
Vision, Modeling, and Visualization (2019)
H.-J. Schulz, M. Teschner, and M. Wimmer (Eds.)

Joint Schedule and Layout Autotuning for Sparse Matrices with
Compound Entries on GPUs

J. S. Mueller-Roemer1 , A. Stork1 and D. Fellner1,2

1TU Darmstadt & Fraunhofer IGD, Germany
2TU Graz, Austria

mhd
12

80
b

RFde
vic

e

fem
_fi

lte
r

mon
o_

50
0H

z

su
rfa

ce
s/b

un
ny

su
rfa

ce
s/a

rm
ad

illo

su
rfa

ce
s/d

rag
on

su
rfa

ce
s/b

ud
dh

a

fem
/ar

mad
illo

_1
00

0.1

fem
/bu

nn
y2

.4M

fem
/nu

t_3
7k

fem
/dr

ag
on

_1
00

K

fem
/N

X_M
oto

rH
67

k

0

2

4

Sp
ee

du
p

Quadro K2000
GeForce GTX 980

Quadro GP100

Figure 1: Speedup relative to cuSPARSE in single precision with (dark) and without (light) layout optimization. For large compound entries
(“fem/*”) and extended number systems (“surface/*”), speedups of up to 4.7ˆ are achieved.

Abstract
Large sparse matrices with compound entries, i.e., complex and quaternionic matrices as well as matrices with dense blocks,
are a core component of many algorithms in geometry processing, physically based animation, and other areas of computer
graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of
the sparse matrix-vector product on massively parallel graphics processing units. Compared to schedule tuning without layout
tuning, we achieve speedups of up to 5.5ˆ. In comparison to cuSPARSE, we achieve speedups of up to 4.7ˆ.

CCS Concepts
• Computing methodologies Ñ Massively parallel algorithms; Parallel programming languages; • Mathematics of comput-
ing Ñ Computations on matrices;

1. Introduction

While the use of sparse matrices with complex coefficients is com-
mon in computational physics, due to their ability to represent am-
plitude and phase in frequency-domain simulations, and therefore
widely supported by linear algebra libraries, other extended num-
ber systems and compound entries are used in many areas of com-
puter graphics. For example, quaternions have a long history of use
in computer graphics due to their usefulness in representing and in-

terpolating orientations [Sho85]. Sparse matrices with quaternionic
entries have found uses in fields such as the simulation of rigid
multi-body systems [Tas01] or geometry processing [CKPS18].
While workarounds using standard, real-valued matrices are avail-
able, these are inefficient in both performance and memory use (see
Section 3.2).

In addition to extended number systems, the system matrices re-
sulting from the finite element method (FEM) and other discretiza-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/vmv.20191324 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0712-0457
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/vmv.20191324


J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

tions used in physically based animation of deformables exhibit
dense 3ˆ 3-blocks. These matrices can be viewed as sparse ma-
trices with 3ˆ 3-matrices as entries that are used with vectors of
3-dimensional vectors. We use the term compound entries as a gen-
eralization for both scenarios.

To make efficient use of manycore graphics processing units
(GPUs), both memory layout and parallel schedule have to be cho-
sen well. For example, interleaving the components of a compound
entry, while natural due to how aggregate types are defined in
most programming languages, leads to suboptimal performance on
GPUs due to lack of coalescing (see Fig. 1 and Section 3.1). De-
pending on the hardware as well as the domain- and discretization-
dependent distribution of non-zero entries, different parallel sched-
ules, e.g., dynamic or static scheduling, and different block sizes
are necessary to achieve good performance.

We examine how the concept of layout optimization used in
dense array autotuners such as MATOG [WG17] can be applied
to sparse matrices with compound entries on the GPU. Further-
more, we work towards tuning and generalizing over sparse matrix
formats such as CSR, ELLPACK-R [VOFG10], and Sliced ELL-
PACK [MLA10]. Additionally, our autotuner performs schedule
optimization to deal with matrices with varying non-zero patterns
and GPUs with a varying number of cores.

In the following sections, we provide an overview of related
work including sparse matrix formats and code generation, just-in-
time (JIT) compilation and autotuning for GPUs, and use cases for
sparse matrices with compound entries in Section 2. In Section 3,
we provide a brief overview of multi- and manycore architectures
and programming models, memory layouts, and workarounds for
the lack of quaternionic matrix support in current linear algebra li-
braries. We detail our approach in Section 4, followed by listing
the results of our evaluation in Section 5. Finally, we summarize
the paper and suggest avenues for future research in Section 6.

2. Related Work

In this section, we list use cases and outline related work on for-
mats for sparse matrices with compound entries. Furthermore, an
overview over related JIT compilation, code generation, and auto-
tuning approaches is given.

2.1. Sparse Matrices with Compound Entries

Sparse matrices with complex coefficients are common in frequen-
cy-domain simulations such as acoustic [Tho06] and electromag-
netic simulations [Jin14]. In the latter case, system matrices have
dense 3ˆ 3-blocks of complex entries. As complex matrices are a
common use case, commercial sparse linear algebra libraries, e.g.,
NVIDIA cuSPARSE [NVI18b], provide well-tuned algorithms for
such matrices.

In the field of geometry processing, Crane et al. use sparse
quaternionic matrices to compute conformal transformations of tri-
angle meshes in [CPS11]. Later publications based on the quater-
nionic Dirac operator defined by Crane et al. result in quaternionic
matrices as well [YDT˚18]. Chern et al. use parallel transport of
unit quaternions representing triangle orientations for the isometric

AoS r0 i0 r1 i1 r2 i2 r3 i3 . . .

SoA r0 r1 r2 . . . i0 i1 i2 . . .

AoSoA r0 r1 i0 i1 r2 r3 i2 i3 . . .

