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Figure 1: Visualization of the screen space error and its tessellation for an naive distance-based level-of-detail approach (left), a uniform
tessellation based on Filip et al. [FMM86] (middle) and our approach (right).

Abstract
Interactive tessellation of parametric surfaces has many applications in both engineering and entertainment computing. The
most common primitives are bi-cubic Bézier patches which are, among others, an intermediate representation of subdivision
surfaces for rendering. The current state-of-the-art employs hardware tessellation where a uniform subdivison pattern is used
per patch. If the curvature varies strongly over a patch, this results in an over-tessellation of flat areas.
Based on the observation that the second derivative changes linearly over the patch, we show that it is possible to re-
parameterize the patches such that the tessellation adapts to the curvature. This way, we reduce the number of primitives
by an average of 15% for the same error bound.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Rasterization;

1. Introduction

In the field of computer-aided Design (CAD), parametric surfaces
are the most wide used object representations. While their math-
ematical properties permits an engineer to meet precise technical
specification the visualization or computation requires additional
regard. For rendering a common method is to convert the object of
interest into a polygonal form (usually triangles or quadrilaterals)
and finally render this object representation.

One of the disadvantages of those approaches is the synthe-
sized geometry: On the one hand the patches are partially over-
tessellated, which results in an overhead of the memory consump-
tion and higher processing times and on the other hand they are
under-tessellated which can result in visual or computational arti-
facts. Especially, patches of high variance in curvature are affected
by those issues.

Currently, the state-of-the art is using the uniform patterns of
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the hardware tessellation unit for rendering. When aiming to guar-
antee a given parametric error in screen space, the approximation
error is computed from bounds on the second derivatives. While
this is very efficient, using uniform tessellation leads to the afore-
mentioned over-tessellation of flat regions. Our main contributions
are

– a re-parameterization of the sampling pattern to account for local
curvature and reduce over-tessellation

– and an improved upper bound for the mixed second derivative,
further reducing the number of primitives.

In combination, we can significantly reduce the number of primi-
tives while still guaranteeing the same parametric error.

2. Related Work

In order to guarantee a given geometric or screen space error when
tessellating curved surfaces, different upper bounds for piecewise
linear approximations have been proposed. Based on the convex
hull property of Bézier curves and surfaces, Filip et al. [FMM86]
derived upper bounds computed from second derivatives of the
surface. This also works for rational surfaces with finite positive
weights. While these can be efficiently computed from the control
points, there is a significant over-estimation of the error in some
cases. Zhen et al. [ZS00] extended this approach for rational sur-
faces by directly using the homogeneous coordinates to compute
tighter bounds. Methods based on the second derivatives give an
upper bound for the parametric error which in turn is an upper
bound for the geometric error. If the geometric error alone is re-
quired, slefes [Lut00] can be used as a tighter bound. The error is
calculated as the distance between an upper and lower enclosing
polygon which produces tighter bounds, especially for coarse tes-
sellations.

GPU-based tessellation of parametric surfaces was introduced
by Boubekeur et al. [BS05]. The approach is based on precom-
puted tessellation patterns that are rendered using instancing. The
surface points are then computed in the vertex shader. Simultane-
ously, Guthe et al. [GBK05] also proposed using a fixed set of tes-
sellation patterns. In addition, the tessellation factors are computed
on the CPU for a given screen space error using bounds on the
derivative of the surface [FMM86]. As independent tessellation of
patches causes cracks which cannot be avoided when using fixed
patterns, these where filled with line strips.

Since using a regular pattern for a complete surface patch leads
to over-tessellation in flat regions, Eisenacher et al. proposed a re-
cursive subdivision of the patches [EML09]. The subdivision is ex-
ecuted in parallel on the GPU, until a given screen space error is
reached. While this significantly reduces the number of rendered
triangles, it is only efficient, if enough sub-patches can be processed
in parallel.

After introduction of the tessellation unit [Mic09] into the graph-
ics pipeline, several methods using hardware tessellation where de-
veloped. Based on the approximation error computed from slefes,
Yeo at al. [YBP12] propose a pixel accurate rendering of parametric
surfaces. Later, they improved the approach to use tighter bounds
based on variance of the surface [YBP14]. As the approximation

error from slefes can only be used for Bézier patches, Hjelmervik
et al. [Hje14] proposed an approach based on projecting bounds on
the derivatives of the surface to screen space. For Bézier surfaces,
they use the bounds proposed by Filip et al. [FMM86].

