Vision, Modeling, and Visualization (2022)
J. Bender, M. Botsch, and D. Keim (Eds.)

Visualizing Optimizers using Chebyshev Proxies and Fatou Sets

R. Winchenbach!

and N. Thuerey1

ITU Munich, Germany

Figure 1: Images visualizing the different convergence behaviors of Newton’s method (leftmost), Halley’s method (center-left), Newton’s
method as an optimizer (center-right) and Adam (rightmost) with point of convergence color coded based on polar angle. Note that in this
case the Hessian matrix is not always positive definite so Newton’s method as an optimizer yields maxima for most points in the complex
domain. Using our toolkit it is possible to visualize the differences in convergence for different optimization approaches for polynomials of
very high degrees and can be used as a tool to better visualize how these methods behave for different functions and hyperparameters.

Abstract

With recent advances in optimization many different optimization approaches have been proposed, especially regarding the
optimization of weights for neural networks. However, comparing these approaches in a visually succinct and intuitive manner
is difficult to do, especially without relying on simplified toy examples that may not be representative. In this paper, we present
a visualization toolkit using a modified variant of Fatou sets of functions in the complex domain to directly visualize the conver-
gence behavior of an optimizer across a large range of input values. Furthermore, we propose an approach of generating test
functions based on polynomial Chebyshev proxies, with polynomial degrees up to 11217, and a modification of these proxies
to yield functions that are strictly positive with known global minima, i.e., roots. Our proposed toolkit is provided as a cross
platform open source framework in C++ using OpenMP for parallelization. Finally, for menomorphic functions the process
generates visually interesting fractals, which might also be interesting from an artistic standpoint.

CCS Concepts

* Mathematics of computing — Computations on polynomials; * Human-centered computing — Scientific visualization;

1. Introduction

Optimization approaches have long been an important aspect in
many fields of research, including root finding and in finding local
and global minima of functions. With the rise of machine learn-
ing and neural networks there has been a growing interest in the
optimization of parameters, especially for high dimensional prob-
lems that commonly occur during the training of neural networks.
However, these large scale problems often make it difficult to visu-
alize how different optimization approaches differ regarding con-
vergence, except by choosing toy examples that only show the op-

© 2022 The Author(s)

Eurographics Proceedings © 2022 The Eurographics Association.

This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/vmv.20221206

timization trajectory for single initial guesses for a simple func-
tion that can readily be chosen to impose a bias on the evaluation
and these are generally not standardized across methods. Further-
more, mathematical derivations regarding the convergence behav-
ior of different optimizers are very useful and important, but they
do not provide an intuitive and comparable understanding of the
convergence behavior to non experts. This problem is only exacer-
bated when different hyperparameters of an optimization approach
can significantly change the convergence behavior in a variety of
manners that are important to visualize.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0003-2446-9412
https://orcid.org/0000-0001-6647-890
https://doi.org/10.2312/vmv.20221206

76 R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets

In this paper, we now propose a visualization toolkit that can di-
rectly visualize the convergence behavior of a variety of optimiza-
tion approaches by generating a visual representation of the basins
of convergence using a Fatou set like approach. In this regard, we
propose an approach of generating arbitrarily difficult test functions
by approximating a real valued scalar function using Chebyshev
proxy functions, using polynomials of up to degree 11217, and ex-
panding this proxy function to a complex valued domain. This ex-
tension provides a holomorphic basis for our evaluations, where we
then provide a brief derivation of the Jacobian and Hessian matri-
ces of the Chebyshev proxy using a modified variant of Clenshaw’s
algorithm. Using these analytical derivatives, we can then evaluate
root searching methods directly in the complex plane, whereas for
optimization approaches we propose a simple modification of the
Chebyshev proxy that ensures the function being positive every-
where, except for at the roots of the proxy function, which serve
as global minima of the function. We then provide open source
framework using C++ and OpenMP for this process and use this
framework to compare a variety of optimization approaches and
hyperparameters.

