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Figure 1: Visual Interface. The infection contagion in the patient contact graph (left) is simulated. The development of the contagion is
shown with Aggregated Cascades Graph (center). The contagion results are clustered and displayed with Contagion Graphs (right).

Abstract
Clinicians and hygienists need to know how an infection of one patient could be transmitted among other patients in the hospital
(e.g., to prevent outbreaks). They need to analyze how many and which patients will possibly be infected, how fast the infection
could spread, and which contacts are likely to transfer the infections within the hospital. Currently, infection contagion is
modeled and visualized for populations only on an aggregate level, without identification and exploration of possible infection
between individuals. We present a novel visual analytics approach that simulates the contagion in a contact graph of patients in
a hospital. We propose a clustering approach to identify probable contagion scenarios in the simulation ensemble. Furthermore,
our novel visual design for detailed assessment of transmission shows the temporal development of contagion per patient in one
view. We demonstrate the capability of our approach to a real-world use case in a German hospital.

CCS Concepts
• Human-centered computing → Visualization; Graph drawings; Visual analytics;

1. Introduction

Multi-resistant pathogens and viruses, such as the influenza virus
and the noro virus, within hospitals are an acute problem in

Germany, USA, Japan, and other countries worldwide [GG11,
HSR∗18]. The pathogens are transmitted among the patients in the
hospital. In a hospital with a few hundred patients, dozens of the
patients might get infected, depending on the pathogen type and
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hospital ward [HSR∗18]. An infection obtained in hospitals is not
only a threat for the patients’ health, it also raises costs of treatment.

Clinicians and hygienists (or “experts”) seek to identify and
predict infection contagion to prevent pathogen outbreaks, i.e.,
a higher number of infected patients than the usual occurrence.
Infectious patients are identified with their microbiology re-
sults [HSR∗18]. However, not all patients are tested regularly for
all types of pathogens and infection contagion might be overlooked.
Moreover, for a new patient in a hospital, the test results are avail-
able only after a couple of days after the test. In the meantime,
the infection could already spread. An infected patient may trans-
mit the infection to other patients through contact, e.g., those in
the same hospital ward, same operation room, et cetera. The in-
fected patients can then transmit the infection to their contacts and
so on [DWSG12]. The prediction of such an infection contagion
among the patients would help the experts to understand likely
transmission routes to prevent an outbreak by developing appropri-
ate intervening strategies. For instance, patients with a high proba-
bility of getting infected or patients with a high probability of trans-
mitting the infection to many others should be isolated early.

Currently, clinicians and hygienists analyze infection contagion
mostly manually. This analysis heavily depends on their individual
expertise and is error-prone [HSR∗18]. In the research literature,
disease spreading is simulated and visualized mostly for large pop-
ulations. The available approaches analyze and visualize the num-
ber of infected persons over time and the spatial distribution of in-
fections [MLR∗11,AKMR16]. These allow for an aggregated view
on the number and location of infected persons. However, the anal-
ysis of infection contagion within hospitals requires an exploration
of possible infections and routes for individuals. The visual anal-
ysis of contagion among individuals exists for other domains such
as finance [vLDBF15] or information spreading [AP16]. These ap-
proaches assume a deterministic spread model, but infection con-
tagion is probabilistic. The prediction of disease spreading is com-
monly computed using Monte-Carlo simulations of S-I-models that
use a probability of infecting a patient along a so-called patient con-
tact graph [NS13,SVS∗17]. Such simulations result in hundreds of
dynamic contagion graphs (or an “ensemble”). Current approaches
for the visual comparison of many graphs [FPSG10, vLGS09] do
not take these dynamics into account.