3. Preliminaries

For our proposed approach we consider bi-cubic tensor product
Bézier surface patches using the Bernstein polynomial

s(u,v) =
3
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3
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ci, j B3
i (u)B

3
j(v) . (1)

where ci, j are the control points of the patch which is defined over
the parametric space u,v∈D = [0,1]× [0,1]. Furthermore, the sec-
ond order partial derivatives along u, v and the second order mixed
derivatives are defined as:
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Hereby, cu2

i, j, cv2

i, j and cu,v
i, j are the corresponding control points of

su2(u,v), sv2(u,v) and suv(u,v) with:

cu2

i, j = 6(ci, j−2ci+1, j + ci+2, j) , (5)

cv2

i, j = 6(ci, j−2ci, j+1 + ci, j+1) , (6)

cu,v
i, j = 9(ci, j− ci+1, j− ci, j+1 + ci+1, j+1) . (7)

For a more detailed discussion of Bézier curves and surfaces we
refer to Farin et al. [Far01] and Piegl et al. [Pie95].

3.1. Error bounds

According to Filip et al. [FMM86] the introduced error while lin-
early approximating a C2-continuous surface is bound by

sup
(u,v)∈D

‖s(u,v)− l(u,v)‖ ≤ 1
8
(∆u2Mu +2∆u∆vMuv +∆v2Mv),

(8)
with
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2s
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and l(u,v) be the linear approximation using right triangles of edge
lengths ∆u and ∆v. Furthermore, as noted by Guthe et al.[GBK05],
we can separate the sampling densities resulting in an approxima-
tion error which is bound by

ε≤ 1
8

(
∆u2(Mu +Muv)+∆v2(Mv +Muv)

)
. (10)

Using equation (10) we can estimate the minimal edge length
for ∆u and ∆v to guarantee an upper bound approximation error ε
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while not over-tessellating the corresponding patch. Because ε is
an upper bound, the error for each direction has to be at most ε

2 :

∆u≥
√

4ε

Mu +Muv
and ∆v≥

√
4ε

Mv +Muv
. (11)

3.2. Uniform Tessellation

Applying our analysis of section 3.1 to tessellate bi-cubic Bézier
surface patches we can compute the edge lengths of the linear ap-
proximating triangles ∆u and ∆v. Because the edge length is inverse
to the corresponding tessellation parameter, those can be defined
for both directions as:

tu ≥
√

Mu +Muv

4ε
and tv ≥

√
Mv +Muv

4ε
. (12)

The bounds on the absolute values of the derivatives used in eq. (12)
can be computed using the convex hull property of Bézier patches:
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∥∥cuv
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∥∥ . (15)

Edge Tessellation Factor For the edges we can simplify the afore-
mentioned equations, because those are not depending on the mixed
partial derivative Muv:

tue ≥
√

Mu

4ε
and tve ≥

√
Mv

4ε
. (16)

While not considering the mixed derivative guarantees a hole
free tessellation as long as the control points of adjacent patches
are identical, it can lead to an increased error along the bound-
ary triangles of the patch [Hje14]. This can be solved by sim-
ply narrowing the border triangles using an scaling and transla-
tion of the interior parameters. For details on this, we refer to
Hjelmervik et al. [Hje14].

4. Our Method

One of the main disadvantages of the aforementioned method, as
illustrated in Figure 2, is the over-tessellation along areas of low
curvature to guarantee a maximum approximation error ε.

Figure 2: Illustration of the approximation error for a constant tes-
sellation factor as proposed in section 3.2. With increasing second
derivative (right) the approximation error also increases. The two
segments with the highest error are marked in red.