2. Chebyshev Proxy Functions

In optimization theory many different test functions exist to evalu-
ate the properties of a given optimizer, e.g., the Rosenbrock func-
tion [Ros60], which are often difficult to optimize yet provide ana-
lytic information about any order derivative of the function. How-
ever, for a more intuitive understanding of the optimization process
it would be beneficial to utilize an easily modifiable set of test func-
tions that can be generated on-the-fly based on the requirements of
a specific user. Using such black-box functions directly, however,
is difficult as they generally do not provide explicit information
about the functions’ derivatives and properties and relying on au-
tomatic differentiation or finite difference schemes may not always
be readily possible or numerically sufficient. Within our framework
we utilize such functions indirectly by first approximating them us-
ing so called Chebyshev proxies [Boy13], which are a common tool
in numerical analysis [DHT14].

These proxy functions work under the assumption that in R the
Weierstrass Approximation Theorem [Wei85] guarantees the exis-
tence of an approximating polynomial function fp, with a poly-
nomial degree n, for every C° continuous function f over a com-
pact interval [a,b] C R up to an arbitrarily small error €, i.e.,
Ilf = frllo < € However, using equidistantly placed sampling
points for the construction of such a proxy can yield increasing
errors with increasing degrees, e.g., for Runge’s function [Run01].
Chebyshev interpolation, on the other hand, places sampling points
at the roots of a Chebyshev basis polynomial (the so-called
Chebyshev-Lobato grid), that avoids such artifacts [Boy95]. This
process furthermore guarantees uniform geometric convergence for
analytic functions with an approximation error O (e_"'“) [Ber18],
with n being the polynomial degree and u being a positive scaling
coefficient, whereas non analytic functions tend to converge much
slower [AT17]. The basis of these proxy functions are generally
Chebyshev basis polynomials of second kind 7, [DHT14] of de-
gree n, which are defined through the recursive relation [Boy14]

To(x) = LT1(¥) = 26 D1 () = 2T (x) = L1 (%), (D)

which are utilized to construct a Chebyshev polynomial sequence
p(x) =Yg ciTi(x), where the set of coefficients C = {cy,...,cn}
are called the Chebyshev coefficents. The coefficients C are cal-
culated by sampling f on a Chebyshev-Lobato grid of size n+ 1
and performing a discrete Fourier transform (DFT) of these func-
tion evaluations, which yields a uniquely defined set of Chebyshev
coefficients [BoyO1]. While the Weierstrass Approximation Theo-
rem guarantees the existence of a polynomial with a given approx-
imation error bound, there is no universal approach to find an op-
timal approximating degree. Many different heuristic approaches,
e.g., [CC60; FW66; SS80; Jac90; BT04; MHO02; Boy95; Boy02;
Mav94; AT17], exist to determine an estimated optimal polynomial
degree ne for a given error bound € using alternative error metrics,
such as the round-off plateau behavior of the coefficients of the
polynomial sequence, which we utilize it is also used in the widely
utilized Chebfun library [DHT14]. Consequently, a uniquely deter-
mined proxy function f) exists of degree ne as

g
fp=Y e, with £ fyll, <e. @
i=0

At this point is also important to note that while this approxi-
mation process is explained here for real-valued scalar functions,
it can also be performed for two-dimensional [TT13] and three-
dimensional [HT17] functions, as well as complex-valued func-
tions over the complex-plane [Boy14].

3. Clenshaw’s Algorithm and Derivatives

After approximating a given black-box function according to
Sec. 2, we now need to evaluate the proxy function and the first
and second order derivatives. Additionally, as we are interested in
a complex valued function over the complex-plane, we need to
perform this evaluation using imaginary numbers. As polynomial
functions are holomorphic, we can replace the evaluation of the
proxy function f at the complex coordinates z = x+ iy, withz € C
and x,y € R, with an evaluation of two functions of two real vari-
ables u(x,y) and v(x,y), with fp(z) = u(x,y) + iv(x,y). Evaluating
a Chebyshev polynomial sequence can be done efficiently using
Clenshaw’s Algorithm [Cle55], which evaluates a given Chebyshev
polynomial through the recursive evaluation of

bu(e) = -+ sizbis1(2) ~busale)s 5= {1’ IRNE
2, else.