Figure 2: Array of structures (AoS), structure of arrays (SoA), and
array of structures of arrays (AoSoA) layouts of an array of com-
plex numbers ck “ rk` ik i. For AoSoA, an inner array size of 2 is
shown.

immersion problem of orientable triangle meshes [CKPS18]. Both
Crane and Chern et al. suggest using the 4ˆ 4-matrix expansion
of quaternions, which leads to a significant memory and compute
overhead (see Section 3.2).

In physically based animation, the finite-element method (FEM)
approach for simulating deformable models results in dense 3ˆ3-
matrix blocks. Libraries such as cuSPARSE support the block com-
pressed sparse row (BSR) format, a variant of the compressed
sparse row (CSR) format [Saa03] for matrices with dense, fixed-
size blocks that omits implicitly computable column indices. In
academia, some researchers have used this fact to design GPU-
optimized sparse matrix formats for FEM simulation. Examples
include Weber et al.’s binned block compressed sparse row (Bin-
BCSR) format [WBS˚13], which only uses the block structure
along one dimension and was recently improved to use it along both
dimensions by Mueller-Roemer and Stork [MS18]. For the sim-
ulation of flexible cables in interactive and virtual reality applica-
tions, Lang et al. introduce a quaternionic discretization of the rota-
tional degrees of freedom of Cosserat rods [LLA11]. Furthermore,
quaternionic matrices can be used to improve the performance of
rigid multibody system simulations, as shown by Tasora [Tas01].
Despite their use in computer graphics and physics, sparse quater-
nionic matrices are, to the best of our knowledge, not supported by
any major (GPU-accelerated) linear algebra library.

2.2. Schedule and Layout Autotuning

In the domain of layout tuning of dense arrays for GPUs, We-
ber and Goesele have combined text template-based layout vari-
ations combined with model-based autotuning to great effect in
MATOG [WG17]. Here, layout tuning refers to the selection of
array of structures (AoS), structure of arrays (SoA), or array of
structures of arrays (AoSoA) layouts (see Fig. 2) and row-major
or column-major orders for dense n-dimensional arrays with com-
pound entries.

In the area of compiler technologies for sparse matrices, Bik in-
troduced a compiler that automatically transforms dense codes into
sparse codes as well as performing CPU vectorization and paral-
lelization [Bik96]. He also introduces more advanced transforms
that require the sparsity pattern at compile time. Cheshmi et al.
also perform compile time analysis but combine it with a poly-
hedral loop optimizer to generate specialized direct solvers with
improved vectorization on CPUs [CKSD17]. Venkat et al. use a
runtime inspector and executer to analyze the sparsity pattern to

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

110



J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

perform reordering for GPU sparse matrix operations [VHS15].
Kjolstad et al. introduce the tensor algebra compiler TACO which
allows the user to select various layouts for each tensor in an ten-
sor expression [KKC˚17]. For two-dimensional tensors, the possi-
ble layouts correspond to dense matrices in row- or column-major
layout, sparse CSR and compressed sparse column (CSC) formats,
or their hypersparse (low-rank) extensions. However, the generated
code is serial. In all cases, extended number systems are not sup-
ported.

Monakov et al. introduce the sliced ELLPACK format and per-
form tuning of slice and thread block size [MLA10]. They reorder
matrix rows to achieve more compact storage. To efficiently use re-
ordered matrices, permutation has to be performed rarely, e.g., be-
fore and after an iterative solver. Even though they do not consider
compound entries and compare cards of the same generation, some
cases are sped up by up to 10% when performing hardware-specific
tuning.

3. Background

In this section, we provide a brief background on the performance
properties of GPUs and describe the workarounds used with exist-
ing linear algebra libraries when using quaternionic matrices.

3.1. GPU Performance and Terminology

Manycore GPU performance characteristics differ in many aspects
from those of multicore CPUs. While this description focuses on
NVIDIA GPUs and terminology, similar considerations apply to
other manycore processors. CUDA follows a hierarchical single
program multiple data (SPMD) programming model. Kernels are
launched in a grid of blocks consisting of a number of threads.
Blocks are scheduled on streaming multiprocessors (SMs), anal-
ogous to CPU cores. Threads are grouped into warps of 32 threads
that do not execute independently. Divergent code paths are implic-
itly serialized, as done explicitly when using vector instructions on
a CPU. For good performance, memory accesses must follow spe-
cific patterns to achieve coalescing. Contiguous threads within a
warp must access contiguous locations in memory, where align-
ment and size of the access must match and be a power of two be-
tween 1 and 16 bytes. As in the case of divergent control flow, this
is done implicitly, but has similarities with vector loads which have
alignment requirements too. Finally, multiple blocks are executed
at once on an SM using hardware multithreading to perform latency
hiding. Therefore, it is important to consider occupancy, i.e., blocks
should ideally not use too many resources such as registers so that
more than one block can be scheduled at once. For additional de-
tails, refer to the NVIDIA CUDA programming guide [NVI18a].

3.2. Alternative Quaternion Representations

Quaternions, like complex numbers, have equivalent, non-unique,
real matrix representations (see, e.g., [HL90]) such as:

q“ w` x i` y j` zk”

¨

˚

˚

˝

w ´x ´y ´z
x w ´z y
y z w ´x
z ´y x w

˛

‹

‹

‚

, (1)

where q P H, w, x, y, z P R, and i, j, k are the fundamental quater-
nion units. As a result, any quaternionic matrix A P Hnˆm can
equivalently be represented as a real matrix A1 PR4nˆ4m. However,
this equivalence leads to a 4ˆ memory and compute overhead, but
it allows the reuse of existing direct and iterative solvers.