We present a novel visual analytics approach that simulates and
visualizes infection contagion in a contact graph of patients. We
predict this infection contagion by computing Monte-Carlo simula-
tions of S-I-model, which starts from one initial patient (e.g., a new
patient in a hospital) and spreads along patient contacts (cf., Sub-
section 3.1). This method is commonly used [NS13, SVS∗17] and
fits the experts’ model of contagion. Our analysis approach for the
resulting ensemble of dynamic contagion graphs is based on two in-
terrelated parts. First, in Subsection 4.3, we present a novel visual
design that combines several contagion-relevant data in one view.
This data encompasses, i.a., the likelihood of infection for patients,
for infecting contacts, and the temporal development of the infec-
tion contagion. Second, in Subsection 4.4, we propose a specialized
clustering to gain an overview of the possible contagion scenarios,
which may differ in, e.g., the length of the contagion, the set of
infected patients, and the infecting contacts.

We demonstrate the usefulness of our approach on a real dataset
from a German hospital in Section 5. We developed this use case in
cooperation with our project partners—clinicians and hygienists.

2. Related Work

Contagion transmission over networks is studied in domains
such as health-care and epidemiology for disease spread-
ing [HSR∗18, AKMR16, DWSG12], finance for systemic risk
analysis [vLDBF15, Sar16], biology for gene mutation analy-
sis [LKB∗14], social media for information spreading, and opinion
flow [BHBGBM13, ZCW∗14, AP16, VWH∗13]. Each domain has
specific contagion models, that determine the simulation result and,
thus, the visualization requirements.

For the simulation of disease spreading, targeted tools such as
NEMO [AKMR16] or GEFSim [SVS∗17] exist. They focus on the
simulation functionality and visualize only population statistics—
the number of infected patients in line charts. This is insufficient
for a detailed view of stochastic infection contagion over a pa-
tient contact network. Such simulations result in an ensemble of
dynamic graphs that need to be compared and analyzed in detail
for patients individually. This is challenging, with very few ex-
isting approaches [LZM19, BBDW17]. Most ensemble visualiza-
tions focus on multivariate and temporal data [CZC∗15]. For net-
works, Liu et al. [LZM19] and Bremm et al. [BvLH∗11] provide
a multi-level approach for visual comparison of static phylogenetic
trees. These approaches are restricted to static tree-structured data.
Manynets [FPSG10], GraphLandscape [KKNW17], and SOM-
based clustering [vLGS09] extract graph properties and compare
many static graphs using their properties. However, two differently
structured graphs can have the same properties [CSL∗18]. Small
multipiles [BHRD∗15] allow to compare several static graphs in
detail but do not scale well with hundreds of nodes and thousands of
graphs. The graphs could be reduced to points and their similarity
could be shown through dimensionality reduction [vLDBF15,vdE-
HBvW15]. This would allow to show also the network dynam-
ics but not the graph structure as necessary for infection conta-
gion analysis. The dynamics of the graph structure can be shown
by GraphDiaries [BPF13] or by interleaved parallel edge splat-
ting [BHW17]. This is, however, restricted to one dynamic graph.

Visual analytics for epidemiologists focuses mainly on the
spatio-temporal evolution of a disease over a population—how
many persons will be infected in which geographic area and how
fast will the disease spread over these areas [MHR∗10,BWMM15,
LAS14,BH13,YDH∗17]. However, the detailed view on individual
infected persons and contacts transmitting the disease, as needed
for hospital analysis purpose, is not sufficiently supported. Visual
analysis of hospital patients by now concentrates on the treatment
history [RWA∗13, RFG∗17, CCDW17] without a specific view on
the infection contagion along patient contacts.

3. Contagion, Simulation, and Analysis Tasks

In the following, we describe the terms regarding infection conta-
gion that we use throughout the paper. We explain the simulation
and present the analysis tasks of the hygienists and clinicians.
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Figure 2: Five possible contagion graphs CGi for the contact graph G. Each contagion spreads from the initial patient P0 (red in G). In
CG3 and CG4 the same nodes are infected but the order and infective edges differ. The similarity of CG3 and CG4 depends on the task
(cf., Subsubsection 3.3.3). All contagion graphs of the simulation S are shown with the Contagion Graph View (left) and the Aggregated
Cascades Graph View (right).