To address this limitation, we re-position the samples on the sur-
face to increase the density in high-curvature areas while decreas-
ing it in areas of low curvature. As a first step, we compute local
sampling densities t l

u and t l
v:

t l
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, (17)
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4ε
. (18)

By integrating the local sampling density along the correspond-
ing direction and taking the maximum over the other direction we
compute the optimal sampling density for each direction, which
leads to:

tu ≥ sup
v∈[0..1]
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Additionally, we extended the bounds on derivatives of Filip. As
we already mentioned above, we use the convex hull property of
Bézier patches for an estimation of the upper bound. Because we
limit ourself to bi-cubic surface patches, the second order partial
derivatives along the u- and v- directions are linear depending on
the corresponding parameter:

‖su2(u,v)‖ ≤ max
j∈[0..3]

(
(1−u)

∥∥∥cu2

0, j

∥∥∥+u
∥∥∥cu2

1, j

∥∥∥) , (21)

‖sv2(u,v)‖ ≤ max
i∈[0..3]

(
(1− v)

∥∥∥cv2

i,0

∥∥∥+u
∥∥∥cv2

i,i

∥∥∥) . (22)

For the mixed partial derivative we stick to using a constant upper
bound derived from the convex hull, because it is quadratic.

Using equations (19) to (22) we can determine ideal tessellation
factors for each direction:
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Integrating over u and v respectively leads to:
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Interior Re-Parametrization We have now computed the total
sampling density based on a local varying density. In the second
step we therefore need to re-parameterize the uniform samples ac-
cording to the local density. To reproduce the local sampling densi-
ties, the re-parameterization ū(u,v) in u-direction has to fulfill the
following condition:

∂ū(u,v)
∂u

∝ 1
t l
u(u,v)

. (27)

Combining this with eq. (17) and the fact that for bi-cubic sur-
face patches su2(u,v) is linear in the u-direction, the new sample
positions are then computed proportional from the old ones with:

ū(u,v)∝
∫ u

0

1√
(1−u′)‖su2(0,v)‖+u′ ‖su2(1,v)‖+Muv

du′ ,

(28)

where u′ is the initial uniform sample position.

By solving eq. (28) for u and analogosly for v, we get
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with
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Given u and v for the current vertex, we then evaluate the surface
at (ū(u,v), v̄(u,v)).

Edge Tessellation Factor and Re-Parametrization Similar to the
uniform tessellation without re-parametrization we can omit the
mixed partial derivative Muv for the edges and can compute the
tessellation factor along the u-direction via
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where j ∈ 0,3 and the corresponding re-parameterized sample po-
sition:
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M0
u2(v) = ‖su2(0,v)‖ and M1

u2(v) = ‖su2(1,v)‖ . (34)

And for the v-direction the tessellation factor is defined as:
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where i ∈ 0,3 and the appropriated re-parametrization:

v̄e(u,v) =

√
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with

M0
v2(u) = ‖su2(0,v)‖ and M1

v2(u) = ‖su2(1,v)‖ . (37)

Due to disregarding the mixed derivative for the edges and ap-
plying the same sampling density and re-parametrization on adja-
cent patches, the tessellation is guaranteed to be hole-free, as long
as the control points of adjacent patches match. Similar to the uni-
form case, we solve the problem of increased error along boundary
triangles by using the approach of Hjelmervik et al. [Hje14].

(a) Naive Tessellation (b) Uni. Tessellation (c) Our Method

Figure 3: Comparison of the generated geometry of the aforemen-
tioned three different tessellation strategies.

Figure 3 illustrates the difference in the resulting triangulation
for a naive distance based tessellation (left), the uniform tessella-
tion (middle) and ours (right). As can be seen reduces our method
the number of generated triangles.

5. Implementation

Based on our preceding analyses we can guarantee an upper ap-
proximation error ε without over- or under-tessellating Bézier sur-
face patches. To evaluate this we implemented the algorithm us-
ing OpenGL with its rendering pipeline including the tessellation
stages [SA19]. This stage, with its Tessellation Control Unit (TCS)
for computing the tessellation factors and the Tessellation Evalua-
tion Unit (TES) for re-parametrizing and evaluating the patches fits
ideally for our proposed algorithm.