Another approach is to decompose the matrices and vectors ac-
cording to the Hamilton product:

A“W`Xi`Yj`Zk
q“ w`xi`yj` zk

Aq“ pWw´Xx´Yy´Zzq `pWx`Xw`Yz´Zyq i`
pWy´Xz`Yw`Zxq j `pWz`Xy´Yx`Zwqk,

(2)

where A PHnˆm, q PHm, W, X, Y, Z PRnˆm, and w, x, y, z PRm.
While this approach avoids the higher memory and compute over-
head, the serial chaining of multiple matrix-vector products leads
to increased latency, synchronization, and kernel launch overheads.
For small to medium-sized matrices typically used in computer
graphics, kernel launch overheads can make up a significant por-
tion of execution time. Furthermore, most existing solvers can not
be used with this decomposition.

4. Approach

In this section, we describe how we apply layout variations to
sparse matrices with compound entries, the resulting code gener-
ator, and the autotuning approach.

4.1. Sparse Matrix Formats and Layouts

Much like layouts such as AoS, SoA, and AoSoA as well as row-
or column-major orderings can be applied to dense n-dimensional
arrays without changing the semantics of the array (see Fig. 2
and Section 2.2), we differentiate between semantically different
sparse matrix data structures and those that only differ in their in-
memory layout. For example, the CSR, ELLPACK(-R), and Sliced
ELLPACK formats are all semantically arrays of length n of vari-
able length arrays of tuples of column index and entry value for a
matrix with n rows. Semantically different data structures such as
hierarchical [DZSS17] or bitmap-based [ZG18] sparse matrix data
structures are not considered layout variants.

CSR stores the column index and value tuples in a pair of con-
tiguous arrays. Essentially, the tuples are stored in a 1D array in
SoA layout. To mark the starting and ending positions of the per-
row variable length arrays, CSR includes an array of n` 1 offsets
into the contiguous arrays.

In the original ELLPACK format [RB85], the per-row arrays are
padded with explicit zeros such that they all have the same length.
The resulting dense 2D arrays are stored in column-major order.
With respect to CSR, which is in row-major order by definition,
the data is therefore padded and transposed. As the resulting arrays
are dense, the offset array can be omitted. The ELLPACK-R for-
mat [VOFG10] replaces it with a nonzero count array of length n
instead, which makes it possible to avoid performing any computa-
tions on added padding. If the stride between rows is additionally
padded to a multiple of the warp size, the column-major ordering
of these layouts leads to good coalescing on GPUs.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

111



J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

As ELLPACK(-R) can lead to a very large memory overhead
when a small number of rows has a much larger number of non-zero
entries than the others, Sliced ELLPACK [MLA10] first partitions
the matrix into slices of k rows before padding and transposing the
individual slices. As offsets within slices can be computed implic-
itly, only rn{ks` 1 offsets are required. For coalescing, k should
be 16 (half-warp-sized) or 32 (warp-sized). The number of stored
rows is padded to a multiple of k in the same way as the AoSoA
layout requires padding the length of a dense array to a multiple of
the inner array size.

We call the choice between row-major (CSR), padded column-
major (ELLPACK-R), and sliced padded column-major (Sliced
ELLPACK) orderings the outer layout of the sparse matrix. When
compound entries are used, the dense entry array and the vector can
be stored in AoS or SoA layouts. These choices define the inner and
vector layouts.

While the CSC format of matrix A is identical to storing the
transpose AT in CSR format, we did not implement such trans-
posed input layouts. As summation of each row and therefore entry
of the output vector cannot be performed independently, support-
ing these requires different parallel algorithms. While Steinberger
et al. have shown that the naïve approach of using atomic summa-
tion only leads to limited slowdown [SDZS16], doing so leads to
the loss of determinism.

4.2. Code Generator

To generate the code for the layout variants, we use a text templat-
ing approach based on Jinja2. The generated code is compiled with
the system C++ and CUDA compilers and linker. We focus on the
sparse matrix-vector product (SpMV) as it is the most costly com-
ponent of iterative solvers such as the conjugate gradient algorithm.

To generate the code for a particular layout and schedule, the
following inputs are required:

‚ A compound entry definition (a list of identifiers with associated
types). A separate definition can be given for vector entries.

‚ Multiplicative and additive operator definitions, as well as zero
initializer(s).

‚ The outer (including slice size if a sliced layout is chosen) and
inner layouts of the matrix, as well as the layout of the vector.

‚ The schedule type (static or dynamic), as well as the numbers of
SMs ns, blocks per SM nb, and threads per block nt .

The generated kernels use constant size blocks and grids, indepen-
dent of the matrix size. Depending on schedule type, each block
processes either chunks of nt rows with a static stride of ns ¨ nb ¨ nt
or selects chunks dynamically using an atomic counter. The block
size nt and the number of blocks per SM nb are passed to the CUDA
compiler using the __launch_bounds__ annotation. This al-
lows the compiler to generate code with the appropriate number of
registers per thread.

As an additional performance optimization, the pointers to the
vector array(s) for the right hand side are annotated with the
__restrict__ keyword. This allows the optimizer to use non-
coherent loads which typically perform better for random access.
Furthermore, AoS entries are annotated with the largest power of

two alignment between 1 and 16 of which their size is a multiple.
This enables the use of vectorized loads where possible.

Besides the SpMV kernel, the code generator outputs header
files for the generated matrix and vector classes. In addition to
an interface callable from standard C++ code, the classes pro-
vide constructors to convert from CSR matrices in default AoS
layout on the host to the chosen layout on the GPU. The source
code of the generator is available for non-commercial use under
https://github.com/fh-igd-iet/FhSparseGen.