3.1. Definitions

A patient contact graph (or “contact graph”) G = (N,E) is a
graph consisting of nodes N = {n1, . . . ,n|N|} and directed edges
E = {e1, . . . ,e|E|} ⊆ N × N. The nodes represent patients in a
hospital and the edges represent contacts between these patients,
e.g., when patients share a room. A contact is bidirectional per-
definition, i.e., when patient n1 was with patient n2 at a certain lo-
cation, then n2 was with n1 at this location as well: ∀ei = (nk,nl) ∈
E : ∃e j = (nl ,nk) ∈ E. The set of nodes {nl} : (nk,nl) ∈ E are “tar-
gets” of nk.

Various models [All94] exist to model an infection contagion
(or “contagion/transmission process”, “disease spreading”) over
the patient contact graph G. We use the discrete S-I-Model, a sim-
ple but powerful model, which fits the hygienists’ model of con-
tagion in our use case. Each patient and contact has an infection
state In f (·, t) ∈ {0,1} per step t. 0 means that a patient or contact
is susceptible and 1 means that a patient is infected and a contact is
infective (i.e., transmitted an infection), respectively. This state can
change during the infection contagion. At t = 0, all contacts and all
patients apart from one initial patient are susceptible.

Each edge ei = (nk,nl) has an attribute p(ei)∈ [0,1] that denotes
the probability of infection transmission from patient nk to patient
nl . This probability is given externally. It depends on the general
probability of infection transmission and individual patient charac-
teristics (e.g., elderly persons are more likely to get infected).

During infection contagion the infection of the initial patient n0
In f (n0,0) = 1 at t = 0 is transmitted along the contacts in the graph
G. In each step t > 0 the patients nk infected at step t−1 infect their
susceptible targets {nl} : ei = (nk,nl) ∈ E∧ In f (nl , t−1) = 0 with
probability p(ei). This possibly causes an infection state change
of any target patient and the respective contact: ∆In f (·, t + 1) =
In f (·, t) ∨ In f (·, t − 1). According to the hygienists’ and clini-
cians’ knowledge of infectious diseases in the analytical focus,
e.g., MRSA or herpes, infected patients remain infectious even
though they may not have any illness symptoms. The contagion
continues as long as new patients are infected: ∀t ∈ (0,T ]∃nl ∈ N :
∆In f (nl , t) = 1∧∀t > T∀nl ∈ N : ∆In f (nl , t) = 0. T is the length
of the contagion. Each step t may be seen as a time interval of in-
fection transmission, such as one day for bacterial diseases. Note
that every edge has exactly one chance to transmit an infection.

Contagion creates a dynamic graph CG = (G0, . . . ,GT ). This
contagion graph is composed of the same nodes and edges as the
contact graph: Nt = N, Et = E. Only the infection states of the pa-

tients and contacts In f (·, t) change between Gt and Gt+1 according
to the description above. Note that a contact of two patients in G is
bidirectional whereas the infection transmission between two pa-
tients is unidirectional. For instance, in Figure 2, the patients P3
and P4 had contact. In the simulation run for CG1, P4 infects P3,
e.g., via cough/air. A cascade C is a directed, acyclic subgraph of
GT that contains only the infected nodes and edges: C = (NC,EC) :
∀n ∈ NC ⊆ NT In f (n) = 1∧∀e ∈ EC ⊆ ET In f (e) = 1.

3.2. Simulation

The infection contagion is a stochastic process (cf., Subsection 3.1).
Its realization depends on the realization of the probabilistic infec-
tion transmission p in each step t for each contact with an infected
patient n, In f (n) = 1. Hence, the analysis of infection contagion is
performed using Monte-Carlo simulations [SVS∗17,JRS09,NS13].