While this equation can be evaluated directly using z € C, we will
later on require the separate evaluation of u and v, as defined above,
and accordingly splitting Clenshaw’s algorithm to explicitly evalu-
ate the real and imaginary components is useful. The first thing to
consider here is that the coefficients ¢ are only real valued based on
the process described in Sec. 2, as we are only aiming to approxi-
mate the function on the real numbers. Accordingly, the real valued
part by and the complex valued part by can be refactored as

b = ax—bi o + i [xbi 1 —ybi])
by = —bjyr+si [Xbyiy —ybi] . (5)

Note that we left out the (x,y) for brevity as all b terms depend on
x,y equally. Furthermore, we are interested in the derivatives of the
proxy function with respect to the two components x and y, i.e.,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets 77

we want to evaluate 9/oxby,9/dyby,9/oxby, and 9/dyby. As the proxy
function is holomorphic we know that, due to the Cauchy-Riemann
equations, 9/dxb} = 9/ayby, and 9/ayby, = —9/oxb}, finding all required
derivative terms only requires the evaluation of 9/oxby, and 9/ayby.
These terms can be found simply by applying the partial derivative
operator to equation 4 as:

d 0 °) d
b= bt [xaeb + b b

d 4 0 u 90 J .,
gbk =— a*ybk+2+sk {ngkﬂ +b. *ya*ybkﬂ} .

’

(6)

Finally, for the second order derivatives we only need to explicitly
evaluate them for b* as, due to the Cauchy-Riemann equations ap-
plied to the first order derivative, the terms for " are analogous.
This yields us four required derivative terms:

b b, Y -xazbZH +2ab;cl+1 _yazbiﬂ

ox2 ox2 ox2 ox ox2 |’

by b s _x82b,’j+, n b _yazblvm bk
0xdy 0xdy 0xdy dy 0xdy ox |’
i P [P M P W
dyox dyox dydx ox dyox ox |’
I by by, Y -xazbZH _yazbiﬂ 5%k

dy? 0y?] 0y2 0y? ay |’

(M

If we now evaluate the actual proxy function f,(z) as a
complex valued function we can readily find that fp(x,y) =
BA(x,) + b (x,9). 3 fp (x,5) = Yaxbli(x,y) + @fabl(x,y) and
/a2 fp(x,y) = 8/a?bly(x,y) + i0°/ax* b (x,y). However, the func-
tion as constructed thus far is not a well-suited test-case for opti-
mization functions as the function may not have any global minima
as it could easily tend to —oo far from the origin, regardless of how
the initial black-box function that was approximated appeared like.
Instead, we would like to have a function f,(x,y) that has global
minima and, ideally, a set of known global minima. To achieve
this we modify fp in such a way that it is strictly positive every-
where but retains the original roots of fp, i.e., the roots of fp in
the complex plane for z = x - iy are the global minima of f}, in the
two dimensional plane x,y € R. Our modification works by directly
squaring the real and imaginary components of fp, i.e., we define

Fo(x,y) =Re (fp(x,3)) +Im (fp(x,)). ®)

It is important to note that f,(x,y) is not defined over the com-
plex domain as the component-wise operators, Re and Im, are
nowhere complex differentiable. As we previously derived the real
and imaginary components of f;, separately, evaluating the gradient
V= [%, %] and the Hessian matrix H of fj, can be done straight
forwardly using the component wise derivatives. However, there
is no guarantee that the Hessian matrix be positive definite, which
may be difficult to handle with certain optimization approaches,
e.g., Newton’s method when used as an optimizer. Finally, it is im-
portant to note that all the recursions for all derivative terms can be
evaluated in a single iteration over the coefficients, which makes
them computationally relatively inexpensive to evaluate.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

4. Visualization

A Newton fractal in general describes a boundary set in the com-
plex plane that can be utilized to visualize the convergence of New-
ton’s method, or more precisely, the Newton fractal is the Julia set
of a holomorphic function under application of the menomorphic
Newton’s method. Visualizing the Julia set directly is difficult as
the boundary is infinitely thin and, instead, the Fatou set as the
complementary of the Julia set is visualized. While initially only
applied to Newton’s method for root finding, we can readily apply
other root finding, or optimization approaches, in the same man-
ner to any polynomial or transcendental function, where, as dis-
cussed before, we utilize an underlying Chebyshev proxy function
as the basis for the visualization. Such a Fatou set is then the result
of evaluating a rectilinear grid over some domain in the complex
plane, e.g. [—1,1] X [—i,i], based on an iterative evaluation of