Within the TCS we compute the tessellation factors as outlined
in equations (19) and (20) for the inner part as well as equation (32)
and eq. (35) for all four edges per patch. Furthermore, as the mixed
partial derivative Muv is constant over the patch, we can compute
it in the TCS and pass it on to all following shaders. Additionally
to that, we compute the control points of the partial derivatives cu2

i, j

and cv2

i, j to reduce the number of computations in each TES invoca-
tion. In the next stage of the pipeline, the fixed-function Tessellation
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Primitive Generator uses our computed factors and distributes the
newly generated primitives uniformly over the patch.

After that the TES is invoked for each generated primitive for
evaluating the patch at the corresponding (u,v)-parameter pairs.
Before that, we re-parameterize the input parameter values with
respect to the curvature based on our equations (29) and (30) for
the inner part and eq. (33) and (36) for the outer ones. After this
step, we compute new vertices by evaluating the patch at those new
parameter values. Schäfer et al [SNK*14] outlined a fast and easy
to implement algorithm for that.

5.1. View-dependent error bound

The approximation error ε introduced in section 3 is used as a con-
stant factor for an upper bound while generating approximating ge-
ometry. Especially for visualization applications this can lead to an
over-tessellation of the patches. Due to the perspective projection
and in case the object is far off the viewing point this results in tri-
angles of sub-pixel sizes include memory and processing overhead,
as well as possible visual artifacts.

To overcome this limitation, we extend ε to take the distance to
the camera into account. As an estimation of the distance between
the viewing point and the patch, we use the distance between cam-
era and bounding box of the patch control points. To produce a
hole-free tessellation, the distance to the bounding box of the edge
control points is used for the edges instead. In addition to the dis-
tance we introduce another user-defined parameter to specify the
upper pixel error. The final approximation error ε is then computed
from the pixel error, the screen resolution, camera field of view and
distance to camera.

5.2. Tighter Muv bound

Another improvement is using a tighter upper bound for the mixed
partial derivative Muv. As we mentioned in section 3, an upper
bound of Muv is the maximum norm of the control points of the
second-order mixed partial derivative. A simply way to improve
the error bound is to perform one midpoint subdivision of this
bi-quadratic function. Computing a midpoint subdivision of a bi-
quadratic patch is relatively cheap and we only need to compute
16 out of the 25 control points of the four sub-patches, since all
control points adjacent to two or four sub-patches are convex com-
binations of adjacent control points. The remaining control points
are the corners of the original patch and the new control points ad-
jacent to them (see Figure 4).

5.3. Pre-compuation

We increase the throughput performance of our algorithm by re-
ducing the computational operations per frame. This is achieved,
similar to Yeo et al. [YBP12], by moving computations which are
not depending on variable parameters such as the viewing point to a
compute shader. For details on this we refer to Yeo et al. [YBP12].

6. Results and Discussions

We compared our proposed algorithm to a naive distance based
level-of-detail implementation and a more advanced uniform tes-

Figure 4: Control points of the original mixed derivative (bi-
quadratic Bézier patch) in blue and control points of four sub-
patches after midpoint subdivision in black/grey. Only the dark con-
trol points are required to compute the convex hull, since the others
are convex combinations of their neighbors.

sellation strategy based on Filip et al. as described in section 3.2.
We evaluate all three algorithms in terms of generated geometry,
performance and visual errors. All algorithms were tested using
models of different complexity and number of patches (cf. Fig-
ure 5). As a pre-processing step we converted all input models into
a pure Bézier representation. For all our measurements we used an
elliptic camera path of 500 frames around the models with varying
distance to the object.

(a) Patch
p: 2

(b) Teapot
p: 32

(c) Gumbo
p: 128

(d) Propeller
p: 4 872

(e) Frog
p: 7 404

(f) Killeroo
p: 46 128

Figure 5: Overview of the used test models. We converted all mod-
els into bi-cubic Bézier surface representations. Listed below each
model are its patch count.

We performed all measurements on an
AMD Ryzen™ 7 2700X CPU, 32GB RAM and an
NVIDIA GeForce™ RTX 2080 Ti running Linux 5.12.12,
NVIDIA Driver Version 465.31 and Xorg 1.20.11 for display
server.

