Neural Adaptive SCEne Tracing (NAScenT)

Anonymous ECCV submission

Paper ID 7628

1 Pipeline and Algorithm

In this section, we give a brief introduction for our overall pipleline of algorithms
for training and rendering our hierarchical neural networks (NAScenT).

Hierarchical Neural Network Training Our method takes multiple viewpoint
images I, as input, and outputs the optimized octtree and contained neural
networks M. In Alg. (1), S is the set of sampled points by using sampling
strategy in Sec. (3.3), and I(r) is rendering RGB value for ray direction r. The
loss function £ is the photometric loss between rendered pixel values I(r) and
ground truth values I, (r). The loss is backpropated to each sub-network to
update the weights. Every Tp rounds of training, the octtree of scene will be
updated to adaptively reallocate computational resources to regions with high
density and high projected error, and the new sub-networks are directly pre-
trained by using stratified samples from the previous sub-networks (see Sec.
(3.5) in main).

Algorithm 1: Hierarchical Neural Network Training

Input: viewpoint images ¢
Output: M
Result: novel views [
Initialize &, M;
while ¢t < T do
S = Sampler(M) Sec. (3.3) in main;
I(r) = Render(S) Alg. (2);
loss = L(I(r), I4(r));
BackPropagate(loss);
Step(P);
if ¢ mod T =0 then
M = UpdateOctree() Eqn. (1);
& = UpdateModel(®, M) Sec. (3.5) in main;
end
t=t+ 1;
end

006
007

030

087

2 ECCV-22 submission ID 7628

Hierachical Neural Network Rendering Rendering pipeline Alg. (2) takes batches
of samples S, hierarchical neural networks @, and octtree models M as inputs.
Sampling points S are scheduled to corresponding sub-networks @! by their 3D
sample location,. Samples are then evaluates by the respective sub-network @2.
To calculate the ordered integral along the ray direction, samples are sorted by
Eqn. (4) in main and then composited by Eqn. (3) in main.

Algorithm 2: Hierarchical Neural Network Rendering

Input: 3D scene samples S, &, M
Output: rendering value I
{S!} = Scheduler(S, M);
C={}LD={k
for ¢! in & do
e, o = al(sh);
C.add(c); D.add(c5);
end
{C,D} = SortByZ({C, D}); Eqn. (4) in main
I(r) = Composite(C, D); Eqn. (3) in main

1.1 Importance Sampling

Fig. (1) gives a illustration of the importance sampling in Sec. (3.3).

cdf 4

(¢]

$
[
(]
el
(&)
]
(¢}
(¢]
e
[
o

Ray Distance

Fig. 1. Illustration of sampling scheme that based on cumulative density field.

074

077
078
079
080

ECCV-22 submission ID 7628 3

2 OctTree Update Scheme

In this section, we discuss the details of the octtree update scheme. The intu-
ition of updating structural octtree are (1) avoid time-costly sampling and com-
putation inside empty node, (2) reallocating representation (sub-networks) and
computational (number of samples) resource to complex or poorly represented
part of the scene.

Our objective mainly contains two parts, «; is weighted average alpha vector
of node i of sub-network, which indicates the opaque of node, §; is projected
rendering error vector of node i, since flat or smooth surfaces may converge
quickly and be well-trained, while complex or poorly-represented scenes may still
need more epochs to obtain better quality. Therefore, the 8 term will explore
finer or coarser trees to encourage lower projected rendering error in octtree
structure. Our objective is shown as,

II'+17+1 =1
N+ BT, sttt T 1
mlnz B 8 {Zz NLCIJ"’I?;:—’—NCIZ?LSNB? (1)

where I; = [IT I Ii]T are boolean flags of node operations, i.e., merge (1), split

(J), and unchanged (=). o; = [alT, g, alﬂ

T is the weighted average alpha in oc-
tree node i for three possible operations, if «; . 8; = [BZT, B, ﬁf]T is the weighted
average projected rendering error respectively. N is user-defined maximal block
in system.