For one patient contact graph G, the Monte-Carlo simulation cal-
culates R contagion graphs CGr: S = {CG1, . . . ,CGR} (also called
“ensemble”). The number of simulation runs R is usually high,
such as R = 100 or R = 1000. Determining the most appropriate
value of R is a subject of research [LM05]. In the illustrative exam-
ple of Figure 2, R equals 5. Each run r starts with the same initial
patient n0, which simulates a disease starting to spread from an in-
fected patient. The infection of n0 may, e.g., stem from outside of
the hospital (“non-nosocomial”) or its source can be an operation.
The stochastic infection contagion creates possibly different conta-
gion graphs in each simulation run CGr 6= CGq,r 6= q: A different
set of nodes or edges may be infected and/or they are infected in
different steps (cf., CG1–CG5 in Figure 2).

3.3. Tasks

The discussions with hygienists and clinicians in our project
team [HSR∗18, LWB∗19, SvLB∗19] as well as the study of medi-
cal literature [SVS∗17, JRS09, NS13] have revealed the following
tasks for infection contagion among hospital patients.

3.3.1. Tasks on the Infection Contagion for Individual Patients

Task-n What is the probability of infection of a patient n?
Task-n-t What is the probability of infection of a patient n until

step t and in step t?
Task-e What is the probability of a contact e to transmit an infec-

tion?
Task-e-t What is the probability of a contact e to transmit an in-

fection in step t?
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Task-nl What is the probability for a patient n infecting no other
patients nl?

Task-nl-t What is the probability of a patient n infecting no other
patients nl in step t?

Task-|{nl}| What is the probability of a patient n infecting a spe-
cific number of other patients?

Note, the probability of contact e = (ni,nk) to transmit an infection
p(In f (e, ·)) equals the probability ni to infect the patient nk.

3.3.2. Tasks on the Length of the Infection Contagion

Task-t What are the likely lengths of the contagion T and how
probable are they?

Task-∆|N|-t How many patients may be infected in step t and how
probable are these numbers?

Note, we focus on the new infections per step as the hygienists
and clinicians in our project are especially interested in outbreak
detection. An outbreak is defined as the number of new infec-
tions |{n∈N : ∆In f (n, ·) = 1}| exceeding a user-defined threshold.
Task-∆|N|-t analyzes when outbreaks probably occur during infec-
tion contagion and together with the other tasks, which patients are
likely to be part of the outbreak. Related work analyzed the alter-
native task of the total number of infected patients, i.e., the sum of
new infections (cf., Section 2).

3.3.3. Tasks on the Contagion Result and Temporal Progress

Task-N Which same patients are infected in the infection conta-
gion result GT across simulation runs and what is its probability?

Task-N-t Which same patients are infected in the infection conta-
gion steps G0, . . . ,GT across simulation runs. How likely is it?

Task-E Which same contacts are infected in the infection conta-
gion GT across simulation runs and how likely is it?

Task-E-t Which same contacts are infected in the infection conta-
gion steps G0, . . . ,GT across simulation runs. How likely is it?

4. Visual Analysis of Infection Contagion

Our user interface (cf., Figure 1) for the simulation and exploration
of infection contagion has two parts. On the left, the user loads the
contact graph G and sets the contagion simulation settings. On the
right, the user visually explores the results in several complemen-
tary views, which answer the user tasks, cf., Subsection 3.3.

• The Contagion Graph View visualizes the result of the conta-
gion: who is infected how likely and by whom.
• The Aggregated Cascades Graph View shows details of the con-

tagion development for individual patients, contacts, and steps.
• A specialized clustering of contagion cascades identifies likely

contagion scenarios. In this view, the user selects the distance
function corresponding to the task at hand. The Contagion
Graph and Aggregated Cascades Graph Views show the output.
• Supportive views provide a broad overview of the simulation:

the length of the contagion, the number of infected patients, and
the number of their targets.

All these views and analysis options can be used in combina-
tion within an exploratory process. The views are linked to, e.g.,
highlight a user-selected patient in all views.

4.1. Simulation Input View

The loaded contact graph is shown as a node-link diagram with
Fruchterman and Reingold layout [FR91] of JUNG [OFS∗05]
(cf., Figure 1). The contact graph displays the patients as white
nodes and their contacts as black edges. The width of the edges
corresponds to the probability of infection transmission p. The user
chooses the initial patient n0, which is then highlighted in red, in
the graph (cf., Figure 2). He then sets the number of simulation runs
R and starts the simulation (cf., Section 3.2).