Znt1 = 2n — Azp(2n), ©)
where for a Newton fractal Az (zn) = —f(zn)/ afa(—zz"” An analogous
iterative process can be defined over the two dimensional real plane
by treating z as a two dimensional value [, y] instead. This iterative
process then can result in three distinct cases: (i) the iterative pro-
cess converges to a single stable point, i.e., |2,+1 — Zn|oo < €, (ii)
the iterative process diverges, i.e., z,+1 = 00, or fails, i.e., involves
adivision by 0, and (iii) yields an astable iteration that does not con-
verge to a single stable point but continues to move in a repeating
trajectory. In practice, detecting the first and second case is trivial,
whereas detecting the third case is generally not possible as this
would implicitly require solving the halting problem, i.e., a trajec-
tory might not have converged after 108 iterations, but there is no
indication that this trajectory is astable. The only reliable indicator
for an astable case would be if the same exact location was visited
multiple times with the same state of the optimizer, however, due to
the fractal nature of this process, a difference of a single machine
precision number might be enough to yield a different behavior.

Visualizing the resulting rectilinear grid of points then involves
a color mapping process. For points that yielded either case (ii) or
(iii) we utilize a separate color coding that is not included in the
usual colormap, i.e., a pure red value indicates case (ii) and a pure
green value indicates (iii). For all other values we treat the result of
the iterative process as a complex number and use the polar angle of
the complex number as input to a colormap that is periodic, where
we chose the Twilight colormap [Bec].

At this point it is also important to note why the fractal behavior
of the Newton fractals occurs in the first place. However, giving an
in-depth explanation of this process is beyond the scope of this pa-
per and for such an explanation the reader is referred to the report
by Drexler et. al [DSB97], which covers the mathematical details.
In general, an image generated in the process described here is a di-
rect visualization of a Fatou set, which is an aspect of holomorphic
dynamics, and describes the set of all points where a small pertur-
bation of the position leads to the same result, or visually speaking,
the Fatou set is the set of all points in the solid colored regions.
On the other hand, the Julia set is the complementary of the Fa-
tou set and describes the remaining points, i.e., points for which
a small perturbation leads to a different results, or visually speak-
ing, the Julia set is the boundary between solid colored regions.

78 R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets

A Newton fractal now arises from the observation, for a more rig-
orous mathematical argument see [DSB97], that for points in the
Julia set any small perturbation of the position can lead to an ar-
bitrarily large difference as the dynamic process continues. More
specifically, it is possible to demonstrated that these small pertur-
bation for any point in the Julia set can lead to any arbitrary position
in the entire complex plane. Consequently, the neighborhood of a
point in the Julia set necessarily includes points in the Fatou set
corresponding to all possible behaviors, but such a border is neces-
sarily a fractal due to requiring the boundary being adjacent to all
regions at all points along the border. An important aspect in the
emergence of this behavior is the underlying holomorphic dynam-
ics that govern the behavior of a menomorphic process, of which a
Newton iteration is an example, as these arguments do not hold up
for non-holomorphic functions. Specifically, the functions created
as described in Sec. 3, are nowhere complex differentiable so their
behavior cannot be governed by holomorphic dynamics. In sum-
mary then, the fractal appearance, as described here, can only arise
if the underlying function is holomorphic in itself. Regardless, the
same visualization of the Fatou set can still give important infor-
mation about the behavior of the optimizer, even if the Julia set is
not a fractal.

5. Optimization Methods

Before discussing the results it is useful to discuss the various op-
timizers and root finding approaches used in our results and how
they are defined to build a solid foundation for comparisons.

5.1. Newton’s Method

Newton’s method in numerical analysis is a simple root-finding ap-
proach that iteratively improves an initial guess z(of a root through
an iterative process with

f(zn)
f(zn) {10

in+1 =2n —

5.2. Newton’s Method as an Optimizer

A common extension of Newton’s method is to apply it to an opti-
mization problem where the goal is not to find the roots of a given
function but to instead find the minima of a given function. This
then yields the iterative process

X1 = %0 —H (%0) - Vf (xn). (an

For this method it is important to note that H needs to be positive
definite as otherwise the process becomes a maximization instead
of a minimization. However, if an H is well defined, this can be
readily circumvented by first evaluating the Eigenvalues 6; of H
and ensuring that they are all positive valued by adding a diagonal
matrix to H with the diagonal elements set to —minc;.