To calculate value «;, we first perform stratified sampling from top to bottom
in the octree hierarchy and predict the density value for each sample by running

the forward rendering network @(x,d) = (c,0), then the a; for each block by,

a; = \s | ers 6(x),
az‘T ap() (2)
af = Zjecu) g,

where P and C are query functions for octree parent and child nodes. S; denotes
the samples inside an active block.

To calculate w; for different cases, we first evaluate rendering error for each
ray E(r) = L(I(r),I4(r)), and L is simple function for mean square error.

ﬁzz = \TMZXGS wl/(lf)E()
ﬂj = Nicﬂp(i)a (3)
Br =Y jec Br
where w(x) is the weight in rendering function Eqn. (3) in the main paper (i.e.,

T;) for samples x € r. W =3 _ w(x) is the total sum of weights along the ray
direction. To optimize Eqn. (1), we use or-tools to solve MIP problems.

096
097
098
099
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

134

4 ECCV-22 submission ID 7628

3 Additional Comparison and Results

(a) GT (b) NeRF[3 ¢) KiloNeRF[4]) Our (e) Octree

Fig. 2. Visual Comparison on LLFF-NeRF dataset [2].(a) is ground truth view of flower
scene with highlighting details. (b)-(d) are the novel view of NeRF [3], KiloNeRF [4]
and our methods with highlight details. (e) the visualization of example view and octree

optimization process from initial level 2 to level 3, and merge to simple structure to
save computational and sampling resource.

In this section, we show extensive comparison in details and results. As dis-
cussed in the main text, for views close to the training views all methods produce
visually very similar results; differences only become apparent at close inspec-
tion and when analyzing depth structure. However, as the results in the main
paper show, the differences in the depth estimation amplify the visual quality
differences for extrapolated views far from the training data.

Fig. (2) shows visual comparisons of novel view synthesis on real scenes from
the LLFF-NeRF dataset [2]. As we can see in the figure, NeRF [3] can miss
surfaces with its sampling process so that back surfaces can “shine through”. This
is due NeRF’s sampling scheme that applies stratified search for a coarse-level
density distribution estimation and then sampling according to coarse density
distribution along the ray to give more samples near the object surface. Thus,
for a thin structure, the coarse level search may missing the important part
of scene, leads to leaking light effect in rendering novel view. KiloNeRF only
applies dense stratified sampling inside each block, and collects output samples

154

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

ECCV-22 submission ID 7628 5

along the ray. Thus, blocking-effect are again visible just like in the synthetic
data. Our method achieves sharper novel depth map, and the light-weight sub-
network enables a dense coarse level surface search, alleviate blocking effect as
well as light leakage.

— 1
(c) KiloNeRF[4]

(a) GT (b) NeRF[3] (d) Our (e) Octree

Fig. 3. Visual Comparison on synthetic NeRF dataset [3]. (a) is ground truth view with
zoom in details. (b), (c¢), (d) are state-of-the-arts methods of NeRF [3], KiloNeRF [4],
and our proposed method with highlighted detail regions. (e) illustrate example view
and octree optimization process from coarse to fine (Blocks with green line indicates
block merging, and red line indicates blocks splitting).

Fig. (3) shows visual comparisons on the synthetic NeRF dataset. All the
state-of-the-art methods achieve reasonable performance in rendering novel views
from camera positions close to the training views. However, in visualizations of
the depth map scene, NeRF [3] shows blurring and topological artifacts in the
depth, indicating that the actual 3D structure is less accurate. As we show below,
this has an impact on the quality of extrapolated views far from the training data.
KiloNeRF [4] shows high quality results in the RGB view, but exhibits a slight
blocking effect when visualizing the depth view, since KiloNeRF’s sub-network
are pre-trained by a global network, i.e., NeRF, each sub-network is indepen-
dent in the pre-training stage and mix the query results in the fine-tuning stage,
which introduces a discontinuity. Our method takes advantage of the tree struc-