4.3. Autotuner

Given a set of matrices as well as the entry and operator definitions,
the autotuner jointly optimizes layout and schedule for the given
matrices. To do so, it first determines the compute capability (CC)
and the number of SMs ns of the GPU. The compute capability
determines the warp size w (32 for all currently available NVIDIA
GPUs), maximum numbers of blocks per SM, and threads per block
supported by the GPU, as well as other indirectly relevant factors
such as supported instruction set and number of registers per SM.

This information determines the bounds for the tuning parame-
ters nb and nt . To limit the size of the resulting Cartesian product of
variants, nb is chosen from all 2i and 3 ¨2i with iě 0 that are within
the bounds. Similarly, nt is chosen from all w ¨ 2i and w ¨ 3 ¨ 2i that
are within the bounds. The slice size k is limited to half-warp and
warp sizes. The scheduling parameters (static/dynamic, nb, and nt )
can either be tuned separately, or jointly with the layout parameters
(outer, inner, and vector layouts).

The generated variants are built with the CUDA compiler, pass-
ing the compute capability as a parameter to generate code for the
specific architecture. These are linked to a benchmarking fixture
that calls and measures the runtime of the SpMV a given number
of times for each matrix.

5. Results

In this section, we describe the setup of the benchmarks performed
and evaluate their results.

Figures 3 and 4 show statistical information about numbers of
non-zero entries and bandwidths of the rows of the matrices used
in the evaluation. The extent of the boxes ranges from the lower to
the upper quartile, with a line at the median. The whiskers extend
from the minimum to the maximum. The bandwidth of a row is
defined as

bi “ max
t j|Ai j‰0u

j´ min
t j|Ai j‰0u

j (3)

and provides information about the locality of accesses.

The matrices “mhd1280b”, “RFdevice”, “fem_filter”, and “mo-
no_500Hz” are complex matrices from the SuiteSparse Matrix Col-
lection [DH11] chosen to cover a large range of sizes and non-
zero entry distribution patterns. The matrices beginning with “sur-
face/” are quaternionic matrices that were generated from meshes
available in the Stanford 3D Scanning Repository [Sta14] using
Crane et al.’s algorithm [CPS11]. The matrices beginning with
“fem/” are matrices with 3ˆ3-block entries resulting from a linear

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

112

https://github.com/fh-igd-iet/FhSparseGen


J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

mhd
12

80
b

RFde
vic

e

fem
_fi

lte
r

mon
o_

50
0H

z

su
rfa

ce
s/b

un
ny

su
rfa

ce
s/a

rm
ad

illo

su
rfa

ce
s/d

rag
on

su
rfa

ce
s/b

ud
dh

a

fem
/ar

mad
illo

_1
00

0.1

fem
/bu

nn
y2

.4M

fem
/nu

t_3
7k

fem
/dr

ag
on

_1
00

K

fem
/N

X_M
oto

rH
67

k

100

101

102

103

N
on

ze
ro

s
pe

rR
ow

[#
]

Figure 3: Distribution of non-zero entries per row for each matrix
used in the evaluation. For matrices beginning with “fem/”, this is
the number of non-zero 3ˆ3-blocks per group of three rows.

mhd
12

80
b

RFde
vic

e

fem
_fi

lte
r

mon
o_

50
0H

z

su
rfa

ce
s/b

un
ny

su
rfa

ce
s/a

rm
ad

illo

su
rfa

ce
s/d

rag
on

su
rfa

ce
s/b

ud
dh

a

fem
/ar

mad
illo

_1
00

0.1

fem
/bu

nn
y2

.4M

fem
/nu

t_3
7k

fem
/dr

ag
on

_1
00

K

fem
/N

X_M
oto

rH
67

k

0

50

100

B
an

dw
id

th
pe

rR
ow

[%
]

Figure 4: Distribution of bandwidths per row for each matrix used
in the evaluation. Given in percent normalized by number of rows/-
columns in each matrix. For matrices beginning with “fem/”, block-
row and -column indices are used.

FEM discretization on tetrahedral meshes. The tetrahedral meshes
were generated with Gmsh [GR09] (armadillo_1000.1), TetGen
[Si15] (bunny2.4M, dragon_100K), CGAL [CGA18] (nut_37k),
and Siemens NX [Sie18] (NX_MotorH67k). All matrices used in
the evaluation are square.

The evaluations were performed on three machines with GPUs
from various generations or compute capabilities (CCs), including
both professional and consumer (restricted double precision perfor-
mance) GPUs, with the following hardware:

1. NVIDIA Quadro K2000 (CC 3.0, 2 SMs, 2 GiB GDDR5), Intel
i5-4670 (4 cores, 3.4 GHz), 16 GiB DDR3-1600

2. NVIDIA GeForce GTX 980 (CC 5.2, 16 SMs, 4 GiB GDDR5),
Intel i7-4790K (4 cores, 4.0 GHz), 16 GiB DDR3-1600

3. NVIDIA Quadro GP100 (CC 6.0, 56 SMs, 16 GiB HBM2), Intel
i7-6700K (4 cores, 4.0 GHz), 32 GiB DDR4-2133

All systems were running Windows 10 and benchmarks were com-
piled with Visual Studio 2015 and CUDA 9.2.

To determine the best layout-schedule combination, the gener-
ated SpMV was called 1000 times per matrix for each combination.
CUDA kernels were timed using CUDA events, to avoid primar-
ily measuring the CPU-GPU synchronization overhead on small
matrices. The full set of measurements (minimum, lower quartile,
median, upper quartile, maximum, and average times per matrix,
layout, and schedule) is provided as supplemental material.