5.3. Halley’s method

Halley’s method is the second Householder method for root finding,
where Newton’s method is the first Householder method. Halley’s

method works by including the second order derivative of f as part
of the root finding process to yield an iterative process

’

2f(zn)f (zn)

in+1 =23n— > (12)

5.4. Gradient Descent

Gradient descent, also known as Steepest Descent, is a straight for-
ward but widely utilized minimization algorithm that is simply de-
pendant on the gradient of a function and a user defined learning
rate y as

Xp11 = Xn — YV f(Xn). (13)

While using a user-defined value 7y often works, using a line search
algorithm to find a choice for 7y that satisfies the Wolfe conditions
can significantly improve the convergence behavior, albeit at poten-
tially significant computational overhead. An alternative approach
is using the Barzilai-Borwein method to determine 7y as

<Xﬂ _anlavf(xn) - Vf(Xn,I»

4
[V £(xn) =V (Xu—1)]* (9

Yn =

5.5. BFGS

The BFGS algorithm (named after Broyden Fletcher Goldfarb and
Shanno) [Fle13] is an optimization approach that does not rely on
an explicitly known Hessian matrix, but instead constructs an ap-
proximation of the Hessian matrix during the optimization. For nu-
merical convenience, most BFGS implementations construct an ap-
proximation of the inverse Hessian matrix directly as this avoids
potentially costly inversion operations. The BFGS algorithm now
starts with an initial guess of the Hessian, usually chosen as an
identity matrix, and then iteratively first evaluating a new search
direction py = —H;V f(x;), calculating a new candidate position
along the search direction X4| = Xg + 0Py, with oy determined
using a line search to satisfy the Wolfe conditions, and finally up-
dating the Hessian matrix using p; = 1/y,{sk, with s = Xp 1 — Xx
and yy = Vf(Xgp1) — VF(xk), as [WN*99]

Hir = (1= pesevt) Hi (1= pevist) +pusest - (1)

5.6. Adam

Adam is a momentum based variant of gradient descent and is one
of the most widely used optimization methods in deep learning at
the moment[KB14] with a citation, on average, every 37 minutes.
In contrast to AdaGrad [DHS11], Adam utilizes two seperate mo-
menta per component m and v with an additional correction ap-
plied to them based on the iteration count k > 1. Note that for the
explanation here a one dimensional optimization for x is assumed
and any other component is evaluated analogous. Initially both mo-
mentum terms are initialized to zero and are updated according to

my = Pymy + (1 - Bl)a%f(xk)
2 (16)
v = o (1) (5700

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets 79

Figure 2: This figure visualizes f(x) = |x| for Newton’s method.
For this function, even though there should exist a root at z =0,
there is no clearly visible basin of convergence towards this root.

where usually B; = 0.9 and B, = 0.999. These values are then
corrected for their bias from being initialized as zero as | =

my./ (1 — [3]]‘) and Vi =Viy 1/ (1 — Bg) . The final updated ac-
cording to Adam, with o0 = 10~% and € = 1078, is then defined as

& a7

Xpr] =X — O 3 —|—£'
k+1

6. Results

We implemented our approach in an open source frame-
work [Win22] and ran all our evaluations on a system with an In-
tel i7-11900K with 64GB of RAM and an Nvidia 3060 Ti, with all
computations being performed on the CPU side with parallelization
using OpenMP. All computations are performed in double preci-
sion arithmetic with a resolution of 3840 x 2160 for the computed
images (resampled to 1280 x 720 in this document, for full reso-
Iution images please refer to the supplementary material) for the
domain [—16/9,16/9] x [—1,1]. In the results, Newton refers to us-
ing the Newton iterations to find the roots of the function, Halley
refers to using Halley’s method, NRI-O refers to using Newton’s
method for optimization, NRI-HC refers to using NRI-O but cor-
recting the Hessian to be positive definite, GD refers to Gradient
Descent, GD-BB refers to GD with the Barzilai-Borwein method.
Adam and BFGS refer to the optimization methods with the same
names. For the visual results please refer to Tables 1 and 2.