184

187

200

203
204

206
207
208
209
210

216
217

219

224

6 ECCV-22 submission ID 7628

ture for flexible and scalable representation with an adaptive training scheme for
computational resource allocation, all the sub-networks are trained from coarse
to fine. Therefore, no pre-training is required, and back propagation will up-
date all sub-network along the integral ray direction, which shows consistent
and smooth rendering results in both RGB view and depth. To better illustrate
our octree-based representation, we also show a progression of the octree update
last column (ground truth rendering on top).

3.1 Extreme Novel View Comparison

In this section, we show the extensive comparison in details for extreme view
of real scene dataset. Fig. (4) shows the novel view synthesis with view rota-
tion radius R = 1.5, our method shows similar performance with MipNeRF [1],
but outperforms NeRF and KiloNeRF in details texture recovering. Fig. (5)
increase rotation radius for extreme view rendering, NeRF, KiloNeRF and Mip-
NeRF show significant false trails in extrapolated view due to neural network
tends to output unknown density value in extrapolated part of scene. Octtree
could explicitly define rendering space, and significantly allevate rendering trails.
Alought KiloNeRF can also use pre-trained octtree to accelerate rendering pro-
cess, it still require train a extra single network for model distilling, thus reserve
same trails effect in the fine-tune stage. Fig. (6) also shows more comparison for
extrapolated novel view synthesis, our method outperform other alternatives,
see details for better visual comparison.

3.2 UAYV Scene Reconstruction

In this section, we show the results of ground scene reconstruction from UAV
video in Fig. (7). UAV views contain comparatively large viewpoint and camera
pose change, which is a challengine task for neural rendering. NeRF [3] shows blur
rendering results due to incorrect density estimation of scene. MipNeRF [1] fails
to estimate correct density in second row of results, partially because a large
viewpoint changes leads to sample in the space that has insufficient training
samples and outputs random density values. Our method takes advantage of (1)
octtree that bounds whole scene and skip empty space, and (2) distributed sub-
network architecture that trains and renders locally to avoid inbalanced sampling
inside each octtree nodes and adaptively reallocate computational resource for
each node.

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: ICCV (2021)

2. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics (TOG) (2019)

284

294

314

ECCV-22 submission ID 7628 7

(a) NeRF[3] (b) KiloNeRF (c) MipNeRF (d) Our

Fig. 4. Extreme novel view synthesis for HORNS dataset with view rotation R = 1.5.
We compare our method against NeRF [3], KiloNeRF [4], MipNeRF [1].

8 ECCV-22 submission ID 7628

(a) NeRF[3] (c) MipNeRF[l (d) Our

(b) KiloNeRF[4]

Fig. 5. Extreme novel view synthesis for HORNS dataset with view rotation R = 3.0.
We compare our method against NeRF [3], KiloNeRF [4], MipNeRF [1].

374

384

394

404

ECCV-22 submission ID 7628 9

“(b) KiloNeRF[4]

[3] (c) MipNeRF[1] (d) Our

Fig. 6. Extreme novel view synthesis for ROOMS dataset with view rotation R = 3.0.
We compare our method against NeRF [3], KiloNeRF [4], MipNeRF [1].

397
398
399
400
401
402
403
404

414

444

446
447
448
449

10 ECCV-22 submission ID 7628

| o e

(b) MipNeRF[1]

(a) NeRF|[3] (c) Our

Fig. 7. UAV scene reconstruction. We compare our method against NeRF [3], KiloN-
eRF [4], MipNeRF [1].

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

435
436
437

450
451

ECCV-22 submission ID 7628 11

3. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

4. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: Speeding up neural radiance
fields with thousands of tiny mlps. In: International Conference on Computer Vision

(ICCV) (2021)

451
452
453
454
455
456
457
458
459

461
462
463
464

473
474

476
477
478
479
480

