
Vision, Modeling, and Visualization (2019)
H.-J. Schulz, M. Teschner, and M. Wimmer (Eds.)

Multi-Level-Memory structures for adaptive SPH simulations

Rene Winchenbach1 , Andreas Kolb1

1University of Siegen

Figure 1: Using our multi level memory structure (left image half), we can efficiently simulate a highly adaptive (1000:1) SPH simulation,
for up to 8 million particles (right image half), using 4 memory levels. At the pictured timepoint the level 0 domain spans 189× 124× 84
cells (1,968,624), whereas the level 3 domain spans 83 as many cells . Color coding indicates memory level from 0 (blue) to 3 (red).

Abstract
In this paper we introduce a novel hash map-based sparse data structure for highly adaptive Smoothed Particle Hydrodynamics
(SPH) simulations on GPUs. Our multi-level-memory structure is based on stacking multiple independent data structures, which
can be created efficiently from the same particle data by utilizing self-similar particle orderings. Furthermore, we propose three
neighbor list algorithms that improve performance, or significantly reduce memory requirements, when compared to Verlet-lists
for the overall simulation. Overall, our proposed method significantly improves the performance of spatially adaptive methods,
allows for the simulation of unbounded domains and reduces memory requirements without interfering with the simulation.

CCS Concepts
• Computing methodologies → Massively parallel and high-performance simulations; Physical simulation;

1. Introduction

Vivid and highly detailed fluid simulations have become an es-
sential part of modern computer graphics, due to ever increas-
ing demands for more realism. Smoothed Particle Hydrodynam-
ics (SPH) [GM77] is a simulation technique for fluid systems,
which has been extended recently to allow for highly adaptive in-
compressible fluid simulations [WHK17]. Spatially adaptive meth-
ods dedicate computational resources where they are most bene-

ficial to the desired outcome. However, adaptive simulations with
adaptivity ratios of 1000 : 1 and higher suffer from significant per-
formance drops due to limitations in the underlying data struc-
tures [WHK17]. For CPU based, single resolution SPH simulation
methods compact hash maps are commonly used [IABT11]. GPU
based methods cannot easily utilize these approaches and instead
often rely on dense cell structures [Gre10; GSSP10] or linked list
based structures [DCV*13; WRR18].

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/vmv.20191323 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-2446-9412
https://orcid.org/0000-0003-4753-7801
https://doi.org/10.2312/vmv.20191323

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

In this paper, we present a hash map based data structure, which
is specifically designed to handle the requirements of highly adap-
tive SPH methods simulated on a GPU. Our proposed data struc-
ture works by utilizing a hash map to efficiently access a compact
cell list, which refers to particles sorted by a self-similar order-
ing. We extend this method by efficiently creating multiple distinct
data structures, based on different cell sizes, by utilizing the self-
similarity. Our method allows us to significantly reduce the num-
ber of non-neighbor particle accesses by providing an appropriate
data structure for different particle resolutions. Furthermore, we
present a corrective algorithm that guarantees symmetric particle
neighborhoods, which are essential for spatially adaptive incom-
pressible fluid simulations. Additionally, we propose a set of novel
neighbor-list algorithms, which are applicable to adaptive and non-
adaptive simulations, by either improving performance or mem-
ory consumption. Our proposed method significantly improves the
practical applicability of adaptive simulations, and substantially re-
duces the data structure overhead. Our proposed method provides
better memory scaling and allows for the simulation of unbounded
domains.

2. Related Work

SPH has been a very active field of research since its introduc-
tion by Gingold and Monaghan [GM77]. Initially, stiff equations of
state were employed to achieve simulations of weakly compressible
fluids [MCG03; BT07]. Later techniques are based on prediction-
correction [SP09], iterative [MM13], and implicit [ICS*13] meth-
ods in order to enforce incompressibility. In addition to solving
incompressibility, divergence-free SPH simulations (DFSPH) have
been demonstrated [BK15], which significantly stabilize the over-
all simulation and improve visual fidelity. Recent research has also
made large improvements to boundary handling, either by utiliz-
ing particles [BGPT18; BGI*18; GPB*19], analytical [FM15] or
numerical [KB17] boundary models.

Adaptive simulations using splitting and merging processes were
introduced by Desbrun and Cani [DC99]. This work was extended
by adjusting particle positions after splitting, in order to reduce the
error in the pressure term [APKG07]. To further stabilize the in-
teraction between particles with different resolutions, Keiser et al.
[KAD*06] used virtual link particles of neighboring resolutions. To
realize adaptivity in incompressible methods, Winchenbach et al.
[WHK17] introduce an adaptive method, which works with esti-
mates of original particle positions, a temporal blending process,
similar to that proposed by Orthmann and Kolb [OK12], and a pro-
cess of mass redistribution. This allows for much larger adaptivity
ratios than previously possible, in excess of 10,000 : 1. However,
the performance benefits of higher adaptivity ratios are significantly
hampered by the limitations of existing data structures.