All matrix-vector multiplications were also performed using
cuSPARSE, NVIDIA’s own highly tuned sparse linear algebra li-
brary. For the complex matrices, the built-in support for complex
linear algebra was used. For the block-sparse matrices, the built-in
support for the BSR format was used. For the quaternionic matri-
ces, we used the matrix expansion (see Section 3.2) on the matrix
only. x PHn was represented as x1 P R4n. As the resulting matrices
are block-sparse too, BSR was used in this case as well. Therefore,
only the number of values, not the numbers of offsets and column
indices, of the matrix are quadrupled. The measured speedups are
given in Figs. 1 and 5 for single and double precision, respectively.

5.1. Complex Matrices

The best layouts per GPU for each complex precision matrix as
well as the speedups compared to only performing schedule tuning,
i.e., using the “natural” CSR layout with entries in AoS layout, are
given in Tables 1 and 2.

Table 1: Best layouts and layout tuning speedups for all complex
single precision matrices. Layouts are given as outer-inner-vector,
where ELL is ELLPACK-R and Sl-k is Sliced ELLPACK with a slice
size of k.

Matrix GPU Layout Speedup

mhd1280b
K2000 ELL-AoS-AoS 2.09ˆ

GTX 980 ELL-AoS-AoS 1.22ˆ

GP100 CSR-SoA-AoS 1.05ˆ

RFdevice
K2000 ELL-AoS-AoS 1.64ˆ

GTX 980 Sl-32-SoA-AoS 1.11ˆ

GP100 CSR-SoA-AoS 1.18ˆ

fem_filter
K2000 ELL-AoS-AoS 3.20ˆ

GTX 980 ELL-AoS-AoS 1.40ˆ

GP100 ELL-AoS-AoS 1.52ˆ

mono_500Hz
K2000 Sl-32-SoA-AoS 3.74ˆ

GTX 980 Sl-32-SoA-AoS 2.02ˆ

GP100 ELL-AoS-AoS 2.09ˆ

While most cases show and absolute speedup of less than 1ˆ
compared to cuSPARSE, speedups of approximately 1–1.5ˆ are
achieved for double precision matrices on the Quadro K2000 (see
Figs. 1 and 5). Furthermore, the largest layout tuning gains are
achieved on the K2000 as well. The speedups on the two newer
GPUs are similar, despite the significantly lower double precision
performance on consumer GPUs. While AoS is preferred for both
inner and vector entry layout in most cases, no clear preference in

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

113



J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

mhd
12

80
b

RFde
vic

e

fem
_fi

lte
r

mon
o_

50
0H

z

su
rfa

ce
s/b

un
ny

su
rfa

ce
s/a

rm
ad

illo

su
rfa

ce
s/d

rag
on

su
rfa

ce
s/b

ud
dh

a

fem
/ar

mad
illo

_1
00

0.1

fem
/bu

nn
y2

.4M

fem
/nu

t_3
7k

fem
/dr

ag
on

_1
00

K

fem
/N

X_M
oto

rH
67

k
0

1

2

3

Sp
ee

du
p

Quadro K2000
GeForce GTX 980

Quadro GP100

Figure 5: Speedup relative to cuSPARSE in double precision with (dark) and without (light) layout optimization. For large compound entries
(“fem/*”) and extended number systems (“surface/*”), speedups of up to 2.8ˆ are achieved.

Table 2: Best layouts and layout tuning speedups for all complex
double precision matrices. Layouts are given as in Table 1.

Matrix GPU Layout Speedup

mhd1280b
K2000 Sl-32-AoS-AoS 1.79ˆ

GTX 980 Sl-16-AoS-AoS 1.05ˆ

GP100 CSR-SoA-SoA 1.00ˆ

RFdevice
K2000 ELL-AoS-AoS 1.52ˆ

GTX 980 CSR-AoS-AoS 1.00ˆ

GP100 CSR-AoS-AoS 1.00ˆ

fem_filter
K2000 ELL-AoS-AoS 2.11ˆ

GTX 980 ELL-AoS-AoS 1.10ˆ

GP100 ELL-AoS-AoS 1.16ˆ

mono_500Hz
K2000 Sl-32-AoS-AoS 2.81ˆ

GTX 980 Sl-16-AoS-AoS 1.59ˆ

GP100 ELL-AoS-AoS 1.84ˆ

outer layout can be observed. As both single and double precision
complex entries can be aligned to 8 and 16 bytes, respectively, the
preference of AoS layout is expected.

5.2. Quaternionic Matrices

As for complex matrices in the previous section, we list the best
layouts and speedups relative to not performing layout tuning for
all quaternionic sparse matrices in Tables 3 and 4.

While there was no clear outer layout preference in Section 5.1,
the padded transpose (ELLPACK-R) is preferred in all cases. As
can be seen in Fig. 3, the difference between the longest and short-
est rows is much smaller for these matrices, therefore these matri-
ces incur a significantly smaller amount of padding. As expected
for the 16-byte aligned single precision quaternion entries, AoS
layout is preferred in Table 3. Double precision quaternions are
32 bytes in size. Therefore, AoS layout requires two consecutive
16 byte loads and cannot achieve full coalescing. However, in all
but two cases AoS layout continues to be preferred for the vector

Table 3: Best layouts and layout tuning speedups for all quater-
nionic single precision matrices. Layouts are given as in Table 1.

Matrix GPU Layout Speedup

bunny
K2000 ELL-AoS-AoS 2.24ˆ

GTX 980 ELL-AoS-AoS 1.27ˆ

GP100 ELL-AoS-AoS 1.46ˆ

armadillo
K2000 ELL-AoS-AoS 2.18ˆ

GTX 980 ELL-AoS-AoS 1.18ˆ

GP100 ELL-AoS-AoS 1.68ˆ

dragon
K2000 ELL-AoS-AoS 2.33ˆ

GTX 980 ELL-AoS-AoS 1.09ˆ

GP100 ELL-AoS-AoS 1.54ˆ

buddha
K2000 ELL-AoS-AoS 2.35ˆ

GTX 980 ELL-AoS-AoS 1.08ˆ

GP100 ELL-AoS-AoS 1.48ˆ

Table 4: Best layouts and layout tuning speedups for all quater-
nionic double precision matrices. Layouts are given as in Table 1.

