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1. Network Training Settings

We use the PyTorch framework (v1.9) for our implementation. The
ResNet-50 [HZRS16] backbone we used is pre-trained on the In-
terHand2.6M dataset using the weights from [MYW?*20]. This en-
sures that the feature vector to the subsequent normalizing flow net-
work contains relevant features for 3D hand pose estimation when
starting to train the complete HandFlowNet.

For the optimization algorithm, we used AdamW, a version
of Adam [KB14] with Decoupled Weight Decay Regulariza-
tion [LH19]. Default parameters were used except for a learning
rate of 10 * and a weight decay of 1074,

For loss weights, we used Ajoinsp = 10%, Aointp = 1071,

—_ 103 _ -3 _ -3 _

XDetMag = 107", Aparam = 1.25 < 1077, AL = 1077, xRotReg =
107"

2. MultiHands Dataset

In this section, we provide additional details of the algorithm we
used to generate plausible annotations for our MultiHands dataset
(See Algorithm 1 for overview.).

Overall, our method perturb the ground truth pose and check for
the four plausibility criteria to generate new annotation. However,
doing so naively (e.g. adding Gaussian noise to the pose space)
would result mostly in samples that does not fit the plausibility cri-
teria. Our method use several heuristics to speed up the discovery
of plausible poses, which are explained in the following sections.

2.1. Translation Sampling:

We start by sampling the translation perturbations to the initial
ground truth provided in InterHands2.6M. The goal is to constrain
the range of plausible translation samples so that visible joints are
image consistent, and resulting pose is collision free.

For this, we used binary search to find the image consistent
range of each hand; the range of depth offsets that limits 2D po-
sition change under 3.5 pixels for visible joints.
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We then calculate the collision free range; the range of valid
left hand depth translations that avoid collision with the right hand.
Collision is detected using sphere proxies obtained from the vol-
umetric Gaussian approximation of the MANO model [MDB™ 19,
WMB™*20].

Given these ranges, we obtain the final translation change by first
sampling a global depth offset from the overlapping image consis-
tent ranges of both hands. The left hand is then offset from the right
by sampling from the overlap between the collision free range and
image consistent range of the let hand.

2.2. Articulation Sampling:

To find a plausible articulation, we observe that only occluded
joints can change its position and the resulting position must also
project on to an occluded pixel. Thus we iteratively select oc-
cluded joints and propose new occluded positions to cut down on
the search space. As articulations are propagated down a kinematic
chain, all joints on the same finger are considered together.

Select_finger(y;): For each iterations, we first select a finger to
perturb for the pose ;. A finger can be selected if there exist an
occluded joint whose child joints are all occluded.

For the selected finger, its joint locations {Pj3D } are updated from
the base to the tip starting with the first occluded joint.

Sample _joint(PfD): Given the current joint location, we want to
find a new 3D position that both preserves the bone length and re-
sults in occlusion. To maintain the bone length, we define points
on a 3D sphere centered at the parent joint with radius equal to the
bone length as bone length consistent points.

We then try to eliminate points that would allow the joint to
become visible. This is done by first projecting the sphere on to
the image plane to obtain a set of pixels that lie within the projec-
tion, and then checking the occlusion status of each pixel based on
a depth rendering. The occluded pixels locations are unprojected
to form rays, and the intersections between the pixel rays and the
sphere becomes the preliminary joint proposals Q3D.
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Update_pose(\y}, 0°P): For each preliminary joint proposal, the
rotation needed to transform the current joint from the original po-
sition to the proposed location is calculated. This rotation update is
used to update the current pose parameter ..

Update_child({P*P},y/): The remaining finger joints {Pj3D } are
updated using the pose parameter \y,{ .

is_plausible(y): After all child joints in a finger has been updated,
we need to ensure the current pose parameter , is anatomically
plausible. This is done by converting the pose rotation parameters
to the MANO pose PCA parameters. This allows us to estimate the
pose likelihood under Gaussian assumptions. Hand proposals with
low log likelihood (less than -60) are rejected.

To generate a single accepted new plausible annotation, we run
pose perturbation for 100 iterations. For MultiHands, 100 new
plausible annotations were obtained per image.

Algorithm 1: Pseudocode for sampling additional annota-
tions

Data: Initial MANO Pose g

Result: Additional annotations ;

// Ensure: sampled < {tygn,ties}

// 1. APPP(wi(1) < T
// 2. —collision(y;(t))

t + sample_translation(yo);

V; < update_translation(yy,?);

for N iterations do

// Get finger with occluded joints:
// VPP e {P°P}

// child(P_fD) are occluded
{P3P} « select_finger(\;);

Vi < Vi

for P;” in {P"} do

// Ensure: sampled Q3D

// 1. bone(Q*") = bone(Pj-3D)
// 2. 0°P is occluded

0P « sample _joint(PfD);

v = update_pose(y;,0°");

{P3P} = update_child({P°°},y});

end

// likelihood from pose PCA
if is_plausible(\s!) then

| iy
end

end

3. Evaluation Metrics

In this section, we provide additional details of the metrics used to
evaluate our method.

3.1. Pose Alignments

Considering =g (y) as the 3D joint positions calculated from
our estimated hand parameters y, the Global MPJPE (Global)
metric is defined as

(A
MPIPEGIobat = ; ). 1577 = B”[2. (1)
i=1

where N is the total number of annotated joints and P3P are the
ground-truth 3D joint positions. Note that this metric is computed
without any alignment.

