Vision, Modeling, and Visualization (2021)
B. Andres, M. Campen, and M. Sedlmair (Eds.)

SuBloNet: Sparse Super Block Networks for Large Scale Volumetric
Fusion

Darius Riickert! and Marc Stamminger!

Visual Computing Lab, University of Erlangen Nurenberg, Germany

Abstract

Training and inference of convolutional neural networks (CNNs) on truncated signed distance fields (TSDFs) is a challenging
task. Large parts of the scene are usually empty, which makes dense implementations inefficient in terms of memory consumption
and compute throughput. However, due to the truncation distance, non-zero values are grouped around the surface creating
small dense blocks inside the large empty space. We show that this structure can be exploited by storing the TSDF in a block
sparse tensor and then decomposing it into rectilinear super blocks. A super block is a dense 3d cuboid of variable size and
can be processed by conventional CNNs. We analyze the rectilinear decomposition and present a formulation for computing
the bandwidth-optimal solution given a specific network architecture. However, this solution is NP-complete, therefore we
also a present a heuristic approach for fast training and inference tasks. We verify the effectiveness of SuBloNet and report
a speedup of 4x towards dense implementations and 1.7x towards state-of-the-art sparse implementations. Using the super
block architecture, we show that recurrent volumetric fusion is now possible on large scale scenes. Such a systems is able to

reconstruct high-quality surfaces from few noisy depth images.

(see https://www.acm.org/publications/class-2012)
CCS Concepts

* Computing methodologies — Reconstruction; Mixed / augmented reality; 3D imaging;

1. INTRODUCTION

Deep learning has achieved major breakthroughs in various image
processing tasks. However, a direct application of 2d models to 3d
problems is often not feasibly due to increased memory consump-
tion and compute requirements. The underlying sparsity of 3d input
data has driven researchers to develop architectures that operate di-
rectly on point clouds or indirectly on sparse voxel grids. This sig-
nificantly improves 3d classification tasks, for example, a pedes-
trian detection in LiDAR data of a self-driving vehicle. In some
fields, such as 3d reconstruction, sparse architectures have not been
explored yet because the underlying truncated singed distance field
(TSDF) requires many non-zero samples around the surface. The
additional overhead of sparse convolutions outweighs the increased
memory consumption of traditional dense neural networks result-
ing in similar or worse performance for moderately sized scenes.

In this work, we present SuBloNet, a novel architecture designed
for efficiently processing block sparse features arising in real-time
TSDF-based reconstruction. As a first step, we search super blocks
in the input data, which are large rectangular non-zero blocks of
features. These super blocks are extracted and passed through a
fully convolutional neural network and then copied back to its orig-
inal block sparse structure. We can therefore leverage the high effi-
ciency of dense volumetric CNN implementations while also sup-
porting large scale scenes. We validate our approach by comparing
it to state-of-the-start methods showing a speedup of 1.7x on room-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/vmv.20211375

scale indoor environments. Using our method we also present a
novel incremental depth fusion approach that is able to reconstruct
clean surface from a stream of noisy depth images in real time.

In summary, the contributions of our work are:

e A novel neural network architecture for processing block sparse
input data

o An efficient algorithm for decomposing block sparse tensors into
super blocks

e An incremental depth fusion approach that is able to reconstruct
large scenes in high resolution

2. RELATED WORK

Sparse tensor architectures for deep learning have been explored
extensively in the recent years. We usually differentiate between
weight sparsity, activation sparsity, and feature sparsity. These do-
mains require different implementation techniques and are used for
different applications.

Sparsity in the weight domain is the most explored form and
builds on the idea of removing weights close to zero [LDS*89].
It has been shown that this approach significantly reduces model
size [HPTD15] and energy consumption [YCS17] with only a
small hit to accuracy. However, expected run-time improvements
are often only theoretical because consumer hardware is optimized
for dense filter operations [NUD17]. Special hardware has then

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/vmv.20211375

92 D. Riickert & M. Stamminger / SuBloNet

Input Surface

Deep Neural Network

Decompose

Input Block Structure Super Blocks

Output Surface

Figure 1: Overview of our super block processing pipeline. The
block sparse TSDF (left) is decomposed into super blocks. These
blocks are dilated by the neural network’s receptive field size and
collected by a gather operation. After that, every block is processed
by the network, and scattered back into the original structure. This
concept can be used for all problems with block sparse input data.

been introduced to process the sparse models with impressive per-
formance gains over CPUs and GPUs [HLM*16, PRM*17]. To
avoid the need of custom hardware, recent work focuses on struc-
tured pruning, which involves removing groups of weights instead
of individual edges [SCYE17, AHS17, WWW*16]. In the gen-
eral case, this results in a block-sparse weight matrix, which im-
proves computational efficiency of linear layers [GRK17], convo-
lutional layers [MHP*17, WGH*21, VK*19], and recurrent neural
networks [NUD17]. Further constraining block-sparsity to a sin-
gle dimension, for example, channel pruning [LLS*17, HZS17],
neuron pruning [HPTT16], and filter pruning [LKD*16, LWL17,
HLW*19, IRCC17], allows the reduced models to be executed
using the highly optimized dense matrix operations. Other ap-
proaches of reducing the number of weights exploit the sparsity
of the ReLu activation function [SC17,DHY Y 17], apply quantiza-
tion [ZYG*17, CEKL16], or approximate the weight matrix using
a low rank decomposition [LWF*15,DZB* 14, LGR* 14, KPY*15].