Matrix GPU Layout Speedup

bunny
K2000 ELL-SoA-AoS 1.93ˆ

GTX 980 ELL-SoA-AoS 1.18ˆ

GP100 ELL-AoS-AoS 1.40ˆ

armadillo
K2000 ELL-SoA-AoS 1.88ˆ

GTX 980 ELL-AoS-AoS 1.15ˆ

GP100 ELL-SoA-AoS 1.42ˆ

dragon
K2000 ELL-SoA-SoA 1.87ˆ

GTX 980 ELL-SoA-AoS 1.04ˆ

GP100 ELL-AoS-AoS 1.31ˆ

buddha
K2000 ELL-SoA-SoA 1.84ˆ

GTX 980 ELL-AoS-AoS 1.02ˆ

GP100 ELL-AoS-AoS 1.31ˆ

entries, due to the mostly random access patterns. For the matrix
entries, SoA is preferred in many but not all cases for the double
precision matrices. As before, the largest speedups due to layout

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

114



J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

tuning are achieved on the K2000. Unlike in the last section, the
speedups on the GP100 are slightly larger than on the GTX 980,
potentially due to the higher flops-per-byte ratio.

5.3. 3ˆ3-block Matrices

As in the previous sections, we list the best layouts and speedups
relative to not performing layout tuning for all sparse matrices with
3ˆ3-block entries (and vectors of 3D vectors) in Tables 5 and 6.

Table 5: Best layouts and layout tuning speedups for all single pre-
cision matrices with 3ˆ3 blocks. Layouts are given as in Table 1.

Matrix GPU Layout Speedup

armadillo_1000.1
K2000 Sl-32-SoA-SoA 3.15ˆ

GTX 980 Sl-32-SoA-SoA 1.44ˆ

GP100 Sl-16-SoA-SoA 1.20ˆ

bunny2.4M
K2000 ELL-SoA-AoS 3.34ˆ

GTX 980 ELL-SoA-AoS 1.58ˆ

GP100 ELL-AoS-AoS 1.12ˆ

nut_37k
K2000 ELL-SoA-SoA 5.54ˆ

GTX 980 Sl-32-SoA-SoA 2.03ˆ

GP100 Sl-32-SoA-SoA 1.27ˆ

dragon_100K
K2000 ELL-SoA-AoS 3.67ˆ

GTX 980 ELL-SoA-AoS 2.12ˆ

GP100 ELL-AoS-AoS 1.61ˆ

NX_MotorH67k
K2000 ELL-SoA-AoS 4.28ˆ

GTX 980 ELL-SoA-AoS 2.37ˆ

GP100 ELL-SoA-AoS 1.95ˆ

Table 6: Best layouts and layout tuning speedups for all double
precision matrices with 3ˆ 3 blocks. Layouts are given as in Ta-
ble 1.

Matrix GPU Layout Speedup

armadillo_1000.1
K2000 ELL-SoA-SoA 2.80ˆ

GTX 980 Sl-32-SoA-SoA 1.26ˆ

GP100 Sl-32-SoA-SoA 1.18ˆ

bunny2.4M
K2000 ELL-SoA-AoS 2.74ˆ

GTX 980 ELL-SoA-AoS 1.31ˆ

GP100 ELL-AoS-SoA 1.21ˆ

nut_37k
K2000 ELL-SoA-SoA 4.08ˆ

GTX 980 ELL-SoA-SoA 1.53ˆ

GP100 ELL-AoS-AoS 1.27ˆ

dragon_100K
K2000 ELL-SoA-AoS 3.05ˆ

GTX 980 ELL-SoA-AoS 1.59ˆ

GP100 ELL-AoS-AoS 1.52ˆ

NX_MotorH67k
K2000 ELL-SoA-AoS 3.52ˆ

GTX 980 ELL-SoA-AoS 1.66ˆ

GP100 ELL-SoA-AoS 1.67ˆ

Both 3ˆ3 blocks and 3D vectors cannot be aligned to power-of-
two addresses without introducing padding, independent of scalar
precision. Combined with the large entry size, the preference of
SoA inner layout is expected. For the vector layout, AoS is pre-
ferred in most cases except for the fem/armadillo_1000.1 and
fem/nut_37k matrices. As in the previous sections, the greatest
gains are achieved on the K2000. This is followed by the GTX 980
and the GP100 benefits the least. Except for the smallest matrix,

the tuned matrix layouts and schedules are faster than cuSPARSE
using BSR as seen in Figs. 1 and 5.

6. Conclusion

We have shown that significant speedups can be achieved by per-
forming joint schedule and layout autotuning for sparse matrices
with compound entries. Compared to only performing schedule
tuning, speedups of up to 5.5ˆ are achieved (see Table 5). Com-
pared to the highly tuned vendor library cuSPARSE, we achieve
speedups of up to 4.7ˆ for the SpMV (see Fig. 1). Even for matri-
ces with dense blocks, which are supported directly in cuSPARSE,
we achieve speedups of up to 2.8ˆ using our approach (see Fig. 5).
While the speedups are smaller than what can be achieved with
sparsity pattern specific compilation approaches [CKSD17], simi-
lar matrices typically require similar layouts (see Tables 3 and 4).
Therefore, our approach can be applied to domain-specific tuning
of SpMVs, which can be performed beforehand for each new GPU
using a domain-specific set of input matrices, resulting in shorter
computation times, especially in computer graphics applications.