6.1. Generated Geometry

The number of generated primitives are visualized in Figure 6 over
the entire camera animation. As illustrated, our algorithm always
outperforms uniform tessellation, while the Naive approach gen-
erates less geometry for distant camera positions. This is due to
the fact that this implementation only considers the distance and
no error bound constraint. A comparison of all algorithms for all
models is shown in Table 1. In all our tests our method outper-
forms the other approaches in terms of the maximum number of

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

51



C. Buchenau & M. Guthe / Real-Time Re-Parameterized Bézier Tessellation

generated primitives as well as the average one across the entire
animation. For the Killeroo model our algorithm reduced the max-
imum number of generated primitives to 5.20% compared to the
Naive implementation and 80.97% to uniform tessellation at close-
up. On average, the Naive version still generates 2.27 and uniform
tessellation 1.17 as many primitives as ours.

0 100 200 300 400 500
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106

107

Frame

Pr
im

iti
ve

C
ou

nt

Naive Uniform Ours

Figure 6: Geometry generation of all three algorithms using the
Killeroo model. For our tests we animate a camera path around the
object on an elliptic path to guarantee different level-of-details.

Improvement of bound on Muv In section 5.2, we introduced a
tighter bound for Muv. The difference of the number of generated
primitives compared to the upper bound by Filip et al. is illustrated
in Figure 7. While never increasing the number of triangles, our
bound reduces the number of generated primitives by 10% at close-
ups.
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·104
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Propeller

Frog
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Figure 7: Difference in the number of the generated primitives
for our improved bound on Muv and the upper bound by Filip et
al. [FMM86].

6.2. Performance

If we compare the performance of our approach to the others, we
notice that despite the reduced geometry, there is unfortunately no
significant advantages in terms of the average rendering time (cf.
Table 2).

A closer look at uniform tessellation and our approach reveals
that we are despite the reduced number of generated primitives

only on par with respect to rendering time. This effect is a result
of the more complex evaluations within the rendering pipeline. As
the upper bound of Filip et al. is defined directly by the convex hull
property, our tighter bound requires an additional (partial) midpoint
subdivision as described in section 5.2. In addition, for each newly
generated pair of (u,v)-coordiantes the equations (29) and (30) for
interior and equations (33) and (36) for the border vertices have to
be evaluated.

Using our approach, but also using uniform tessellation, we mea-
sured high frame rates in all our tests even for close-ups. Using
the Killeroo model a minimal frame rate of 717.22 is achieved us-
ing our method. In contrast to the naive distanced based level-of-
detail (LoD) approach, which drops to 78.57 we achieve a nearly
ten times higher frame rate. Even if we increase the number of in-
put patches, we still have acceptable frame rates. We rendered 5×5
Killeroo models (1153200 patches) without instancing at a frame
rate of 182.77 FPS for a close-up while the LoD method drops be-
low 30 FPS. The reason for this drop is the number of generated
primitives as the rasterizers become the bottleneck [NVI18].

Figure 8 illustrates the frame rates for the Killeroo model across
all three algorithms over the entire camera animation. If we com-
pare the graphs for the number of generated primitives (Figure 6)
with the frame rates, we can see a direct correlation between the
frame rate drop and the number of generated triangles.
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Figure 8: Comparison of the performance for all algorithms using
the Killeroo model. The frame rate drops for the Naive variant is
due to the number of generated primitives (cf. Figure 6).

TCS vs. Compute Shader As already mentioned, the evaluation
of our upper bound on Muv is more complex, as it requires com-
puting additional control points. Furthermore, if we evaluate this
within the TCS it has to be computed in each frame for each patch,
even if the control points haven’t changed (e.g. by object anima-
tion). This is a superfluous computation which can be precomputed.
By moving this computation to a separate compute shader we ex-
perienced an increase of the average frame rate of 24.04% for the
Killeroo model in our tests. A detailed comparison over the camera
animation is shown in Figure 9.