Sparsity in the feature domain is significant for applications
where only a fraction of the input space contains relevant data.
The sparsity is exploited by either running dense neural networks
on partial point clouds [QSMG17,QYSG17] or using special con-
volution operations on sparse tensors [GvdM17, CGS19, TLZ*20,
TQD*19]. The latter approach has proven to be more successful on
common segmentation and classification tasks, though the sparse
convolutions introduce additional overhead compared to dense op-
erations. If the input consist of dense non zero blocks inside large
empty space, the block sparse approach of SBNet [RPYU18] out-
performs the more general sparse networks. They subdivide the in-
put space into a uniform grid of blocks and define a binary mask
that captures the non-zero pattern. Convolutions are then only ap-
plied on the selected blocks using a gather, convolve, scatter ap-
proach. Our method, which is presented in Section 3, also processes
block sparse input data. However, we further combine neighboring

non-zero blocks and store the sparsity in a coordinate format in-
stead of mask. This reduces memory consumption, as well as, in-
creases performance if the input contains large dense regions.

Rectilinear decomposition is the task of finding a set of rect-
angles that covers a rectilinear polygon [SHIF12]. This will be
used in our work to increase neural network performance by par-
titioning block sparse tensors into super blocks. In previous work,
many different 2d decomposition algorithms have been proposed.
They range from quadtree decompositions [WHLO1] over heuris-
tic approximations [NS88] to the optimal graph-based solution
[Fra86, SG93, AKR99, SHF12]. These algorithms have been suc-
cessfully used in various applications, for example, binary image
compression [MF95], VLSI mask fabrication [LTL89], and opti-
mizing two dimensional databases [LLL*79]. In the three dimen-
sional case, only few researchers have approached this problem
[Jai02, HIF19] because computing the optimal decomposition is
known to be NP-hard [DK91].

In the application domain of volumetric fusion from depth im-
ages, the seminal work of Curless et al. [CL96] is now used in
many real time reconstruction systems. KinectFusion [IKH*11] in-
crementally constructs a truncated signed distance field (TSDF) on
a uniform grid while tracking the RGB-D camera. This was later
improved by implementing a block sparse architecture to store the
TSDF values only around the surface [NZIS13,DNZ*17, PKG*17,
RMO*19]. Other approaches, which focus on high-quality of-
fline reconstruction, use hierarchical tree-based structures to cap-
ture variable scale [FG11, SKC13]. Recent advancements in deep
learning also show good results for surface completion, filter-
ing and reconstruction [DRB*18]. Various approaches have been
explored that make use of a uniform TSDF grid [MvAB*20],
octrees [ROUG17, RUBG17], or an implicit surface representa-
tion [PFS*19,CZ19, MON*19]. The recent method RoutedFusion
[WSPO20] uses deep neural networks to integrate depth images
into a uniform TSDF of fixed size. Their pipeline consists of a rout-
ing stage, which preprocesses the input, and a fusion stage, which
predicts the new TSDF values. Our approach (see Section 3.3) im-
proves on this concept by fusing the depth images in latent space.
We also use the novel super block architecture to improve the effi-
ciency and enable interactive reconstruction of large scale scenes.

3. SUPER BLOCK ARCHITECTURE

The most common data structure for real-time 3d reconstruction
from depth images is a truncated signed distance field (TSDF).
Each voxel stores the signed distance to the surface up to a thresh-
old #;. Voxels with a distance larger than #; are not relevant and can
be discarded. It has been shown, that a sparse structure of voxel
blocks can reduce memory consumption significantly and allows
real-time operation on large-scale scenes. This structure consists of
N blocks of d> voxels, in our case d = 8, with C channels each and
is stored using a data tensor D and a structure tensor S.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

D. Riickert & M. Stamminger / SuBloNet 93

The goal of this work is to build a neural network architecture
that is able to efficiently process block sparse TSDFs. A high-level
overview of our pipeline is shown in Figure 1. The first step is to
decompose the structure S into a list of rectilinear super blocks,
which are 3-dimensional cuboids of arbitrary size. For example, a
super block with dimensions 3 x 3 x 3 contains 27 blocks and 27 - d°
voxels. We then dilate each super block by the receptive field size
of the neural network and extract each cuboid by a gather operation.
The extracted super blocks are passed through the dense network
and scattered back into the original sparse structure. Since we have
to add the network’s receptive field, it is sometimes more efficient
to create fewer overlapping blocks than more disjunct blocks. For
example, the blue armrest in Figure 1 intersects the red seat and the
green backrest covers multiple empty cells.

In the following section, we present the bandwidth-optimal de-
composition for a given receptive field size. After that, we derive an
approximation algorithm, which is able to produce a high-quality
solution in polynomial time.