For CPU based simulations, Ihmsen et al. [IOS*14] give a good
overview of existing data structure methods, and identify a hash
map-based method [IABT11] as the most efficient data structure.
This approach is, however, not directly applicable to GPUs due to
the way in which the hash map is constructed. For GPU based sim-
ulations, Green [Gre10] introduced a method utilizing a fixed do-
main with linearly indexed cell lists. A similar approach was used
by Dominguez et al. [DCG11], which was optimized for multiple

GPUs. Goswami et al. [GSSP10] used Morton codes , however,
their approach introduces a complex scheme to balance workloads
on the GPU, making it difficult to implement and utilize. In order to
limit memory usage on GPUs, Winchenbach et al. [WHK16] intro-
duced an iterative process to constrain the size of so-called Verlet-
lists, which are used to store references to neighboring particles.
However, all of these methods suffer from scaling and performance
problems for adaptive simulations.

Many generic data structures and methods have been developed,
for computer animation, where some notable examples include
perfect hash maps to store sparse voxel data [LH06; GLHL11],
which are not easily scalable to multiple resolutions or approx-
imate nearest neighbors from machine learning aspects [AI08],
which are only approximate and designed for high dimensional
data. Furthermore, various CPU based approaches exist, e.g. Open-
VDB [MLJ*13], but they often require significant changes to be re-
alized on GPU based systems. OpenVDB was realized for GPUs as
GVDB, where recently, Wu et al. [WTYH18] introduced a GVDB-
based data structure for FLIP-based simulations that significantly
improves performance, but which is not directly applicable to SPH,
as FLIP imposes different requirements on the data structure, which
is an integral part of the simulation itself.

3. Basics of Smoothed Particle Hydrodynamics

In general, quantities for a particle i are interpolated from a
weighted average using neighboring particles j as [Mon05]

Ai = ∑
j

A j
m j

ρ j
Wi j, (1)

where the interpolated quantity is denoted as Ai = A(xxxi), which
depends on the mass m j and density ρ j of neighboring parti-
cles within a compact support radius. For further details refer
to [Pri12]. The contributions from these neighboring particles are
then weighted based on a kernel function Wi j = W (xi j,hi j), xi j =∥∥xxxi− xxx j

∥∥, which in turn is based on the support radius of an in-

teraction hi j. For adaptive incompressible methods, hi j =
hi+h j

2 is
used in order to avoid instabilities. The support radius of a particle
can be calculated as

hi = η 3

√
mi

ρi
. (2)

Here, η is a configuration parameter set based on the chosen ker-
nel function [DA12; WHK16], which determines the number of
neighboring particles in a resting state Nh and as such can be found
by refactoring of 4

3 πh3 = Nh
mi
ρ0

[WHK16]. Other kernel functions,
e.g. those of the Wendland family, have much larger Nh values, and
therefore require different neighbor list algorithms to prevent ex-
cessive memory usage. In computer animation the support radius is
often calculated as

h0
i = η

3
√

V 0
i , (3)

which is based on the rest volume of a particle V 0
i instead. The

rest volume of a particle solely relies on the particles physical size,
i.e. V 0

i = 4
3 πr3 for some radius r, and does not change based on

changes in density. As such we denote this support radius as h0
i .

This is equivalent to assuming that ρi = ρ0 in (2).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

100

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

4. Data Structures

The main purpose of a data structure for SPH is to relate the spatial
position of a particle with its location in memory in order to re-
duce the number of particle accesses from O(n2) to O(n ·m). One
possible approach is to divide the simulation domain into uniform
cells of size h [Gre10; IOS*14]. Note that this notion of a cell does
not introduce any grid-based methodology into SPH and is solely
for data handling. Owing to this, a particle only needs to consider
at most 27 cells (a 3× 3× 3 sub-grid) for accessing (potentially)
neighboring particles. The sphere described by the support radius
of a particle will, on average, contain Nh neighbors [DA12] within
a volume of 4

3 πh3, whereas the sub-grid of all potential neighbors
has a volume of 27h3. This means that the sub-grid will contain, on
average, 81

4π
Nh ≈ 6.5Nh particles, i.e. 15.5% of all potential neigh-

bors are actual neighbors. For an adaptive ratio of 1000 : 1, how-
ever, only 0.016% of all considered particles are neighbors as a cell
of the same size would now contain 81000

4π
Nh particles, causing sig-

nificant performance problems [WHK17]. We first introduce our
general data structure for non-adaptive simulations in Sec. 4.1, and
then the changes required for adaptive simulations in Sec. 4.2.

