0.1241 0.1095 0.1130
9 0.2781 0.2586 0.2448 0.2448 0.2679 0.1888 0.1696 0.1696
10 0.2144 0.1191 0.2570 0.1114 0.2087 0.1272 0.1305 0.1304
Avg. 0.2088 0.1346 0.2092 0.1567 0.2057 0.1445 0.1553 0.1727

criterion, we find that this model converges slower with a higher
overall error and variance, as evident by the errors conv. criterion
and Fig. 8. In contrast, using our denoiser allows for faster, smoother
and more robust convergence over the entire test set under more
convergence criteria settings.

Another ablation we performed is training an updater without
the guidance of our differentiable renderer to assess the impact of
local gradient information on the final update steps predictions. We
denote this variant as N-SfC w/o grad. The quantitative evaluation
in Tab. 2 yields that withholding this information leads to less accu-
rate reconstructions in the majority of test samples with the notable
exception of the iter. 1 criterion, however, the increase in error is
not major and in some cases even leads to better results.

From the above experiments we observe the following: Firstly,
our method can be trained and executed without the presence of a
differentiable renderer, only the forward caustic image simulation is
strictly necessary. Secondly, to get the best possible reconstruction
results, gradients from a differentiable renderer help in most cases,
though they only contribute very local information (see Sec. 3.1).
Thirdly, using a dedicated denoiser in the loop increases robustness
by decreasing the convergence variance caused by noise in Monte
Carlo simulation. Lastly, training the learned gradient descent
updater in a recurrent manner is not necessary for a well-behaved
and converging updater, which finds better global minima than
purely local gradient-based search.

Figure 8: Mean Convergence plot of Lrel and standard deviation

for iterated application of model variants over the test set.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

39



M. Kassubeck et al. / N-SfC: Robust and Fast Shape Estimation from Caustic Images

4.5. Real-World

We further performed an experiment to validate our method on a
real-world glass sample in a prototypical setup. The capture system
is composed of simple torch as light source as well as a Fresnel
lens to collimate the beam, the sample and finally the camera as
depicted in Fig. 9 (top left). Since this setup is sensitive to slight
misalignments we employ an optical diffusor (a sheet of paper)
after the test specimen to isolate the caustic from the background.
The resulting caustic measurement is shown in Fig. 9 (bottom left)
and depicts a branching glass fiber of about 2.75 mm width and
0.85 mm height over the base substrate of 6 mm thickness. A macro
photograph of the glass surface itself is depicted on Fig. 9 (top right),
where a small fiber branching off is better visible. As can be seen in
Fig. 9 (bottom right), the main fiber structure is evident, however
the secondary branch is not fully formed, likely due to the reduced
signal in the caustic image from flatness deviations in the optical
diffusor. The reconstructed fiber width of 2.83 mm of the main
fiber closely matches the true fiber width, however, the maximal
fiber height is overestimated with a center height of 1.5 to 2.55 mm,
which is likely due to the sample having a base substrate thickness
that is double those in our training set. We estimate that this can
be overcome by training our model on a dataset of thicker base
substrates. Despite the challenges this out-of-distribution sample
poses, it demonstrates that our method is a good indicator for such
feedback applications as detecting a malfunctioning fiber feeder.

5. Discussion and Limitations

The above experiments show that our method outperforms the cur-
rent state-of-the art by a significant margin. At the same time, our
current implementation and datasets make several assumptions on
the concrete area of application, thus implying some implicit limi-
tations. As previously mentioned, our fully trained model is com-
pletely free of any additional parameters, which avoids the need
for manual hyperparameter tuning, including the choice of step
sizes. However the applied training data and learning process are
adjusted towards the physical scene configuration (such as the light
and screen positions) of our in-situ manufacturing setup. Generating
more diverse training data and providing the networks with explicit
knowledge about certain scene parameters could help to further
improve the generalizability of our model.

In the ablation study, we found that passing the gradient from a
differentiable rendering module only marginally improves recon-
struction quality, which is in line with the literature (see the work of
Morris & Kutulakos [MK05] and Fig. 2), stating that local informa-
tion can be counterproductive for settings like ours. The denoiser
however was a critical part of reducing variance in the reconstruction
error and thus improving robustness of the model.

Lastly, our reconstructions usually reach minimal shape error
before converging to a solution with slightly higher overall error as
depicted in Fig. 8, but these points strongly depends on the currently
considered sample. Thus another supervision mechanism, which
limits the number of steps to achieve the best trade-off between
reconstruction quality and number of necessary steps would be
desirable in the context of time-limited feedback for production
loops.

Figure 9: Real-World setup, macro photo of sample area, captured

caustic image, and resulting reconstructed heightfield.

6. Conclusion

We presented Neural-Shape from Caustics (N-SfC), a fast and flexi-
ble method for reconstructing the shape of translucent objects from a
single caustic image. We combine recent work on differentiable light
transport simulation with our novel neural denoising components
and learned gradient descent optimizer to significantly improve both
the stability and quality of the iterative reconstruction process. Our
quantitative and qualitative analysis showed that our neural approach
outperforms current state-of-the-art approaches in terms of final
reconstruction error and compute requirements. Furthermore, we
found that our learned gradient-based update scheme enables better
generalization and overall flexibility, making the approach adaptable
to practical applications such as integrated quality feedback control
for glass manufacturing processes.
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