3.1. Optimal Rectilinear Cover for CNNs

Every binary three dimensional discrete shape S can be decom-
posed into K > 1 rectilinear cuboids 8 = {By,B>,...Bx} where
each cuboid is defined by the two opposing vertices B; = (a,b)
with a,b € Z3. We call the decomposition a bijective cover if the
partitions B; do not overlap and the union of all cuboids is identical
to S:

BiNBj=0 Vi, j
1

Cx=

s=|JB

k=1

Due to the fact that processing empty and redundant cells does not
change the final result of a neural network, a bijective cover is not
required in our case. It is enough to ensure that the input structure
S is a subset of the decomposition.

K
Sc B)

k=1
Applying a CNN to the cuboid list B requires each element of 3 to
be dilated by the CNN’s receptive field radius r. Since we operate
on a block granularity of 83 voxels, a CNN with four 5 x 5 x 5
convolutional layers has a receptive field radius of r = (4-2)/8 =1
block. The memory consumption after gathering the super blocks
V depends on r and can be defined using the Dilate function which

expands every block by the receptive field radius.

V,(B) = Volume(Dilate(B, r))
Volume(B) = (by — ay) - (by —ay) - (b; — a;) 3)
Dilate(B,r) = (a—r,b+r)

Figure 2 shows a 2-dimensional shape, which is decomposed in
two different ways. The decomposition A (middle image) is bijec-
tive. Hence V} is identical to the input volume. The decomposition
B (right image) consists of a single rectangle which conceals the
hole in the middle. It is not bijective, because empty space is oc-
cluded. However, dilating each rectangle by r = 1 shows that the
latter decomposition requires around 25% less memory.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Input Shape Decomposition A Decomposition B

Vo = 120 Vo=4-(6
Vi=4-8

12
22

S

o

) Vo=1-(11-11) = 121

Vi=1-(13-13) = 169

=
[l
=

Figure 2: A rectilinear input shape is decomposed into a bijective
cover A and the V| -optimal decomposition B.

We will now use the volume formulation of Eq. (3) to define
the optimal decomposition in terms of memory consumption for a
receptive field radius r.

argmin Z e+ V.(B))
B Bep

If we are able to solve (4) w.r.t. the constraint (2), we obtain a list
of super blocks 8 which require the least amount of memory af-
ter dilation. The constant € is introduced to favor decompositions
with less super blocks if two solutions have the same volume. For
a better control over the result, we extend Eq. (4) by computing
the volume for multiple radii Vp,Vy,... and scale them by a scalar
weight vector w = (wg,wy,..).

argmin) C(B)
B Bep

5
C(B):S-i-ZWjVj(B) ©)
J

A recurrent neural network, for example, benefits from non-
overlapping blocks in the training stage because less gradient mem-
ory is required. Therefore we can manually adjust the decomposi-
tion to use a weight of w = (4,2,1) during training and a weight
w= (0,0, 1) during inference. For standard feed-forward networks,
we have found that few large blocks are preferred. Hence we de-
fault to a zero weight vector w with only the r-th element set to
one.

Unfortunately, it has been shown by reduction that computing
the bijective solution w = (1) is NP-complete for non-convex input
shapes [DKO91]. Our less restrictive problem defined in Eq. (5) is at
least as hard to solve because the integer search space is further en-
larged. In the next section, we present an approximation algorithm
to compute a non-optimal solution in polynomial time.

3.2. Approximate Decomposition Algorithm

Starting from a list of 3d integer coordinates the goal is to find a
decomposition B that minimizes (5) under the constraint (2). Our
algorithm is visualized in Figure 3 and will be explained in the
following section.

We start the decomposition process by constructing an octree
on the sparse input [Mea82]. For every element, the 64-bit Mor-
ton Code is computed and the list is sorted according to this value
[Mor66]. Then, the tree is assembled in a bottom-up fashion by
combining neighboring elements with identical binary substrings

94 D. Riickert & M. Stamminger / SuBloNet

Bijective Cover

-

Input Shape

()

Morton Octree

ki

1]
Optimize Optimize Optimize
w = (4,1,0) w=(0,1,0) w = (0,0,1)

—

o
T
=

N

Figure 3: Overview of our rectilinear decomposition algorithm.
The input shape is decomposed into a bijective cover, which is
then optimized by a heuristic merging algorithm that reduces the
weighted volume cost (Eq. (5)). In the bottom row, the locally opti-
mal cover is shown for a different sets of weights.

[LGS*09]. It has been demonstrated that this method can be par-
allelized and shows good results in fast construction of bounding
volume hierarchies (BVH) [Karl2].

After the initial octree-based solution, we seek to refine the cur-
rent decomposition according to Eq. (5). First, we construct a BVH
on the initial decomposition. Using this BVH, we can efficiently
compute a neighbor list for every rectangle by detecting all ele-
ments with a distance of less than 1 voxel. For every neighbor
pair (B;,B;), we compute the current cost C. = C(B;) + C(B;)
and the cost of the smallest cuboid that contains both of them
Cn = C(B; UB;). Additionally, we check if B; UB; overlaps a
boundary slice of the other neighbors. We erase this slice and sub-
tract the difference from C,,. If the total cost is reduced (G, < C),
the merge is executed and the BVH is updated. The neighbor list
is rebuild for all elements that have been changed. We stop the
merged-based optimization if the decomposition has converged or
a maximum number of iterations is reached.