4.2. Contagion Graph View

The Contagion Graph View (CGV) shows the probabilities of pa-
tient infection and a contact transmitting the infection within the
node-link diagram of the patient contact graph (cf., Figure 2). We
use color saturation [GHL15, BHR17] to show the infection prob-
ability: light red indicates low probability, whereas dark red indi-
cates high probability, and light gray shows a probability value of
0 (cf., Figure 1, bottom left). The probability of the patient being
infected (Task-n) determines the fill color of the nodes. The edges’
color shows the probability of infection transmission (Task-e). The
probabilities are calculated as the number of simulation runs in
which a patient was infected respectively an edge transmitted the
infection divided by the total number of simulation runs R. The
calculated probability of being infective may not equal the origin
contagion transmission probability p. The original probability is
indicated by the edges’ width.

4.3. Aggregated Cascades Graph View

The Aggregated Cascades Graph View (ACGV) focuses on the de-
velopment of the infection contagion on the level of patients, their
contacts, and contagion steps. Inspired by [LKB∗14, vLDBF15,
AP16], we propose to transform the cascades of all dynamic conta-
gion graphs S into one static visualization (cf., Figure 2).

We combine the cascades across all runs into one supergraph—a
directed, acyclic graph with the initial patient n0 as the root node.
The other nodes of this supergraph are patient infections in individ-
ual steps. Edges are infection transmissions in individual steps. In
different cascades, one patient ni may get infected at different steps
t, thus, forms several nodes of the supergraph. The same applies to
infectious edges. Node and edge attributes denote the probabilities
of infection of a patient or contagion transmission per step.

The ACGV shows the infected patients ni : In f (ni, t) = 1 per con-
tagion step t as nodes along the vertical and horizontal axis. Each
patient has a unique vertical position and time steps are on the hori-
zontal axis. The initial patient n0 is at the bottom left (t = 0, y = 0).
The subsequent patients ni, infected in step τ, may differ in each
cascade. They are shown at position t = τ and y = i. In different
cascades, one patient ni may get infected at different steps, thus,
may occur at multiple positions t (with fixed y = i). The graph con-
tains all infective edges. According to the layout, these connect pa-
tients at subsequent steps t = τ and t = τ+1. Hence, their direction
follows from the t-position of the nodes.

The coloring of nodes and edges is consistent with the CGV.
The darker a node’s red fill is, the higher is the patient’s infection
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probability (part of Task-n-t). As the initial patient is infected in
every cascade per definition, its node is filled with the darkest red.
The darker an edge’s red line color is, the higher is its transmission
probability (Task-e-t). In contrast to the CGV, these probabilities
are presented for each step t separately. Hence, the node fill satura-
tion for patient ni may differ for the steps t = τ1,τ2;τ1 6= τ2. The
edge width, again, represents the origin transmission probability p,
which is independent of time, thus, does not vary along the steps.

A yellowish circular arc around each node shows the patient’s
infection probability per step t (Task-n-t). A full circle represents a
certain infection (probability of 100%), a half-circle 50% infection
probability, a quarter circle 25% et cetera. At the first step t = τ

a node ni appears, its circular arc starts at the top center position
above the node. The circular arc for the next appearance of ni at
t = τ+δ,δ > 0 starts where the circular arc for t = τ ends. Hence,
at t = τ+ δ the end of the circular arc represents the probability
of infection for ni in the first τ+ δ steps (0 < t ≤ τ+ δ; Task-n-t).
Consequently, the end of the circular arc at the latest appearance
of the node represents the same probability as the node’s fill color
saturation in the CGV (Task-n). A fraction of the yellow circular
arc may be filled with darker yellow. This part denotes the number
of cascades in which the corresponding patient was infected but
did not infect other patients (i.e., the node is a leaf of the cascade;
Task-nl-t). For instance, in Figure 2, P1 gets infected at t = 1 with
a probability of 63%. He or she infects other patients (here, P2) at
t = 2 with a probability of 15%. The total probability of infection
is 80% (i.e., the end of the circular arc at t = 4).