4.1. Single-Level Data Structure

We chose the cell size Cmax to be the same as the largest support
radius of any particle as this ensures that all neighbors of all parti-
cles are contained within a 3×3×3 sub-grid, which would not be
possible for an arbitrary cell size. We can calculate Cmax efficiently
by using a reduction operation over all particle support radii hi as

Cmax = max{h0, ...,hn−1}. (4)

The simulation domain itself can similarly be determined as the
axis aligned bounding boxes, from DDDmin to DDDmax, which surrounds
the positions of all particles. We can determine these bounds by
using reduction operations over all particle positions xxxi

DDDmin = min{xxx0, ...,xxxn−1},DDDmax = max{xxx0, ...,xxxn−1}. (5)

These bounds are used to calculate the size of the simulation
domain in cells as

DDD =

⌈
DDDmax−DDDmin

Cmax

⌉
. (6)

When using dense data structures, DDD needs to be kept constant
to avoid reallocating memory when particles move outside the cur-
rent simulation domain. This, in turn, limits the scene’s extend as
it needs to be known a-priori. We can calculate the integer coor-
dinates x̄xx for any position xxx based on the lower simulation bound
DDDmin and the cell size Cmax as

x̄xx =
⌊

xxx−DDDmin
Cmax

⌋
. (7)

This can be used to determine a linear index L as

L(x̄xx) = x̄xxx +DDDx (x̄xxy +DDDy (x̄xxz)) , (8)

where the subscript denotes the dimension. In a dense cell grid,
we can utilize L(x̄xx) to find the memory location of any position
in space. Dense data structures, however, are not desirable as their

memory consumption scales with both the simulation domain DDD
and the cell size Cmax, instead of scaling with the particle count
nparticles. The Morton code, also sometimes referred to as the Z-
ordering, is an alternative indexing scheme, which describes a self-
similar space-filling curve. We can efficiently determine Z(x̄xx) by
interleaving the binary representation of an integer coordinates as

x̄xx =


...x̄xx3

x x̄xx2
x x̄xx1

x x̄xx0
x

...x̄xx3
y x̄xx2

y x̄xx1
y x̄xx0

y

...x̄xx3
z x̄xx2

z x̄xx1
z x̄xx0

z

→Z(x̄xx) = ...x̄xx3
z x̄xx3

y x̄xx3
x x̄xx2

z x̄xx2
y x̄xx2

x x̄xx1
z x̄xx1

y x̄xx1
x x̄xx0

z x̄xx0
y x̄xx0

x ,

where the superscript denotes a specific bit. Using a 32 bit Mor-
ton code results in 10 bit per dimension, meaning each dimen-
sion can contain a maximum of #K = 1024 cells. A 64 bit Mor-
ton code results in 21 bit per dimension, meaning a maximum of
#K = 2097152 cells per dimension. On one hand it would be pos-
sible to create an octree directly from Morton codes [Kar12], as
this code represents the ordering of an octree. For SPH simulations
many nodes of an octree, e.g. the root node, do not contain any
useful information and furthermore, traversing an octree is com-
putationally expensive and the memory consumption of an octree
is not independent of the content. On the other hand, a dense data
structure using a Morton code would require excessive amounts of
memory.

We instead propose to create a list of all occupied cells, as the
number of occupied cells noccupied is bound by the number of par-
ticles nparticles, as the worst case would be every particle occupying
a different cell. To generate this list, we first re-sort all particles ac-
cording to their Morton code Zi = Z(x̄xxi). Using this ordering we
create a list C of length nparticles + 1, where each element is deter-
mined as

C[i] =


i , if i = 0∨Zi 6= Zi−1

−1 , if Zi = Zi−1

nparticles , else.

(9)

C now contains either a marker entry (−1 or nparticles), or the first
index of a particle in an occupied cell, which is similar to the ap-
proach by Green [Gre10]. We can now compact C, by removing all
invalid entries, which gives us a list Cbegin

compact of length noccupied+1.
Using this list of occupied cell beginnings, we can calculate the
number of particles in each occupied cell as

Clength
compact[i] = Cbegin

compact[i+1]−Cbegin
compact[i]. (10)

This compact list, however, does not yield any way to find the
memory location for a particle based on its spatial location. To
resolve this, we propose to apply a hash map on top of Cbegin

compact

and Clength
compact. Following Ihmsen et al. [IABT11], we determine the

hash of an integer coordinate by using three large prime numbers
p1 = 73856093, p2 = 19349663, p3 = 83492791 and the size of
the hash table nhash as

H(x̄xx) = (p1x̄xxx + p2x̄xxy + p3x̄xxz)%nhash, (11)

where we choose nhash as the smallest prime number larger than
the maximum number of particles in a simulation, as this gives a
relatively sparse hash map with few collisions, in general.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

101

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

Figure 2: These two images show the Morton code Z on the left and the hashed indices H on the right for every occupied cell, with color
coding indicating indices. The Morton code gives much greater spatial locality but would lead to a significant number of collisions.