In our experiments, we have found that directly merging the oc-
tree cuboids based on (5) results in a non-optimal decomposition
because the error accumulates over multiple merges. Therefore we
improve the initial guess by separating the merging pass into two
stages. The first stage only accepts operations that keep the volume
Vo constant. The second stage then uses the user-defined cost func-
tion to refine the result. Figure 3 shows an example shape that is
decompose using our algorithm. In the first row, we compute the
octree and merge matching neighbors to get the bijective cover. Af-
ter that we execute the second merging pass resulting in different
solutions based on the weight vector w.

3.3. Volumetric Fusion Model

In the previous sections, we have presented the idea of super block
decomposition for processing block sparse TSDFs. We will now
use this architecture to build an incremental 3d reconstruction sys-
tem, which fuses a stream of depth images. An overview of our
pipeline is shown in Figure 4. First, the depth images are converted
to a local TSDF I and are integrated into a latent-space voxel grid
L using a recurrent fusion network. After the integration of all im-
ages, we pass L through a second reconstruction network to extract
the fused surface from the neural features. We use our super block
architecture to improve the efficiency and memory consumption of
the fusion and reconstruction stage.

The input depth map is converted to a block sparse TSDF of 83
voxel blocks by projecting the point cloud into the grid and setting
each voxel to the local signed surface distance. We then compute
a rectilinear decomposition on the input structure and gather the
respective super blocks from the input / and latent space L. If 1
contains previously unseen voxels, the gather operation sets the re-
spective blocks of L to zero. The extracted blocks of / and L are
then concatenated along the channel dimension and processed by
the fusion network. This network is a three layer 3d U-net [RFB15]
with a receptive field size of 32 voxels. The U-net outputs are fused
super blocks which are written into the latent space data structure
by a scatter operation. If a block already exists in latent space, it is
overwritten by the novel block to guide the network to learn a rea-
sonable fusion function. After any number of depth images have
been fused into the latent space, the user can issue a surface recon-
struction. For this task, we decompose the structure of L into super
blocks, gather them, and process them by a 3d reconstruction U-
net. The output is a block sparse TSDF with a confidence value for
every element, which can be converted to a mesh by ISO-surface
extraction [LC87]. Additional outputs are also possible, for exam-
ple, classified labels, surface gradients, and colors.

4. EXPERIMENTS

We have conducted two experiments to verify the effectiveness of
our method. First, we compare the incremental fusion pipeline to
other methods and show that our approach outperforms the current
state-of-the-art. Then, we evaluate the performance of the underly-
ing super block architecture by measuring training time on a room-
scale block sparse TSDF (see Section 4.2). Finally, we discuss the
results and show current limitations of our work (Section 4.3).

4.1. Incremental Fusion Results

In Section 3.3, we have presented an incremental fusion pipeline
using our SuBloNet architecture. A stream of depth images is fused
into a latent space data structure and then converted to a truncated
signed distance field. The complete system is trained end-to-end
from a sequence of local TSDFs as input to a fused voxel grid as
output. For every optimizer step, 8 images are fused into the latent
space and then converted to the output TSDF once. Both networks
are optimized simultaneously using the Adam algorithm [KB14]
with a learning rate of 10~*. Due to memory limitations of the re-
current architecture, we randomly crop the input and ground-truth
to a maximum size of 300 voxel blocks. In our tests, the network

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

D. Riickert & M. Stamminger / SuBloNet 95

| Loss |<—| Ground Truth | -
i Reconstruction Network
5 Data Structure
g N x2x8 Nx3 4-%4- le
B ®
8 Reconstructed TSDF O
& L
~' ——{caer |
1
Fusion Network *
Data Structure
’g g-’%-’ENX4X83 ‘NX3
S s
Latent Space Geometry L
! I
e
=4
k=l
:
w
Rect. Decomp.
Data Structure
sEram - PSR RS
1 Input Depth Input Local TSDF I

Figure 4: The incremental 3d reconstruction pipeline using the su-
per block architecture. In the fusion stage (1.), the input images are
integrated into a latent space feature grid. After multiple images
have been fused, the block sparse TSDF is extracted from the latent
space using a reconstruction network (2.).

TSDF Fusion Routed Fusion Ours Ground Truth

o R
b
b\
DR
Bk
= \e== \a== \

Figure 5: Reconstructed surface after fusing 8 (top) and 16 (bot-
tom) depth images. TSDF Fusion (left column) is the traditional
approach based on [CL96].

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

converges in around 40 epochs when training on 500 models and
16 depth images per model. On a single NVidia RTX 2080 GPU
one epoch takes around 7 minutes to complete.

Now we compare the results of our approach to traditional vol-
umetric fusion [CL96] and RoutedFusion [WSPO20], a state-of-
the-art deep learning-based method. We have trained the network
to incrementally reconstruct the shape from virtual depth images
captured in random locations around 3d models from the ShapeNet
dataset [CFG*15]. Similar to the work of [WSPO20], we add addi-
tional noise to the measurements and invalidate random patches of
pixels.