The user can highlight a patient by clicking on one of the cor-
responding nodes (cf., Figure 5). This patient is then emphasized
with the edges to its infected targets at all steps t the patient gets
infected. Clicking on a contact emphasizes the contact at all steps it
was infective to identify transmission patterns. Patients or contacts
with an infection probability below a threshold can be hidden.

4.4. Clustering of Cascades

The number of possible cascades may be high, even for smaller
patient contact graphs. The user can cluster similar cascades of dif-
ferent simulation runs and view each cluster’s representative. This
reduces the number of cascades to display, thereby improves the
overview of the infection contagion scenarios. Furthermore, the
size of the cluster is equivalent to the probability of the correspond-
ing contagion scenario.

We use hierarchical clustering because it is fast and requires only
a similarity function and no further user-defined parameters. We
propose four specialized similarity functions (sim) for analyzing
cascades according to task-group 3 (cf., Subsection 3.3):

sim-N Infection of the same patients ni : In f (ni, t ≤ T ) = 1
sim-E Infection transmission via the same contacts ei : In f (ei, t ≤

T ) = 1
sim-N-t Infection of the same patients in the same steps ni, t :

In f (ni, t) = 1
sim-E-t The same infection contagion ei, t : In f (ei, t) = 1

The similarity functions calculate the similarity of contagions as
a similarity of boolean feature vectors extracted from the contagion
data. The feature vector depends on the task (cf., Figure 2):

Figure 3: Supportive Visualizations. Number of Infected Patients
per Step (left) and Number of Infected Targets per Patient (right).

1. sim-N: Feature vector of all patients. With 1 at position i if pa-
tient ni was infected and 0 if not.

2. sim-E: Feature vector of all contacts. With 1 at position i if con-
tact ei was infectious and 0 if not.

3. sim-N-t: Feature vectors of all patients and all steps. With 1 at
position i if patient ni was infected in this step and 0 if not.

4. sim-E-t: Feature vectors of all contacts and all steps. With 1 at
position i if contact ei was infectious in step t and 0 if not.

We utilize the Tanimoto similarity [But99] to calculate the simi-
larity of these feature vectors, as it is recommended for such finger-
prints [BRH15]. The first two similarity functions consider only the
final result of the contagion but not its development. The latter two
also consider the contagion development. Therefore, the similarity
of feature vectors in each step is calculated and then summed up.

The users may choose the similarity function that fits their task
(Task-N, Task-N-t, Task-E, Task-E-t). In the GUI, the user can
choose whether the temporal order should be considered for sim-
ilarity calculation (sim-N or sim-E vs. sim-N-t or sim-E-t). The
trade-off between the usage of nodes and edges for similarity calcu-
lation is set as α∈ [0,1] whereas sim=α∗sim-N+(1−α)∗sim-E.
Hence, α= 0 calculates sim-N while α= 1 calculates sim-E. sim-N
and sim-E may be replaced with sim-N-t and sim-E-t, respectively.

We display the calculated similarity values of the iterative hier-
archical clustering as a dendrogram (cf., Figure 4, right). Further-
more, the user can view the clusters with one representative cas-
cade as well as the center per cluster in multiple views (juxtaposed).
Both can be viewed with the CGV or the ACGV.

4.5. Supportive Visualizations

The following visualizations support the analysis. They can be
viewed independently or in conjunction with the main visualiza-
tions (cf., Figure 1).

Length of the Contagion A histogram shows the lengths of the
infection contagion T and their probabilities (Task-t). In Figure 1,
30% of the cascades ended at t = 4.

Number of Infected Patients per Step A line graph shows the
number of patients infected per step t (cf., Figure 3; Task-∆|N|-t).
The graph contains one semi-transparent line per simulation run
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(CGr), thus the superposition of all lines presents an overview for
all simulation runs (S). The end of a line ends at the step at which
the infection contagion stopped (Task-t).