However, this hash function leads to low coherency for nearby
particles, meaning that particles which are spatially close, might
be assigned to very distant memory locations, see Fig. 2, right.
If we can avoid hash collisions, we can embed the cell informa-
tion directly into the hash map, which removes a level of indirec-
tion. However, if we chose a simple spatially coherent hash func-
tion, e.g. H(x̄xx) = Z(x̄xx)%nhash, we would find significantly more
hash collisions, which outweighs the benefit of more coherence.
Contrarily, choosing a perfect hash function, e.g. [LH06], reduces
the number of collisions, but at the cost of a significant overhead
for its creation. Therefore, we opt for the hash function of Ihm-
sen et al. [IABT11] as it provides a good balance between complex-
ity and collisions. Furthermore, as we utilize per-particle neighbor-
lists, we need to access the cells only once during each timestep,
as all particle interactions afterwards are calculated using these
neighbor-lists avoiding the spatial incoherence of the function.

The hash map itself is similar to the cell list in that it contains
a begin entry and a length entry, where the begin entry now points
to the first cell mapped to a hash table entry and the length entry
indicates how many cells map to this hash table entry. If there is no
cell then the length is 0, if there is a single cell occupying this hash
map the length is 1 and a length > 1 indicates a hash collision. The
hash map, contrary to the cell list, is not compacted and as such
allows us access via the hash index of an integer coordinate H(x̄xx).
The process required to find a specific cell c based on the cells
integer coordinates x̄xxc is described in Algorithm 1.

To create the hash table H we first start by initializing all hash
table entries as invalid, i.e. 0 length, and re-sort the list of occupied
cells according to the hashed index of the first particle in this cell.
We can then, for each occupied cell i, set

Hbegin[Hi] = i, if i = 0∨Hi 6=Hi−1, (12)

where we then set the length entry, for each occupied cell i, as

Hlength [Hi] = i−Hbegin [Hi]−1, if i = noccupied∨Hi 6=Hi+1
(13)

which naturally handles hash collisions as the predicate is based on
Hi 6=Hi+1 which is only true for the last cell associated with a cer-
tain hash value. The overall algorithm is described in Algorithm 2.

Algorithm 1: The algorithm to access the cell associated with an arbi-
trary integer coordinate using our proposed sparse data structure with-
out embedding C into H. Note that an empty cell can map to the same
hash map entry as an occupied cell, without causing a collision, and as
such we always check Zc = Z j to avoid returning a wrong cell.

Calculate x̄xxc for the cell we are looking for
Calculate Zc andHc for x̄xxc

Look-up b = Hbegin[Hc] and l = Hlength[Hc]
If l 6= 0

For h ∈ [b,b+ l)

Look-up Particle j = Cbegin
compact[h]

Calculate x̄xx j and Z j
If Zc = Z j

Return Ccompact[b]
Return not found

Algorithm 2: Our proposed single resolution data-structure algorithm.
This algorithm first re-sorts all particles and then creates a compact
cell table followed by the creation of our hash map as described in
Section 4.1.
Initialize

Calculate Cmax, Dmin and Dmax using reductions
Calculate P2 based on DDD
Re-sort particles using Zfine

Cell table creation
Initialize C =−1 and Clength

compact = 0
Create C based on Morton codes of consecutive particles

Compact C into Cbegin
compact and determine Clength

compact

CalculateHi for all particles

Re-sort Cbegin
compact and Clength

compact based on the hash index of the first
contained particle.

Hash map creation
Initialize Hbegin =−1 and Hlength = 0
Create Hbegin based on compacted cell list
Calculate Hlength

Embed Ccompact into H if Hlength = 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

102

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

4.2. Multi-level data structures

The prior section described our approach for uniform cell sizes,
which would suffer from the same problems for adaptive simula-
tions as prior methods, due to a mismatch of cell size and particle
resolution. However, as we based our method on a Morton code,
we can utilize the self-similarity to efficiently create multiple, dis-
tinct, data structures for different cell sizes on the same underlying
particle data. This is possible for, coarser, power of 2 multiple cell
sizes of the cell size used for re-sorting the data.