Figure 5 shows the fusion result after 8 (top half) and 16 (bot-
tom half) depth images have been processed. As you can see in the
left most column, the traditional volumetric fusion approach is not
able to reconstruct a high quality surface from few input images.
Noise is not sufficiently removed and holes are not closed. Both
RoutedFusion and our method are able to close most of the holes in
the surface. Noise is also drastically reduced, though our approach
produces a slightly cleaner mesh due to the U-net’s good smoothing
properties. This is especially visible when only few depth images
are present. For example, the chair’s backrest is sharper and the
sofa contains visibly less artifacts and noise.

4.2. Block Sparse Network Benchmark

Our super block architecture, which we have used for high-quality
surface reconstruction, can also be used for various other tasks with
block sparse input data. Therefore, we benchmark the most basic
configuration, which is a single 3d U-net processing a block sparse
input tensor. Such a network can be, for example, trained to smooth
a reconstructed surface or predict a class label for every voxel. We
test two differently sized networks with a receptive field of 16 and
323 respectively. As input data, we use a real-world scene from the
Scannet dataset [DCS*17] that was reconstructed in different reso-
lutions. Figure 6 shows the block sparse structure, where each cube
on the left is a 8> voxel block. On the right hand side, our approx-
imate super block decomposition is shown. In the high resolution
example (bottom) n = 377854 voxel blocks are decomposed into
N = 1258 cuboids.

We have evaluated the training time of the U-nets when im-
plemented using our method and other approaches. In Table 1
the run-time measurements of SuBloNet, the dense implementa-
tion of Pytorch [PGM*19], SBNet [RPYU18] with 323, 64%, and
1283 blocks, and Torchsparse [TLZ*20] are presented. For low
resolution input, the dense implementation shows promising re-
sults outperforming the other sparse methods. However, if we in-
crease resolution, performance of the dense neural network de-
grades compared to the other approaches. On high resolutions, SB-
Net64 slightly outperforms SBNet32, SBNet128, and Torchsparse
but falls behind our super block architecture. In total, our approach
is between 1.7x and 4x more efficient than the other approaches
on block sparse TSDF data. This validates that the core idea of
super block decomposition is well suited for neural processing
of truncated signed distance fields. The memory consumption of
SuBloNet is also slightly lower than that of Torchsparse, because
they require one coordinate for every feature and an additional ker-

96

n = 377854

Figure 6: Our rectilinear decomposition converts block sparse
data (left) into sparse super blocks (right). Every block on the left
is further subdivided into 8% voxels resulting in over 150M feature
vectors for the bottom row.

Resolution (cm) 4 2 1 0.8 0.6 0.5
Non Zeros 14aM 67M 31M 53M 104M 160M
Density 029 019 012 0.11 0.09 0.07
U-net Receptive Field = 16
Torch Dense 0.34 1.75 11.6 21.64 49.21 85.32
SBNet32 052 1.85 773 13.28 239 37.91
SBNet64 0.55 1.47 722 1156 20.52 31.3
SBNet128 0.45 1.94 856 13.66 2634 40.26
Torchsparse 0.39 1.69 7.61 1241 2526 40.14
SuBloNet (ours) | 0.33 1.03 4.04 6.25 11.81 18.78
U-net Receptive Field = 32
Torch Dense 0.52 25 16.02 30.01 67.77 11537
SBNet32 1.07 381 17.16 27.27 50.6 77.93
SBNet64 09 242 1137 18.13 3321 50.1
SBNet128 0.62 27 11.54 1833 3597 54.64
Torchsparse 0.55 239 1077 18.11 38.02 59.1
SuBloNet (ours) | 047 144 6.37 9.7 18.23 28.03

Table 1: Training time in seconds for one iteration on a room scale
sparse TSDF. The scene has been reconstructed in different voxel
resolutions ranging from 4 cm to 5 mm.

nel map to compute the convolutions. SBNet is not sparse in mem-
ory. They store the data in a dense volume and process blocks which
are marked using a sparsity map.

The time required for the rectilinear decomposition is included
in Table 1. For a resolution of 4 cm, the decomposition takes around
0.01 s and for a resolution of 0.5 cm it requires approximately 0.5 s
on the CPU. Inside the decomposition, more than 90% of the time
is spent on the two merge-based optimization stages. The time re-
quired for the initial octree-based decomposition is insignificant.

D. Riickert & M. Stamminger / SuBloNet

4.3. Limitations and Discussion

We have shown that the performance of deep learning on volu-
metric data structures can be improved by the use of our super
block architecture. However, this approach also has a few limita-
tions that have to be considered when using SuBloNet. First, the
rectilinear decomposition adds additional computational overhead,
which might be significant for real-time applications or if the net-
work is very small. This is not a problem for moderate and large
networks because the efficiency gain outweighs the overhead cost
(see Section 4.2). The second limitation is that batching multiple
inputs during network training is limited, because the super blocks
can have arbitrary dimension. In some cases this might reduce train-
ing performance, however inference efficiency is unchanged. This
problem could be circumvented by forcing the generation of uni-
form super blocks during training stage.