The first function we considered for our evaluation is a simple
polynomial of f(z) = 2> — 2z + 1, which shows a relatively rare
behavior for Newton’s method and was, accordingly, interesting as
a basis for comparisons. For Newton’s method in this case there
exist loops, between 0+ 0i and 1+ O, that attract any iterations
falling within their basin of influence and never converge to an
actual root of the function. If we compare this result with using
Halley’s method we can observe a significantly less complicated
structure, i.e., the individual patches of equal convergence point
are much larger. If Newton’s method is used as an optimizer, with-
out correcting the Hessian, the results show no fractal like behavior
but also indicate that the method becomes an optimizer for large
ranges of starting points. Correcting the hessian on the other hand
yields three well defined solid regions of convergence, similar to

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Figure 3: This figure visualizes f(x) = x> —2x+ 1 using BFGS.
While all points in this function do converge to a root, i.e., a global
minima, the results are significantly less stable than for other op-
timization approaches whilst requiring significantly higher compu-
tational requirements in this case.

gradient descent. Using GD-BB yields a significantly different be-
havior as the adaptive learning rate in this method in this specific
scenario yields a basin of convergence towards 1+ 0i, i.e., to one
of the points of the attracting cycle, which is not present for a nor-
mal GD approach. Finally, Adam yields a similar result to GD and
NRI-HC, but shows some islands in the blue and tan regions where
the momentum term causes the method to jump to the other region.

For the second test function, f(x) = ¢ *sin(x), we see similar
results for most methods, except for NRI-HC, GD and Adam. In
this case, NRI-HC does not yields well defined regions of conver-
gence, as in the previous case, and GD does not converge for large
parts of the domain towards a minima, indicated by the gradient be-
tween the dark and light region, even after 8192 iterations. Adam,
on the other hand, shows a well defined convergence behavior.

Similarly, for the third function f(x) = ran(x), Adam is the opti-
mizer that shows the best convergence behavior, except for a small
region of starting values that failed to converge after the maximum
iteration count was reached. NRI-HC and NRI-O, for this case, sig-
nificantly diminish the basin of convergence towards the real root at
z=0. An interesting observation here is that NRI-O yields a fractal
pattern, whereas NRI-HC does not. In this scenario, GD and GD-
BB, again behave very differently as the adaptive learning rate of
GD-BB ensures a convergent behavior across the domain, whereas
GD diverges towards oo for large parts of the domain. Furthermore,
the basins of convergence towards many of the roots are signifi-
cantly larger for GD-BB and, for some, GD has no basins of con-
vergence for some of the roots.

For the forth test function, f(x) = erf(x), we observe results
that, overall, are very similar, however, there are two notable excep-
tions. Firstly, the shape of the basin of convergence towards z = 0
is significantly different between Newton’s method and Halley’s
method, whereas for previous examples the results were very com-
parable. Secondly, using Newton’s method as an optimizer, without
correcting the Hessian, in this case yields a fractal like behavior
where the shape appears to be heavily distorted by the central basin
of convergence.

For the final four test cases, see Table 2, we observe a gener-

80 R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets

| F(x) = X —2x+1 | f(x) = e *sin(x)

Newton-It.
as root finder

|) = lan()f) |

Halley’s
Method

Newton-It.
as optimizer

Newton-It.
using Hessian

Gradient-Descent

Gradient-Descent
Barzilai-Borwein

Adam

Table 1: Results for the first four test functions

ally similar behavior for the first two test cases, where the fractal
like-appearance for Newton’s method as an optimizer in test case
II is very noticeable and, contrary to any prior test case, GD-BB
also yields a fractal pattern. For the final two test cases, we ob-
serve fundamentally different appearances of the resulting images
for all optimizers, which was not as noticeable before hand, ex-
cept for the teaser image (see Fig. 1). Furthermore, for these two
cases, Gradient Descent either did not converge towards any min-
ima or diverged very quickly, which made it impossible to utilize
for this case without some adaptive learning rate, be it momentum
based or using GD-BB. Finally, the Adam optimizer still yields the
smoothest, and largest, basins of convergences across all test func-

tions, which supports the wide adoption of this optimizer for a wide
range of tasks.