We start with an initially much finer particle sorting Zfine, from
which we can generate the desired coarser resolutions. To deter-
mine Zfine we calculate the corresponding cell size Cfine, based on
the largest dimension P = max(DDDx,DDDy,DDDz), as

Cfine =Cmax
2dlog2(P)e

#K
. (14)

Here, #K depends on the size of the Morton code used (see
Sec. 4.1), Cfine is the smallest cell size that can be represented us-
ing this code length, and 2dlog2(P)e/#K = 2−Lfine , Lfine ∈ N is the
refinement factor. The algorithm described in the Sec. 4.1 can now
be extended by creating the cell list and hash map for a Morton
code Zmax based on Cmax and additional finer levels 0 < L≤ Lfine
using the integer coordinates

x̄xxL =

⌊
xxx− xxxmin

Cmax ·2−L

⌋
. (15)

L = 0 results in the same data structures as the single-level version
of this algorithm and L = Lfine the finest possible data structure,
with the given Morton code. The corresponding Morton code is
determined as ZL(xxx) = Z(x̄xxL). We relate the maximum level Lmax
to the maximal adaptivity ratio α of the simulation as

Lmax = min
{⌈

log2
3
√

α
⌉
,Lfine

}
, (16)

and generate the data structure for all levels 0≤ L≤ Lmax. We store
all data structures within single continuous arrays, which allows us
to calculate the hashed indices by simply adding an offset based on
the level to (11) as

ZL(x̄xx) = Lnhash +
(

p1x̄xxL
x + p2x̄xxL

y + p3x̄xxL
z

)
%nhash. (17)

Furthermore, we determine the appropriate level for a particle i
according to its support radius as

Li = clamp
(⌊
− log2

hi

Cmax

⌋
,0,Lfine−1

)
. (18)

Thus, every particle can easily access all neighbors at any scale
L ∈ [0,Lmax] using the data structure for L. However, when a par-
ticle i only looks for neighbors at its level Li, we may encounter
asymmetric interactions, as neighbor searches are limited by the
cell size for level Li; see Fig. 3. This could be avoided entirely by
utilizing a gather-formulation of SPH, but this formulation is not
stable for adaptive incompressible SPH [WHK17]. Therefore, we
explicitly need to handle this case.

More formally, asymmetric interactions occur when a particle i
of lower level Li is interacting with a particle k of a higher level
Lk, i.e. if Lk > Li ∧ xik < hik. In order to resolve the asymmetry,
we iterate over all neighboring particles k of i and determine their

Figure 3: Asymmetry interaction: Two particles at different levels
may not mutually see each other due to the different cell size. Here,
the lower level particle to the left sees the higher level particle to
the right, but not vice versa.

Algorithm 3: Changes required to create multiple levels of our data
structure
Initialize

Calculate Cmax, Dmin and Dmax using reductions
Calculate P2 based on DDD Re-sort particles using Zfine

Calculate Ideal level Li for every particle

For every Multi-Level-Memory level L
Execute Cell table creation and Hash map creation using ZL and
HL respectively.

Finalize
Enforce symmetric interactions

integer coordinate distance, for the cell size associated with Lk as
x̄xxLk

ik = x̄xxLk
i − x̄xxLk

k . We use x̄xxLk
ik to identify the problem case that k does

not see particle i by checking∥∥∥x̄xxLk
ik

∥∥∥
1
= max(|x̄xxLk

ik,x|, |x̄xx
Lk
ik,y|, |x̄xx

Lk
ik,z|)> 1. (19)

We then resolve this issue by atomically updating Lk to be at least
Li, as this ensures that k will search distant enough cells to find i.
The overall changes to the single resolution algorithm are relatively
minor but are outlined in Algorithm 3.

5. Neighbor-lists

As noted in Section 4, only about 15.5% of all potentially neigh-
boring particles are actual neighbors. To avoid the repeated access
to non-neighboring particles, neighbor-lists are a common solution,
which store a reduced set of potential neighbors. Verlet-lists store
references to every actual neighbor, but for adaptive simulations
where the number of neighbors often exceeds 2Nh this would lead
to excessive memory usage. In order to avoid this, we first introduce
a novel histogram based constrained neighbor-list in Section 5.1,
followed by a span based neighbor-list in Section 5.2 and a bitmask
based neighbor-list in Section 5.3.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

103

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

5.1. Histogram Based Neighbor-lists

A constrained neighbor list, e.g. [WHK16], limits the number of
neighbors Ni for a particle i to an upper bound Nc, where the main
motivation comes from reducing memory requirements and opti-
mizing access patterns and is not based around a change of neigh-
borhood size due to a changing support radius, e.g. by using (2).