5. CONCLUSION

We have presented a novel deep learning architecture for efficiently
processing block sparse volumetric input data. The core idea is the
rectilinear decomposition of the input structure to extract dense
blocks inside the sparse volume. We have analyzed this decom-
position and presented the bandwidth-optimal solution, which is
defined as a minimization problem. Since computing the optimal
solution is a NP-hard problem, we have also derived a fast approx-
imation algorithm that can readily be used in interactive applica-
tions. In our experiments, the SuBloNet architecture outperforms
dense implementations and other sparse methods by a factor of 1.7x
- 4x on room-scale indoor scenes. For the task 3d reconstruction of
depth images, we have shown a novel fusion pipeline that makes
use of the super block architecture. This reconstruction approach
operates in latent space and shows high-quality results even when
the input is very noisy and contains many holes. If we look beyond
the scope of this paper, we think that SuBloNet can be used in a
multitude of applications that exhibit a block sparse input pattern.
The complete source code is available on GitHub.

https://github.com/darglein/SuBloNet

References

[AHS17] ANWAR S., HWANG K., SUNG W.: Structured pruning of deep
convolutional neural networks. ACM Journal on Emerging Technologies
in Computing Systems (JETC) 13,3 (2017), 1-18. 2

[AKR99] ANIL KUMAR V., RAMESH H.: Covering rectilinear polygons
with axis-parallel rectangles. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing (1999), pp. 445-454. 2

[CEKL16] CHoI Y., EL-KHAMY M., LEE J.: Towards the limit of net-
work quantization. arXiv preprint arXiv:1612.01543 (2016). 2

[CFG*15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., L1 Z., SAVARESE S., SAVVA M., SONG S., SU H.,
ET AL.: Shapenet: An information-rich 3d model repository. arXiv
preprint arXiv:1512.03012 (2015). 5

[CGS19] CHOY C., GWAK J., SAVARESE S.: 4d spatio-temporal con-
vnets: Minkowski convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 3075-3084. 2

[CL96] CURLESS B., LEVOY M.: A volumetric method for building
complex models from range images. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (1996),
pp- 303-312. 2,5

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://github.com/darglein/SuBloNet

D. Riickert & M. Stamminger / SuBloNet 97

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 5939-5948. 2

[DCS*17] DAl A., CHANG A. X., SAvvA M., HALBER M.,
FUNKHOUSER T., NIESSNER M.: Scannet: Richly-annotated 3d recon-
structions of indoor scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017), pp. 5828-5839. 5

[DHYY17] DONG X., HUANG J., YANG Y., YAN S.: More is less: A
more complicated network with less inference complexity. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (July 2017). 2

[DK91] DIELISSEN V. J., KALDEWALJ A.: Rectangular partition is poly-
nomial in two dimensions but np-complete in three. Information Pro-
cessing Letters 38,1 (1991), 1-6. 2,3

[DNZ*17] DAI A., NIESSNER M., ZOLLHOFER M., IzADI S.,
THEOBALT C.: Bundlefusion: Real-time globally consistent 3d recon-
struction using on-the-fly surface reintegration. ACM Transactions on
Graphics (ToG) 36, 4 (2017), 1. 2

[DRB*18] DAI A., RITCHIE D., BOKELOH M., REED S., STURM J.,
NIESSNER M.: Scancomplete: Large-scale scene completion and seman-
tic segmentation for 3d scans. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2018). 2

[DZB*14] DENTON E., ZAREMBA W., BRUNA J., LECUN Y., FERGUS
R.: Exploiting linear structure within convolutional networks for effi-
cient evaluation. arXiv preprint arXiv:1404.0736 (2014). 2

[FG11] FUHRMANN S., GOESELE M.: Fusion of depth maps with mul-
tiple scales. ACM Transactions on Graphics (TOG) 30, 6 (2011), 1-8.
2

[Fra86] FRANKLIN P.: Optimal rectangle covers for convex rectilinear
polygon. PhD thesis, Theses (School of Computing Science)/Simon
Fraser University, 1986. 2

[GRK17] GRAY S., RADFORD A., KINGMA D. P.: Gpu kernels for
block-sparse weights. arXiv preprint arXiv:1711.09224 3 (2017). 2

[GvdM17] GRAHAM B., VAN DER MAATEN L.: Submanifold sparse
convolutional networks. arXiv preprint arXiv:1706.01307 (2017). 2

[HIF19] HOScHL IV C., FLUSSER J.: Close-to-optimal algorithm for
rectangular decomposition of 3d shapes. Kybernetika 55, 5 (2019), 755—
781. 2

[HLM*16] HAN S., L1u X., MAO H., PU J., PEDRAM A., HOROWITZ
M. A., DALLY W. J.: Eie: Efficient inference engine on compressed
deep neural network. ACM SIGARCH Computer Architecture News 44,
3(2016), 243-254. 2

[HLW*19] HEY., LiUu P.,, WANG Z., HU Z., YANG Y.: Filter pruning via
geometric median for deep convolutional neural networks acceleration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2019). 2

[HPTD15] HAN S., PooL J., TRAN J., DALLY W. J.: Learning both
weights and connections for efficient neural networks. arXiv preprint
arXiv:1506.02626 (2015). 1