As penultimate evaluation we considered two further cases.
Firstly, we considered a C? continuous starting function, namely
f(x) = |x|, which resulted in a Chebyshev proxy of degree 11217.
Even though the polynomial degree was very large, the process still
worked, albeit at a much reduced computational performance, and
it still yielded an interesting behavior, i.e., Fig. 2 does not show any
basin of convergence towards z = 0. Finally, we considered the re-
sults of applying BFGS to f(x) = x> —2x+ 1, see Fig. 3, but we
observed a significantly more complicated convergence behavior.
Investigating these results more closely indicates that the primary

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets 81

Test Case 1 | Test Case 11

Test Case II1 Test Case IV

Newton-It.
as root finder

Halley’s
Method

Newton-It.
as optimizer

Newton-It
using Hessian

Gradient-Descent

Gradient-Descent
Barzilai-Borwein

Adam

- a3

Table 2: Test functions based on approximation of arbitrary functions

issue here stems from the approximation of the Hessian, as the iter-
ative process can move very rapidly in these test functions, which
means that the Hessian matrix is significantly changing as the pro-
cess proceeds in such a way that the iterative construction of the
Hessian can become error prone. In a worst case this would re-
sult in a predicted direction for the optimization that is orthogonal
to the gradient of the function and, consequently, any multiple of
the predicted direction would not yield an improvement of the pro-
cess, which in turn causes the process to halt prematurely. Finally,
we demonstrate the influence of different hyperparameters for the
Adam optimizer for f(x) = x° — 0.5 in Fig. 4. While in this case
different hyperparameters yielded different results, Adam always
remained stable and never diverged even at large learning rates or

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

low momentum parameters. Furthermore, even though the trajec-
tory shown in the results can become oscillatory, this did not neg-
atively impact the overall convergence and, at worst, increased the
number of required iterations.

7. Conclusions

In this paper we have presented an intuitive and visual way of vi-
sualizing different behaviors in different optimizers regarding the
optimization of two dimensional functions based on a flexible test
function creation process reliant on Chebyshev proxy functions.
Using our open source framework we were able to visualize stark
differences in the convergence behavior between different methods

82 R. Winchenbach / Visualizing Optimizers using Chebyshev Proxies and Fatou Sets

g

(@o=10"3B;=09,B,=0.999 (b)a=10"9B; =0.9,B; = 0.999

©a=10"3B; =01, =0.999 (d)a=10"3,B; =0.9,p2 = 0.999

Figure 4: Evaluation of the differences that choosing different hyperparameters make for the Adam optimizer for the function f(x) = © -1

with a trajectory for a single starting point shown for all choices.

on both a fundamental level, i.e., certain methods showing clear
fractal like behavior, and on a more nuanced level, i.e., demon-
strating differences due to a choice of hyperparameter. Overall, the
resulting images are not just visually interesting but also highlight
potential areas of future investigation, i.e., if the proposed visual
approach can be extended to turn the visual results into quantifi-
able numbers that allow for objective comparisons between differ-
ent optimization methods, especially in higher dimensions. Finally,
our framework works with a wide variety of input functions, rang-
ing from simple low degree polynomials with astable regions for
some methods, to polynomial approximations of piecewise contin-
uous functions requiring over a polynomial degree of over 10000.

References

[AT17] AURENTZ, JARED L and TREFETHEN, LLOYD N. “Chopping
a Chebyshev series”. ACM Transactions on Mathematical Software
(TOMS) 43.4 (2017), 1-21 2.

[Bec] BECHTOLD, BASTIAN. Twilight — A Circular Color Map. Ac-
cessed: 2022-07-04. URL: https : / /github . com/bastibe /
twilight 3.

[Ber18] BERNSTEIN, SERGE. “Quelques remarques sur 1’interpolation”.
Mathematische Annalen 79.1 (1918), 1-12 2.

[BoyOl] BoYD, JOHN P. Chebyshev and Fourier spectral methods.
Courier Corporation, 2001 2.

[Boy02] BoyD, JOHN P. “Computing zeros on a real interval through
Chebyshev expansion and polynomial rootfinding”. SIAM Journal on
Numerical Analysis 40.5 (2002), 1666—1682 2.

[Boy13] BoyYD, JOHN P. “Finding the zeros of a univariate equation: proxy
rootfinders, Chebyshev interpolation, and the companion matrix”. SIAM
review 55.2 (2013), 375-396 2.

[Boyl14] BOYD, JOHN P. Solving Transcendental Equations: The Cheby-
shev Polynomial Proxy and Other Numerical Rootfinders, Perturbation
Series, and Oracles. Vol. 139. SIAM, 2014 2.