Naïvely, it would be possible to simply exclude actual neighbors
from this list, however this would lead to asymmetries and thus
to instabilities. To avoid this, a constrained neighbor-list method
reduces the support radius of a particle hi until Ni < Nc. The con-
strained neighbor-list approach of Winchenbach et al. [WHK16]
implemented this in an iterative process, however, due to the cost of
an iteration over all potential neighbors, this method became com-
putationally expensive for adaptive methods. In order to realize this
in a single step, we first consider the support radius for i in an in-
teraction with another particle j that would result in |xi j|= hi j, and
as such Wi j = 0. We can determine this support radius for each in-
teracting pair of particles as

ki j = 2|xi j|−h j, (20)

where the constrained support radius hc
i would trivially be the Nc-th

smallest value. However, calculating ki j for all potentially neigh-
boring particles and storing this list to find the Nc-th smallest value
is not practical and we instead propose an alternative histogram-
based approach. We create a histogram, whose bins evenly segment
the range [0.5hi,hi) and store the number of particles with

1
2

hi +
B

2#B
hi ≤ ki j <

1
2

hi +
B+1
2#B

hi (21)

in each bin, where B denotes the bin index and #B the number of
bins for the histogram. This allows us to calculate the bin a particle
j belongs to in the histogram for particle i, as

#bi j =

⌊
clamp

(
ki j−0.5hnew

i
2#B ·hnew

i
,0,#B−1

)⌋
. (22)

We can store this histogram within the shared memory of a GPU
by choosing a small enough bin size and number of bins, e.g. 32
bins with an 8 bit bin size on modern GPUs. Each bin contains
the number of particles associated with this range of values and as
such, once the histogram is completed, we can sum up the counters,
starting with the lowest bin, until the sum is larger than the upper
bound of neighbors Nc at some bin index b. The final constrained
support radius can then be calculated as

hc
i =

hi

2

[
1+

1
b−1

]
. (23)

In order to avoid an ever decreasing support radius, as constrain-
ing can only reduce hi, we propose to update hi at the end of every
timestep based on the rest support radius (3) as

hi(t +∆t) = αhi(t)+(1−α)h0
i , (24)

where α is a linear blend weight, usually chosen as 0.95. In general,
this neighbor-list is still, conceptually, a Verlet-list and requires
more than Nh entries as we cannot reduce Ni below Nh without
causing instabilities. For larger kernel functions, i.e. Wendland ker-
nels, which have very large neighborhoods and adaptive simula-
tions this becomes quite memory consuming.

5.2. Span Based Neighbor-Lists

Instead of storing explicit references to all actual neighbor parti-
cles, we store appropriate index-spans in order to be more memory
efficient at the cost of covering more non-interacting neighbor par-
ticles. Our general approach is to store one index span for each of
the 27 neighboring cells per particle.

For any neighboring cell c we iterate over the contained particles
j∈ c in ascending order, and store the first index b where |xib|< hib.
We then keep iterating until we find the last index l where |xil |< hil ,
which gives the span of particle indices j ∈ [b, l] that contains all
neighbors of i in c. We store b as well as the length of this span
s = l−b+1.

The memory requirement for storing a span is size(b) =⌈
log2 nparticles

⌉
and size(s) ∝

⌈
log2 Nh

3
4π

⌉
. For non-adaptive sim-

ulations size(b)+ size(s) is almost always less than 4 byte, how-
ever for adaptive simulations the number of particles in a cell can
become much larger and we require 8 byte in this case. This is
a significant improvement in memory efficiency for non-adaptive
and adaptive simulations utilizing kernel functions with Nh > 27,
as the memory consumption results to 27 ·4 or 27 ·8 byte instead of
Nh · 4 and 2Nh · 4 byte for the non-adaptive and the adaptive case,
respectively.

5.3. Bitmask Based Neighbor Lists

The previously described span based neighbor list requires 8 bytes
for adaptive simulations, even though 4 bytes would be sufficient
in regions with rather homogeneous support radii. Therefore, we
propose a third approach that stores bitmask indicating neighbor-
ing particles for cells that have interacting neighbors using 4 byte
only, accepting that particles in regions with rather inhomogeneous
support radii need additional handling.

Considering the sub-grid of 3×3×3 cells, we can find a unique
mapping from this sub-grid to a linear index L∈ [0,27), which can
be stored in 5 bits, leaving 27 bits for representing the bitmask.
In homogeneous regions, a cell contains Nh

3
4π

particles, i.e. 12 for
the cubic spline kernel. The 26 bits indicate, if the corresponding
particle is an interacting particle. To handle cells with more than 26
neighbors in regions with strongly varying support radii, we have
to process all particles in the neighboring cell. We indicate this by
setting the full bitmask to 1.