[HPTT16] Hu H., PENG R., TAI1 Y.-W., TANG C.-K.: Network trim-
ming: A data-driven neuron pruning approach towards efficient deep ar-
chitectures. arXiv preprint arXiv:1607.03250 (2016). 2

[HZS17] HE Y., ZHANG X., SUN J.: Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV) (Oct 2017). 2

[IKH*11] 1IzADI S., KiM D., HILLIGES O., MOLYNEAUX D., NEW-
COMBE R., KOHLI P., SHOTTON J., HODGES S., FREEMAN D., DAVI-
SON A., ET AL.: Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the 24th an-
nual ACM symposium on User interface software and technology (2011),
pp. 559-568. 2

[IRCC17] I0OANNOU Y., ROBERTSON D., CIPOLLA R., CRIMINISI A.:
Deep roots: Improving cnn efficiency with hierarchical filter groups. In

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (July 2017). 2

[Jai02] JAIN A.: Partitioning 3-D Regions Into Cuboids. PhD thesis,
University of Florida, 2002. 2

[Kar12] KARRAS T.: Maximizing parallelism in the construction of
bvhs, octrees, and k-d trees. In Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on High-Performance Graphics
(2012), pp. 33-37. 4

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 4

[KPY*15] KiM Y.-D., PARK E., YOO S., CHOI T., YANG L., SHIN
D.: Compression of deep convolutional neural networks for fast and low
power mobile applications. arXiv preprint arXiv:1511.06530 (2015). 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer graph-
ics 21,4 (1987), 163-169. 4

[LDS*89] LECUN Y., DENKER J. S., SOLLA S. A., HOWARD R. E.,
JACKEL L. D.: Optimal brain damage. In NIPs (1989), vol. 2, Citeseer,
pp. 598-605. 1

[LGR*14] LEBEDEV V., GANIN Y., RAKHUBA M., OSELEDETS I.,
LEMPITSKY V.: Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. arXiv preprint arXiv:1412.6553 (2014). 2

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast bvh construction on gpus. In Computer Graph-
ics Forum (2009), vol. 28, Wiley Online Library, pp. 375-384. 4

[LKD*16] LIH., KADAV A., DURDANOVICI., SAMET H., GRAFH. P.:
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710
(2016). 2

[LLL*79] Lipski W., Lob1 E., Luccio F., MUGNAI C., PAGLI L.:
On two dimensional data organization ii. Fundanmenta Informaticae
2 (1979), 245-260. 2

[LLS*17] Liu Z., L1 J., SHEN Z., HUANG G., YAN S., ZHANG C.:
Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV) (Oct 2017). 2

[LTL89] Liou W., TAN J., LEE R.: Minimum partitioning simple recti-
linear polygons in o (n log log n)-time. In Proceedings of the fifth annual
symposium on Computational geometry (1989), pp. 344-353. 2

[LWF*15] Liu B., WANG M., FOROOSH H., TAPPEN M., PENSKY
M.: Sparse convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2015). 2

[LWL17] Luo J.-H., Wu J., LIN W.: Thinet: A filter level pruning
method for deep neural network compression. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (Oct 2017).
2

[Mea82] MEAGHER D.: Geometric modeling using octree encoding.
Computer graphics and image processing 19, 2 (1982), 129-147. 3

[MF95] MOHAMED S. A., FAHMY M. M.: Binary image compression
using efficient partitioning into rectangular regions. IEEE Transactions
on Communications 43, 5 (1995), 1888-1893. 2

[MHP*17] Mao H., HAN S., PooL J., L1 W, LIU X., WANG Y.,
DALLY W. J.: Exploring the regularity of sparse structure in convo-
lutional neural networks. arXiv preprint arXiv:1705.08922 (2017). 2

[MON*19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 4460-4470. 2

[Mor66] MORTON G. M.: A computer oriented geodetic data base and a
new technique in file sequencing. 3

[MVvAB*20] MUREZ Z., VAN As T., BARTOLOZZI J., SINHA A.,
BADRINARAYANAN V., RABINOVICH A.: Atlas: End-to-end 3d scene

98 D. Riickert & M. Stamminger / SuBloNet

reconstruction from posed images. arXiv preprint arXiv:2003.10432
(2020). 2

[NS88] NAHAR S., SAHNI S.: Fast algorithm for polygon decomposi-
tion. IEEFE transactions on computer-aided design of integrated circuits
and systems 7,4 (1988), 473-483. 2

[NUD17] NARANG S., UNDERSANDER E., DiAMOS G.: Block-sparse
recurrent neural networks. arXiv preprint arXiv:1711.02782 (2017). 1,
2

[NZIS13] NIESSNER M., ZOLLHOFER M., 1ZADI S., STAMMINGER
M.: Real-time 3d reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (ToG) 32, 6 (2013), 1-11. 2

[PFS*19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2019), pp. 165-174.
2

[PGM*19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
ET AL.: Pytorch: An imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703 (2019). 5