Number of Infected Targets per Patient A histogram for each
patient shows the possible number of its infected targets and their
corresponding probability. In Figure 3, patient P490 infected zero
other patients in 148 out of 1,000 runs, i.e., this patient infects no
others with a chance of approx. 15% (Task-nl). The infection of
P490 likely spreads to more than 20 other patients (Task-|{nl}|).

The upper bounds for the values shown in these supportive views
are also retrievable from the Aggregated Cascades Graph View.

5. Use Case and Expert-Feedback

In this use case, we demonstrate the usage of our visual analytics
approach by a hygienist from a German hospital from our project
team. We use an anonymized dataset (.csv) from a German hospital.
The data on patient locations over time (stored in hospital-intern ac-
counting systems) was used to build the contact graph. The experts
expect patients to have contact when they are at the same location
at one moment. The initial probabilities of infection transmission
p were given externally. The graph is built for three hospital wards
of interest and all patients that are connected to the subgraph that
includes P498. P498 can not infect not-connected patients. This re-
sults in a contact graph with 50 nodes and 327 edges.

The hygienist wishes to examine possible infection contagion
among the patients in a hospital within three days. Even though new
patients are screened routinely after hospitalization, it takes one to
three days until the results are available. Within this time, a newly
infected patient could have contact with several other patients. The
hygienist sets P498 as the initial patient because this patient was
hospitalized recently and might have been infected with a multi-
resistant pathogen (via non-nosocomial infection).

The hygienist starts a simulation with the default recommenda-
tion of 1,000 runs. He first inspects the number of new infections
per step (Task-∆|N|-t; cf., Figure 3, left) to look for outbreaks. As
many lines have a high slope at early steps, he expects that the
possibly infected P498 could have infected many patients until the
screening results are available. This could cause an outbreak.

Then, the hygienist looks at the Aggregated Cascades Graph
View (cf., Figure 5). He notices that the initial patient P498 might
transmit the infection to six patients. For each of them, he inspects
the histograms of the number of infected targets. For P490, he sees
a trimodal distribution of the number of infected patients (cf., Fig-
ure 3, right). If P490 is really infected, he might not infect others at
all but also highly likely about 20, or even about 40 patients.

To further investigate which contagion scenarios might occur
and how likely they are, the hygienist clusters the simulated cas-
cades. He decides to cluster based on infected nodes (Task-N) as
he is primarily interested in the infected patients. This would allow
him to identify patients for screening or isolation. After viewing the
cluster dendrogram, the hygienist looks at the four possible scenar-
ios (cf., Figure 4, left). The Contagion Graph View for the clusters
shows that almost all patients will get infected eventually in the first

Figure 4: Dendrogram and cluster representatives as small multi-
ples for the clustering of possible infections starting from P498.

Figure 5: Excerpt of the Aggregated Cascades Graph View for
possible infections starting from P498 with the Length of the Con-
tagion displayed below. The user highlighted P232.

and second scenario. According to the cluster sizes, the contagion
affects two wards with a chance of 10% (cluster 3), or the contagion
stops after only a few infections with a likelihood of 12% (cluster
4). The notable probability of an outbreak that affects more than
one ward causes the hygienist to report it to his managers.

Getting infected is particularly risky for patients with immun-
odeficiency. One of them is P232. Hence, this patient is especially
interesting for the hygienist (e.g., to relocate the patient, if needed).
P232 might be infected in steps 3 to 7 (cf., Figure 5). According to
the circular arc, P232 gets infected with a chance of approx. 45% at
t = 3 (Task-n-t) and with a chance of approx. 85% in total (Task-n).
He clicks on P232 in the ACGV to highlight the patient with its out-
going edges in blue. Combining the yellow and brown circular arcs
as well as the number of outgoing edges, the hygienist understands
that both the infection probability and the maximum number of pa-
tients infected by P232 decreases with increasing steps (Task-nl-t,
Task-e-t). If possible, this patient should be relocated early.
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The hygienist also notices very few edges between patients at the
upper part of the ACGV. This is caused by the patients being at dif-
ferent wards. P785 has contact with patients of both wards, hence,
is critical for driving the disease spreading. We should prevent his
infection, e.g., by isolation, to stop spreading to another ward.