6.1. Limitations

For complex matrices, performance does not match the well-tuned
operations provided by cuSPARSE, except on the older Quadro
K2000 GPU. However, there is no reason not to use the well-
supported vendor library in such cases.

We currently do not consider memory overhead due to padding
in the tuning approach. Especially the padded transposed layout
without slicing incurs large memory overheads. This would require
weighting the performance and memory overhead for scoring. Al-
ternatively, the compact CSR outer layout could always be gener-
ated as a fallback.

6.2. Future Work

Extension to a more complete set of linear algebra operations would
be beneficial. The axpby (yÐ ax`by) and dot procedures are a
good choice, as they would allow for implementation of several it-
erative solvers such as the conjugate gradient solver. Aside from
the reduction within the dot product, however, they are trivially
parallelizable and perform significantly fewer operations than the
matrix-vector product, reducing the need for tuning.

While the Cartesian product approach to autotuning guarantees
that the best variant is found, it is very expensive. By collecting
a larger set of input matrices of varied structure, potentially by
reusing the sparsity structure but not the entries of matrices in ex-
isting matrix collections, a predictive tuning model could be built.
This could potentially be achieved using machine learning (see,
e.g., [AKC˚19]).

An extension to sparse tensor algebras as TACO offers for CPU
codes [KKC˚17] involves many interesting challenges. In partic-
ular, can the padded transposed and sliced layouts be generalized
to tensors? How would they interact with hypersparse (low-rank)
matrices or tensors? Slicing could potentially be represented as an
index transform, i.e., yi “ Ai jx j Ñ yi “ A1ti{supi mod sq jx j, where s
is the slice size.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

115



J. S. Mueller-Roemer, A. Stork & D. Fellner / Autotuning Sparse Matrices on GPUs

Another extension would be the support of encoded entries. For
example, Mueller-Roemer et al. [MAS17] use sparse matrices to
describe meshes. They encode the sign of a ternary matrix in the
column index of CSR matrices. Compound entries can also bene-
fit from compact encodings. For example, unit quaternion matrices
used in various methods can be encoded using only three values
and a sign bit, reducing memory and bandwidth requirements by
nearly 25%. However, the advantage of alignment for single preci-
sion quaternions would be lost.

Acknowledgments

Supported by the CloudiFacturing project, co-funded by the EU’s
Horizon2020 program under Grant 768892.

References
[AKC˚19] ASHOURI A. H., KILLIAN W., CAVAZOS J., PALERMO G.,

SILVANO C.: A survey on compiler autotuning using machine learning.
ACM Computing Surveys 51, 5 (2019), 13:1–13:42. doi:10.1145/
3197978. 7

[Bik96] BIK A. J. C.: Compiler Support for Sparse Matrix Computa-
tions. PhD thesis, Rijksuniversiteit Leiden, 1996. 2

[CGA18] CGAL: Computational Geometry Algorithms Library, 2018.
URL: https://www.cgal.org. 5

[CKPS18] CHERN A., KNÖPPEL F., PINKALL U., SCHRÖDER P.: Shape
from metric. ACM Transactions on Graphics 37, 4 (2018), 63:1–63:17.
doi:10.1145/3197517.3201276. 1, 2

[CKSD17] CHESHMI K., KAMIL S., STROUT M. M., DEHNAVI M. M.:
Sympiler: transforming sparse matrix codes by decoupling symbolic
analysis. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2017), SC ’17.
doi:10.1145/3126908.3126936. 2, 7

[CPS11] CRANE K., PINKALL U., SCHRÖDER P.: Spin transformations
of discrete surfaces. ACM Transactions on Graphics 30, 4 (2011), 104:1–
104:10. doi:10.1145/2010324.1964999. 2, 4

[DH11] DAVIS T. A., HU Y.: The university of Florida sparse matrix
collection. ACM Transactions on Mathematical Software 38, 1 (2011),
1:1–1:25. doi:10.1145/2049662.2049663. 4

[DZSS17] DERLER A., ZAYER R., SEIDEL H.-P., STEINBERGER M.:
Dynamic scheduling for efficient hierarchical sparse matrix operations
on the GPU. In Proceedings of the International Conference on Super-
computing (2017), ICS ’17. doi:10.1145/3079079.3079085. 3

[GR09] GEUZAINE C., REMACLE J.-F.: Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Inter-
national Journal for Numerical Methods in Engineering 79, 11 (2009),
1309–1331. doi:10.1002/nme.2579. 5

[HL90] HILE G. N., LOUNESTO P.: Matrix representations of Clifford
algebras. Linear Algebra and its Applications 128 (1990), 51–63. doi:
10.1016/0024-3795(90)90282-H. 3

[Jin14] JIN J.: The Finite Element Method in Electromagnetics, third ed.
Wiley-IEEE Press, 2014. 2

[KKC˚17] KJOLSTAD F., KAMIL S., CHOU S., LUGATO D., AMA-
RASINGHE S.: The tensor algebra compiler. Proceedings of the ACM
on Programming Languages 1, OOPSLA (2017), 77:1–77:29. doi:
10.1145/3133901. 3, 7

[LLA11] LANG H., LINN J., ARNOLD M.: Multi-body dynamics simu-
lation of geometrically exact Cosserat rods. Multibody System Dynamics
25, 3 (2011), 285–312. doi:10.1007/s11044-010-9223-x. 2

[MAS17] MUELLER-ROEMER J. S., ALTENHOFEN C., STORK A.:
Ternary sparse matrix representation for volumetric mesh subdivision
and processing on GPUs. Computer Graphics Forum 36, 5 (2017), 59–
69. doi:10.1111/cgf.13245. 8