[PKG*17] PRISACARIU V. A., KAHLER O., GOLODETZ S., SAPIENZA
M., CAVALLARI T., TORR P. H. S., MURRAY D. W.: InfiniTAM v3:
A Framework for Large-Scale 3D Reconstruction with Loop Closure.
arXiv e-prints (Aug. 2017), arXiv:1708.00783. arXiv:1708.00783.
2

[PRM*17] PARASHAR A., RHU M., MUKKARA A., PUGLIELLI A.,
VENKATESAN R., KHAILANY B., EMER J., KECKLER S. W., DALLY
W. J.: Scnn: An accelerator for compressed-sparse convolutional neural
networks. ACM SIGARCH Computer Architecture News 45, 2 (2017),
27-40. 2

[QSMGI17] Q1 C. R., Su H., Mo K., GUIBAS L. J.: Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (July 2017). 2

[QYSG17] QIC.R.,YIL., SUH., GUIBAS L. J.: Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413 (2017). 2

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. In International

Conference on Medical image computing and computer-assisted inter-
vention (2015), Springer, pp. 234-241. 4

[RMO*19] REIIGWART V., MILLANE A., OLEYNIKOVA H., SIEGWART
R., CADENA C., NIETO J.: Voxgraph: Globally consistent, volumetric
mapping using signed distance function submaps. /EEE Robotics and
Automation Letters 5, 1 (2019), 227-234. 2

[ROUGI17] RIEGLER G., OSMAN ULUSOY A., GEIGER A.: Octnet:
Learning deep 3d representations at high resolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2017),
pp. 3577-3586. 2

[RPYU18] REN M., POKROVSKY A., YANG B., URTASUN R.: Sb-
net: Sparse blocks network for fast inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 8711-8720. 2,5

[RUBG17] RIEGLER G., ULUSOY A. O., BISCHOF H., GEIGER A.:
Octnetfusion: Learning depth fusion from data. In 2017 International
Conference on 3D Vision (3DV) (2017), IEEE, pp. 57-66. 2

[SC17] SHIS., CHU X.: Speeding up convolutional neural networks by
exploiting the sparsity of rectifier units. arXiv preprint arXiv:1704.07724
(2017). 2

[SCYE17] SzE V., CHEN Y.-H., YANG T.-J., EMER J. S.: Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE 105, 12 (2017), 2295-2329. 2

[SG93] SOLTAN V., GORPINEVICH A.: Minimum dissection of a recti-
linear polygon with arbitrary holes into rectangles. Discrete & Compu-
tational Geometry 9, 1 (1993), 57-79. 2

[SHF12] SuKk T., HOSCHL C., FLUSSER J.: Rectangular decomposition
of binary images. In International Conference on Advanced Concepts
for Intelligent Vision Systems (2012), Springer, pp. 213-224. 2

[SHIF12] Suk T., HOSCHL IV C., FLUSSER J.: Decomposition of bi-
nary images—a survey and comparison. Pattern Recognition 45, 12
(2012), 4279-4291. 2

[SKC13] STEINBRUCKER F., KERL C., CREMERS D.: Large-scale
multi-resolution surface reconstruction from rgb-d sequences. In Pro-
ceedings of the IEEE International Conference on Computer Vision
(2013), pp. 3264-3271. 2

[TLZ*20] TANG H., L1u Z., ZHAO S., LIN Y., LIN J., WANG H., HAN
S.: Searching efficient 3d architectures with sparse point-voxel convo-
lution. In European Conference on Computer Vision (2020), Springer,
pp. 685-702. 2, 5

[TQD*19] THOMAS H., Q1 C. R., DESCHAUD J.-E., MARCOTEGUI B.,
GOULETTE F., GUIBAS L. J.: Kpconv: Flexible and deformable convo-
lution for point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (October 2019). 2

[VK*19] VARMA G., KOTHAPALLI K., ET AL.: Dynamic block sparse
reparameterization of convolutional neural networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops
(2019), pp. 0-0. 2

[WGH*21] WEN N., Guo R., HE B., FAN Y., MA D.: Block-sparse
cnn: towards a fast and memory-efficient framework for convolutional
neural networks. Applied Intelligence 51, 1 (2021), 441-452. 2

[WHLO1] Wu C.-H., HORNG S.-J., LEE P.-Z.: A new computation of
shape moments via quadtree decomposition. Pattern Recognition 34,7
(2001), 1319-1330. 2

[WSPO20] WEDER S., SCHONBERGER J., POLLEFEYS M., OSWALD
M. R.: Routedfusion: Learning real-time depth map fusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2020), pp. 4887-4897. 2, 5

[WWW*16] WEN W., WU C., WANG Y., CHEN Y., L1 H.: Learn-
ing structured sparsity in deep neural networks. — arXiv preprint
arXiv:1608.03665 (2016). 2

[YCS17] YANG T.-J., CHEN Y.-H., SZE V.: Designing energy-efficient
convolutional neural networks using energy-aware pruning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (July 2017). 1

[ZYG*17] ZHOU A., YAO A., GUO Y., XU L., CHEN Y.: Incremental
network quantization: Towards lossless cnns with low-precision weights.
arXiv preprint arXiv:1702.03044 (2017). 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

http://arxiv.org/abs/1708.00783