Expert-Feedback After using our system, the hygienist described
it as a valuable support in infection analysis. Currently, their com-
bined analysis of microbiological test results and the movement of
patients in the hospital is a cumbersome work. The hygienist has
to use multiple software systems to access the data and views it
with common spreadsheet software. Hence, he finds it very help-
ful to have a contact graph displayed. The graph layout that in-
dicates which patients are locally close together is intuitive. Cur-
rently, he can analyze the infection contagion only retrospectively.
This system could provide new perspectives as it shows the possi-
ble upcoming contagion. As the hygienist mentions, the simulation
results can be combined with actually proven transmission identi-
fied via genome sequencing. This will be part of our future work.
He was surprised by the possible maximum number of infected pa-
tients calculated by the S-I-model. Hence, he also wanted to use
the visualizations for other simulation models that are published in
medical research for various pathogens. The hygienist praised the
clustering of cascades to identify likely probable contagion sce-
narios. Clustering according to infected patients without time (i.e.,
sim-N) corresponds to the view on the data in retrospective anal-
ysis. However, he liked the temporal view on the contagion as of-
fered by the Aggregated Cascades Graph View together with the
ability to highlight transmissions reoccurring in different steps.

6. Limitations & Future Work

We use the simple but powerful S-I-Model with two assumptions.
Based on the expert’s feedback, we could extend our work to other
disease spreading models such as S-I-R by adapting the similarity
function to several states. We assume a static patient contact graph
with externally given transmission probabilities p. A dynamic pa-
tient contact graph would allow for, e.g., movements of patients
among wards, leaving the hospital, and hospitalization of new pa-
tients. Furthermore, the attributes (e.g., age) of patients, with which
the infection probabilities are calculated externally, might be in-
cluded in the analysis process. We will extend our work in this di-
rection in the future.

Another direction for further research is the scalability of our so-
lution, especially the scalability of the Aggregated Cascades Graph
View. We designed our analysis approach for the analysis of noso-
comial infections, i.e., for a patient contact graph with only up to
a few hundreds of patients. Usually, the hygienist analyses hospi-
tal wards separately (instead of the whole hospital), resulting in
contact graphs with approx. 20–60 patients. Nevertheless, as indi-
cated in our use case, the height of the ACGV increases rapidly and
edge overplotting makes tracking transmission routes more diffi-
cult. Clustering of the cascades reduces the number of cascades to
display in one view and the linked views help to gain overview
in the larger ACGV. Further interaction and filtering could improve
the analysis as well. Research on the visual analysis of higher-order
networks [JJCC17] could also guide further work on the scalability.

7. Conclusion

We presented a visual analytics approach for infection transmis-
sions from one initial patient in contact graphs of hospital patients.
Our approach includes a Monte-Carlo simulation of contagion ac-
cording to the S-I-model. We designed novel visualizations and a
specialized clustering of possible infection contagion, all for the
tasks of the hygienists and clinicians. The visualizations show the
likely contagion results as well as the development of the infection
contagion among individual patients (in addition to overviews). For
the clustering, we propose a similarity function that considers pa-
tient infections, infecting contacts, and the steps of contagion as
weighted by the user. We showed the usage of our approach in a
use case of a hygienist in a German hospital.

Our approach can help the experts in both understanding in-
fection contagion within real patient contact graphs (e.g., to rea-
son routine screening of pathogens on hospitalization) and guiding
the prevention of outbreaks (e.g., by isolating highly infectious pa-
tients). The hygienists and clinicians in our project team agreed on
this. Future research can improve such simulation-based forecasts
by including larger, dynamic, or multi-attribute contact graphs.
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