If we consider a right root alignment, the joints of both hands
are aligned to the right hand root joint before computing the error.
Let

3D 3D 3D
Ri (Pl ) =F" - Pright_root ’ 2

be the function that calculates the joint position relative to the right
hand root. Then the Right-Root-Relative MPJPE (RRR) metric
is defined by

1Y .
MPIPEReg = ) [[Re(B”) = Re (B2 3)
i=1

We also evaluate the error for each hand individually. For this,
we represent the joint position relative to the corresponding hand
root joint by

R(P) = PP —root(F"), )

where root(-) is a function the returns the right/left root joint posi-
tion if P?D belongs to the right/left hand. Then, the Root-Relative
MPJPE (RR) is defined by:

1 ¥ 5
MPIPERR = 3 " [[R(E”) = R(P”)] 2. (5)
i=1

3.2. Maximum Mean Discrepancy (MMD)

Given the set of all joint position of predicted pose samples
P3P = {PfD },, and the set of ground truth joint positions
p3D _ {P; D ., we can estimate the Maximum Mean Discrep-

ancy (MMD) with kernel k with:
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We used a Gaussian kernel for k and averaged the MMD across
[1-100mm] distance range sampled at 1mm intervals.

MMDIZQR and MMDIZQRR, are similarly defined with R(P?D ),
R(BP) or with Re(PPL), Re(P?P) respectively.
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Method Global] RRR| RR]
Ours 22.8 21.0 16.1
Ours (Mode) 514 30.7 18.2
InterNet [MYW*20] 83.3 29.1 19.4
Fan et al. [FSK*21] 81.7 32.1 17.2
InterShape* [ZWD*21] - 33.7 18.7

Table 1: Our method produces samples that are on-par or better
than the state-of-the-art methods. All results are in mm.

4. Experiment Results: Baseline Details

For implementing the baselines, we reuse existing HandFlowNet
components as much as possible to ensure fair comparison in terms
of network capacity. When using the normalizing flow network as
a feed forward network in the baseline, we set z = 0.

To implement MC-dropout, we use the existing dropout layers
(with dropout probability of 0.5) in normalizing flow network dur-
ing inference time to obtain samples. For the Gaussian baseline,
we model the pose distribution as Gaussian aleatoric uncertainty
N (u,X) inspired by Kendall ef al. [KG17]. The normalizing flow
network is trained to estimate ¢ and ¥ directly from the extracted
image feature v. To implement the VAE baseline, we added a fully
connected layer to the image feature extractor to act as the encoder
for the image. The normalizing flow network then acts as the de-
coder to recover the hand pose. We empirically found that latent
code size of 256 and KL divergence weight of 4 x 10~* works best
as hyper-parameters.

For the MC-dropout and VAE baselines, Ly and Lpegvag can
not be used in their formulation and is thus omitted. Otherwise, all
loss terms were used during training.

5. Experiment Results: Single Annotation

In sec.5.1.1, we shown that the commonly used MPJPE on a single
annotation is not suitable for capturing the uncertainty present in
the highly ambiguous task of monocular two-hands reconstruction.
However, we still provide this comparison to the current state-of-
the-art two-hand pose estimation methods for reference.

We compare our method to current : InterNet [MYW*20], In-
terShape [ZWD*21], and Fan et al [FSK*21]. Notice that Inter-
Net and Fan et al. both require an additional network to explicitly
estimate the global hand position, and InterShape only estimates
relative hand position. In contrast, we directly output global hand
position. Additionally, InterShape requires the ground-truth bone
lengths to scale their results while our method does not.

Evaluation of Samples. Table 1 show the comparison on Inter-
Hand2.6M using MPJPE in mm. To evaluate whether our predicted
distribution well captures the ground truth, we follow the estab-
lished convention [YK18, WRRW21] to sample 100 poses and re-
port the values of the best sample according to each metric.

We additionally report the metrics on just the mode sample to
provide a baseline of our method as a traditional deterministic pose
estimator. We see that our HandFlowNet produce samples that are
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is significantly closer to the ground truth, while still being compet-
itive even as a single pose estimator. As such, our method better
captures the recoverable 3D information from the input.

6. Details on the Tzionas Dataset

The Tzionas dataset [TBS*16] has 1,307 RGB images across 7
sequences captured from a single view. Of these images, 264 has
2D joint annotations. For each hand, 14 joints annotation were
given (with no annotations on the 5 fingertips, the wrist, or the
carpometacarpal (CMC) joint of the thumb). The provided anno-
tations only exist for joints that are visible. Thus we can apply our
2D visible joint loss even without MANO annotations.

7. More Results

In Figure 1, we show more renderings of our individual samples.
In Figure 2, we use the skeleton visualization to show the spread of
the predicted distribution. In Figure 3, we show annotations from
our MultiHands dataset.
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Figure 1: We show more individual mesh samples from the camera view and from a novel view. Note that not all joints are annotated in the
ground truth. This shows up as missing segments in the skeleton.
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Camera View Side View Input Camera View Side View

Figure 2: We show 30 samples from the estimated distribution, rendered as semi-transparent skeletons, superimposed on a single image.
These Samples are aligned to the root joint of one hand and the mode of the distribution is made opaque for ease of visualization. Here we
show more results from both the InterHand2.6M [MYW*20] and the Tzionas [TBS* 16] datasets.
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Figure 3: More visualizations of the our MultiHands dataset. Note the diversity of 3D poses that can be seen in the novel view.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