[Boy95] BoyD, JOHN P. “A Chebyshev polynomial interval-searching
method (" Lanczos economization") for solving a nonlinear equation
with application to the nonlinear eigenvalue problem”. Journal of Com-
putational Physics 118.1 (1995), 1-8 2.

[BT04] BATTLES, ZACHARY and TREFETHEN, LLOYD N. “An extension
of MATLAB to continuous functions and operators”. SIAM Journal on
Scientific Computing 25.5 (2004), 1743-1770 2.

[CC60] CLENSHAW, CHARLES W and CURTIS, ALAN R. “A method for
numerical integration on an automatic computer”. Numerische Mathe-
matik 2.1 (1960), 197-205 2.

[Cle55] CLENSHAW, CHARLES W. “A note on the summation of Cheby-
shev series”. Mathematics of Computation 9.51 (1955), 118-120 2.

[DHS11] DucHI, JOHN, HAZAN, ELAD, and SINGER, YORAM. “Adap-
tive subgradient methods for online learning and stochastic optimiza-
tion.” Journal of machine learning research 12.7 (2011) 4.

[DHT14] DriscoLL, T. A, HALE, N., and TREFETHEN, L. N. Chebfun
guide. 2014 2.

[DSB97] DREXLER, M., SOBEY, IAN, and BRACHER, CHRISTIAN.
“Fractal Characteristics of Newton’s Method on Polynomials”. (Jan.
1997) 3, 4.

[Fle13] FLETCHER, ROGER. Practical methods of optimization. John Wi-
ley & Sons, 2013 4.

[FW66] FRASER, W and WILSON, MW. “Remarks on the Clenshaw-
Curtis quadrature scheme”. SIAM Review 8.3 (1966), 322-327 2.

[HT17] HASHEMI, BEHNAM and TREFETHEN, LLOYD N. “Chebfun
in three dimensions”. SIAM Journal on Scientific Computing 39.5
(2017), C341-C363 2.

[Jac90] JACOBS, STANLEY J. “A pseudospectral method for two-point
boundary value problems”. Journal of Computational Physics 88.1
(1990), 169-182 2.

[KB14] KINGMA, DIEDERIK P and BA, JIMMY. “Adam: A method for
stochastic optimization”. arXiv preprint arXiv:1412.6980 (2014) 4.

[Mav94] MAVRIPLIS, CATHERINE. “Adaptive mesh strategies for the
spectral element method”. Computer methods in applied mechanics and
engineering 116.1-4 (1994), 77-86 2.

[MHO02] MASON, JOHN C and HANDSCOMB, DAVID C. Chebyshev poly-
nomials. CRC press, 2002 2.

[Ros60] ROSENBROCK, HOHO. “An automatic method for finding the
greatest or least value of a function”. The computer journal 3.3
(1960), 175-184 2.

[Run01] RUNGE, C. “Uber empirische Funktionen und die Interpola-
tion zwischen dquidistanten Ordinaten”. Zeitschrift fiir Mathematik und
Physik 46.224-243 (1901), 20 2.

[SS80] SLOAN, IH and SMITH, WE. “Product integration with the
Clenshaw—Curtis quadrature scheme”. SIAM Rev 8 (1980), 322-327 2.

[TT13] TOWNSEND, ALEX and TREFETHEN, LLOYD N. “An extension
of Chebfun to two dimensions”. STAM Journal on Scientific Computing
35.6 (2013), C495-C518 2.

[Wei85] WEIERSTRASS, K. “Uber die analytische Darstellbarkeit so-
genannter willkiirlicher Functionen einer reellen Veridnderlichen”.
Sitzungsberichte der Koniglich Preufiischen Akademie der Wis-
senschaften zu Berlin 2 (1885), 633-639 2.

[Win22] WINCHENBACH, RENE. Optimizer Visualization Project. Ac-
cessed: 2022-07-09. 2022. URL: https : / / github . com/ wi -
re/chebFractals 5.

[WN*99] WRIGHT, STEPHEN, NOCEDAL, JORGE, et al. “Numerical opti-
mization”. Springer Science 35.67-68 (1999), 7 4.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://github.com/bastibe/twilight
https://github.com/bastibe/twilight
https://github.com/wi-re/chebFractals
https://github.com/wi-re/chebFractals