Using this masked neighbor list guarantees a memory consump-
tion of 27 ·4 byte. The drawback is that cells with more than 26 par-
ticles, e.g. in rather turbulent regions with strongly varying support
radii, are handled rather inefficiently. However, even in the worst
case this is not worse than using no neighbor list at all.

6. Results and Discussion

All simulations were run using a single Nvidia RTX 2080 Ti GPU
with 11 GiB of VRAM, an Intel i7-4790 and 16 GiB of RAM.
We used DFSPH [BK15] with a density error limit of 0.01% and
a divergence error limit of 0.1%, with rigid objects represented as
density maps [KB17]. Artificial viscosity was modeled based on
XSPH [Mon05], Surface tension was modeled based on [AAT13],

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

104

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

Methods Overall /ms Re-sorting /ms Neighbor-list /ms Density /ms DFSPH /ms Memory /GiB

Structure Neigh-list single adapt single adapt single adapt single adapt single adapt single adapt

Pillar scene
[Gre10] [WHK16] 278 2557 2.70 7.67 13.54 2067.16 1.80 1.89 216.8 316.8 1.13 6.96

Ours [WHK16] 274 572 7.74 19.71 17.89 45.72 1.74 1.78 196.0 279.5 1.20 7.54
Embed [WHK16] 271 543 9.76 24.78 15.67 38.77 1.72 1.76 195.2 276.9 1.20 7.54
Embed <none> 412 1782 10.32 21.52 − − 1.85 2.24 328.9 596.4 0.68 3.59
Embed Histogram 253 527 9.74 22.06 12.35 26.73 2.01 1.83 196.4 285.1 1.20 7.54
Embed Spans 291 596 10.62 21.80 7.48 28.12 0.59 3.28 222.5 302.9 1.13 5.25
Embed Bitmask 274 866 9.97 22.39 7.80 36.41 0.67 10.64 212.9 436.9 0.91 4.42

Dragon scene
[Gre10] [WHK16] 86 3185 2.40 4.34 4.71 1637.74 2.17 2.48 64.0 1342.4 0.27 7.24

Ours [WHK16] 85 1365 7.03 11.02 6.19 35.86 2.11 2.34 57.6 1187.9 0.29 7.84
Embed [WHK16] 84 1340 8.74 13.86 5.34 30.74 2.08 2.31 57.4 1181.8 0.29 7.84
Embed <none> 129 4402 9.24 12.04 − − 2.24 2.95 96.4 2547.9 0.16 3.73
Embed Histogram 84 1302 8.72 12.43 4.37 21.93 2.43 2.43 57.7 1217.3 0.29 7.84
Embed Spans 93 1472 9.42 12.81 2.53 22.58 0.72 4.31 65.2 1294.6 0.27 5.46
Embed Bitmask 88 2136 8.90 12.58 2.65 28.88 0.81 14.01 62.6 1867.6 0.22 4.59

Table 1: The values shown here are given as the average value over 30 simulated seconds. Ours refers to the data structure presented in
Sec. 4, with embed referring to the optimization of embedding C into H. For the neighbor lists see Sec. 5.1 for the histogram based variant,
Sec. 5.2 for the span based variant and Sec. 5.3 for the bitmask based variant. Single refers to a non-adaptive simulation and adapt refers to
a simulation with an adaptive ratio of 1000 : 1.

Figure 4: A dam break scenario where the fluid was initialized op-
posite of the rigid obstacles.

fluid air phase interactions were modeled based on [GBP*17]. For
adaptivity we utilize [WHK17]. Rendering was done using a pro-
prietary renderer, with surface extraction based on [YT13]. We
used the cubic spline kernel for all tests. The full source code of our
simulation, and renderer, can be found www.cg.informatik.
uni-siegen.de/openMaelstrom.

Test Scenes: We evaluated our approach using two text scenes.
The Pillars test scene is a dambreak, depicted in Figure 4, where
an initial fluid volume interacts with many small rigid obstacles
on impact. Here, the simulation domain spans 1533 cells. In this
scene we used 2 million particles for the non adaptive tests and

up to 8 million particles in the adaptive tests. The Dragon test
scene is a dambreak scenario, depicted in Figure 5, where an ini-
tial fluid volume interacts with a single complex rigid object. Here,
the simulation domain spans 27× 49× 55 cells. In this scene we
used 400 thousand particles for the non adaptive tests and up to
8 million particles in the adaptive tests. For numerical stability
we set Nc = 1.2Nh for non-adaptive scenes and Nc = 2.3Nh for
adaptive scenes. We intentionally selected the adaptivity ratio to
be rather moderate, i.e. we used 1,000:1, since we observed an ex-
treme performance drop of several orders of magnitude for Green’s
method [Gre10] for higher adaptivity ratios such as 100,000:1,
since this method was not designed for adaptive simulations. Ad-
ditionally, Figure 5 (bottom right) shows a uniform simulation of
comparable computational cost to the highly adaptive simulation
with significantly lower visual fidelity, i.e. the larger particles can-
not move in-between the body parts of the dragon resulting in lower
visual fidelity.