6.3. Visual Errors

Using our approach we achieved an averaged visual error of 0.51
pixels for the Killeroo model at high frame rates. Figure 10 shows
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Model
Number of generated Primitives

Ours Naive Uniform
Max Avg Max Avg Max Avg

Patch 16062 16059 16384 (×1.02) 16349 (×1.02) 16062 (×1.00) 16059 (×1.00)
Teapot 132331 76972 202496 (×1.53) 121663 (×1.58) 152631 (×1.15) 92319 (×1.20)
Gumbo 428776 270443 803337 (×1.87) 465083 (×1.72) 487926 (×1.14) 317453 (×1.17)
Propeller 242892 183090 4028703 (×16.59) 1183851 (×6.47) 275267 (×1.13) 205975 (×1.12)
Frog 382787 224624 9730247 (×25.42) 1521384 (×6.77) 449061 (×1.17) 261955 (×1.17)
Killeroo 895653 557054 17232927 (×19.24) 1264945 (×2.27) 1106172 (×1.24) 654078 (×1.17)

Herd 8588282 6487955 183989842 (×21.42) 12418953 (×1.91) 10042864 (×1.17) 7568086 (×1.17)

Table 1: Maximum and average number of primitives generated for each model and algorithm with reduction of geometry compared to ours.

Model
Framerate in [FPS]

Ours Naive Uniform
Min Avg Min Avg Min Avg

Patch 4648.42 8124.34 6026.09 (×1.30) 11826.11 (×1.46) 5627.08 (×1.21) 10430.03 (×1.28)
Teapot 1449.78 3552.38 1076.67 (×0.74) 3123.68 (×0.88) 1724.65 (×1.19) 3903.81 (×1.10)
Gumbo 995.78 1920.63 815.71 (×0.82) 1564.51 (×0.81) 957.37 (×0.96) 1838.31 (×0.96)
Propeller 1323.31 2610.17 310.09 (×0.23) 1732.85 (×0.66) 1474.85 (×1.11) 2696.94 (×1.03)
Frog 969.02 2274.24 118.30 (×0.12) 4368.94 (×1.92) 971.74 (×1.00) 2518.03 (×1.11)
Killeroo 717.22 989.69 78.57 (×0.11) 2029.39 (×2.05) 706.58 (×0.99) 984.31 (×0.99)

Herd 182.77 200.61 18.30 (×0.10) 251.80 (×1.26) 186.93 (×1.02) 216.07 (×1.08)

Table 2: Minimum and average frame rates for all algorithms across our used models. Despite the reduced number of primitives, our
algorithm only outperforms uniform tessellation for two out of six test models.
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Figure 9: Performance comparison of our upper bound on Muv
computed in the compute shader (CS) and the tessellation control
shader (TCS). As the upper bound of mixed derivates is depending
only on the control points, this can be pre-computed as long the
geometry isn’t changing.

the screen space error in pixels for all algorithms. The error stays
below one pixel for our approach except for two frames during an
extreme close-up. This occurs due to the fact the slanted triangles
at the border of the patches violate the triangle shape assumption
of Hjelmervik et al. [Hje14]. A zoomed detail view of the region of
interest is visualized in Figure 11.
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Figure 10: Temporal progression of the screen space error in pix-
els for the Killeroo model across all three algorithms. In general
uniform tessellation as well as our approach guarantee an error
below one pixel. This error bound is only exceeded in case of highly
slanted border triangles (cf. Figure 11).

7. Conclusions

We have proposed an approach to tessellate and render bi-cubic
Bézier patches using a re-parameterization of the sampling pattern
to account for local curvature and to reduce over-tessellation in flat
regions. Furthermore, we improved the upper bound on the mixed
derivative introduced by Filip et al. [FMM86] to further reduce the
number of generated primitives. Based on our analysis we reduced
the number of triangles by approximately 15% compared to uni-
form tessellation using the error bounds from Filip et al. without
exceeding the given upper bound error.
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Figure 11: Zoom into detail of the Killeroo model where the error
bound of one pixel is exceeded (red pixels). This occurs at the outer
strip of the tessellation at slanted triangles, which violate the tri-
angle shape assumption of Hjelmervik et al. [Hje14].

In our evaluations we observed a frame rate comparable to uni-
form tessellation. Despite the reduced number of primitives, our
method is only on par because of the more complex upper bound
computation and the following re-parameterization in the evalua-
tion shader. If additional computations have to be performed per
vertex, the reduced number of triangles would however still be an
advantage. In addition, we achieve a slightly lower error at maxi-
mum tessellation level.
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