[MLA10] MONAKOV A., LOKHMOTOV A., AVETISYAN A.: Automati-
cally tuning sparse matrix-vector multiplication for GPU architectures.
In High Performance Embedded Architectures and Compilers. 2010,
pp. 111–125. doi:10.1007/978-3-642-11515-8_10. 2, 3, 4

[MS18] MUELLER-ROEMER J. S., STORK A.: GPU-based polynomial
finite element matrix assembly for simplex meshes. Computer Graphics
Forum 37, 7 (2018), 443–454. doi:10.1111/cgf.13581. 2

[NVI18a] NVIDIA: CUDA C programming guide, May 2018. Ver-
sion 9.2. URL: http://docs.nvidia.com/cuda/pdf/CUDA_
C_Programming_Guide.pdf. 3

[NVI18b] NVIDIA: cuSPARSE library, 2018. URL: https://docs.
nvidia.com/pdf/CUSPARSE_Library.pdf. 2

[RB85] RICE J. R., BOISVERT R. F.: Solving Elliptic Problems Using
ELLPACK. Springer, 1985. 3

[Saa03] SAAD Y.: Iterative Methods for Sparse Linear Systems. 2003. 2

[SDZS16] STEINBERGER M., DERLERY A., ZAYER R., SEIDEL H.-P.:
How naive is naive SpMV on the GPU? In 2016 IEEE High Performance
Extreme Computing Conference (2016), HEPC ’16. doi:10.1109/
hpec.2016.7761634. 4

[Sho85] SHOEMAKE K.: Animating rotation with quaternion curves.
SIGGRAPH Computer Graphics 19, 3 (1985), 245–254. doi:10.
1145/325165.325242. 1

[Si15] SI H.: TetGen, a Delaunay-based quality tetrahedral mesh gener-
ator. ACM Transactions on Mathematical Software 41, 2 (2015), 11:1–
11:36. doi:10.1145/2629697. 5

[Sie18] SIEMENS: NX, 2018. URL: https://www.plm.
automation.siemens.com/global/en/products/nx/. 5

[Sta14] STANFORD UNIVERSITY: The Stanford 3D scanning repos-
itory, 2014. URL: http://graphics.stanford.edu/data/
3Dscanrep. 4

[Tas01] TASORA A.: An optimized Lagrangian-multiplier approach for
interactive multibody simulation in kinematic and dynamical digital pro-
totyping. In International Symposium on Computer Simulation in Biome-
chanics (2001), VIII ISCSB. 1, 2

[Tho06] THOMPSON L. L.: A review of finite-element methods for time-
harmonic acoustics. Journal of the Acoustical Society of America 119, 3
(2006), 1315–1330. doi:10.1121/1.2164987. 2

[VHS15] VENKAT A., HALL M., STROUT M.: Loop and data transfor-
mations for sparse matrix code. ACM SIGPLAN Notices 50, 6 (2015),
521–532. doi:10.1145/2813885.2738003. 3

[VOFG10] VÁZQUEZ F., ORTEGA G., FERNÁNDEZ J. J., GARZÓN
E. M.: Improving the performance of the sparse matrix vector product
with GPUs. In Proceedings of the 2010 10th IEEE International Confer-
ence on Computer and Information Technology (Bradford, United King-
dom, 2010), CIT ’10, pp. 1146–1151. doi:10.1109/CIT.2010.
208. 2, 3

[WBS˚13] WEBER D., BENDER J., SCHNOES M., STORK A., FELL-
NER D.: Efficient GPU data structures and methods to solve sparse lin-
ear systems in dynamics applications. Computer Graphics Forum 32, 1
(2013), 16–26. doi:10.1111/j.1467-8659.2012.03227.x. 2

[WG17] WEBER N., GOESELE M.: MATOG: Array layout auto-tuning
for CUDA. ACM Transactions on Architecture and Code Optimization
14, 3 (2017), 28:1–28:26. doi:10.1145/3106341. 2

[YDT˚18] YE Z., DIAMANTI O., TANG C., GUIBAS L., HOFFMANN
T.: A unified discrete framework for intrinsic and extrinsic Dirac oper-
ators for geometry processing. Computer Graphics Forum 37, 5 (2018),
93–106. doi:10.1111/cgf.13494. 2

[ZG18] ZHANG J., GRUENWALD L.: Regularizing irregularity: bitmap-
based and portable sparse matrix multiplication for graph data on GPUs.
In Proceedings of the 1st ACM SIGMOD Joint International Workshop
on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA) (2018), GRADES-NDA ’18. doi:
10.1145/3210259.3210263. 3

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

116

https://doi.org/10.1145/3197978
https://doi.org/10.1145/3197978
https://www.cgal.org
https://doi.org/10.1145/3197517.3201276
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/2010324.1964999
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3079079.3079085
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/0024-3795(90)90282-H
https://doi.org/10.1016/0024-3795(90)90282-H
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1007/s11044-010-9223-x
https://doi.org/10.1111/cgf.13245
https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1111/cgf.13581
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf
https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf
https://doi.org/10.1109/hpec.2016.7761634
https://doi.org/10.1109/hpec.2016.7761634
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/2629697
https://www.plm.automation.siemens.com/global/en/products/nx/
https://www.plm.automation.siemens.com/global/en/products/nx/
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
https://doi.org/10.1121/1.2164987
https://doi.org/10.1145/2813885.2738003
https://doi.org/10.1109/CIT.2010.208
https://doi.org/10.1109/CIT.2010.208
https://doi.org/10.1111/j.1467-8659.2012.03227.x
https://doi.org/10.1145/3106341
https://doi.org/10.1111/cgf.13494
https://doi.org/10.1145/3210259.3210263
https://doi.org/10.1145/3210259.3210263