Non-adaptive data-structure performance: Comparing our
proposed sparse data structure with a dense data structure based
on [Gre10] we can see a slight overall increase in performance (see
Tab. 6, structure “Ours” and structure “[Gre10]” for single). Due to
the more ideal Morton code for particle ordering, instead of a linear
ordering, we can observe an increase in performance for SPH op-
erations. However, the re-sorting process is slowed down, as well
as accessing the data structure for the construction of the neighbor-
list. Embedding C into H when no hash collision occurred reduced
this overhead slightly (see Tab. 6, structure “Embed”). The mem-
ory consumption is slightly higher as the dense structure requires
2 · 1533 entries, whereas our structure required 2 · 106 entries and
additional temporary arrays for construction.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

105

www.cg.informatik.uni-siegen.de/openMaelstrom
www.cg.informatik.uni-siegen.de/openMaelstrom

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

Figure 5: This image shows the dragon test scene where a fluid
volume collides with a complex rigid object. Color coding indicates
the memory levels (blue to red). The top right view visualizes the
data structure cells. The bottom right view is a uniform resolution
simulation with a comparable time per timestep as the adaptive
variant at this timepoint.

Adaptive data-structure performance: Looking at the adap-
tive results (see Tab. 6, structure “Ours” and structure “[Gre10]”
for adapt), we can now see a significant overall difference in per-
formance where our data structure reduces the simulation time by
nearly 60%. This is mainly due to the neighbor list construction
that takes about 50 times longer, requiring about half of the overall
computation time per frame when using Green’s method [Gre10].
We can also observe increased performance of the SPH operations,
where the largest improvement is for DFSPH with a speed up of
about 12% due to the improved particle ordering. However, our
multiple data structure requires more memory than a dense linear
structure, due to now having to store multiple data structures, how-
ever the increase is moderate at some 6-8%.

Non-adaptive Neighbor list performance: When comparing
the neighbor-lists presented in Sec. 5, we observe significantly dif-
ferent performance between the different neighbor-list approaches
for the non adaptive Dragon scene, if compared to the prior con-
strained list approach of [WHK17]. Our proposed constrained list
performs almost identical with identical memory consumption. Uti-
lizing our proposed bit mask approach, we observe a slightly slower
simulation as DFSPH takes slightly longer. However the density
approximation was significantly faster as the neighbor-list is sig-
nificantly smaller, which benefits a simple operation more than a
complex one. We see a similar effect for the span based approach,
but an overall slightly lower performance. Not using a neighbor-list
requires significantly less memory, and slows the overall simulation
down by about 50%, with much slower complex operations.

Adaptive Neighbor list performance: Considering the adaptive
Pillars scene, we see a different ordering of the methods. Our pro-
posed constrained list has a slightly improved performance com-
pared to the prior approach, which is mostly due to the faster neigh-
bor list construction. The bitmask based approach is now signif-
icantly slower (64% overall) but requires only 59% of the mem-
ory. The span based approach performs somewhat better, i.e. it is
13% slower but requires only 70% of the memory. Compared to

[WHK17], not using a neighbor list requires only 47% of memory,
but it is 237% slower.

Memory consumption: Overall, non-adaptive simulations re-
quire significantly less memory, as they require less information
per particle, and as such we can simulate up to 35.5 million parti-
cles, without utilizing a neighbor-list. Using our bitmask approach,
we can still simulate about 25 million particles, and using the span
based and constrained methods we are able to simulate about 19
million particles. Considering the relatively low impact of the bit-
mask approach for non-adaptive methods, this results in an in-
crease of 32% for the maximum number of particles, when com-
pared to prior constrained neighbor-list approach [WHK16] with-
out a significant drop in performance. For adaptive simulations
we can simulate up to 23.5 million particles, without utilizing a
neighbor-list, but the performance of this approach is too low. Us-
ing our bitmask approach we can simulate about 19 million par-
ticles, and using the span based approach about 16 million parti-
cles. Using a constrained list would only allow us to simulate about
10 million particles, which, due to the relatively low overhead of
the span based approach, means that we can increase the maxi-
mum number of particles by about 60% by using our span based
neighbor list, when compared to the prior constrained neighbor-
list approach [WHK16]. In summary, none of the neighbor list ap-
proaches is superior to the others, i.e. none offers the highest per-
formance at the lowest memory consumption.

Limitations: For non-adaptive simulations our proposed data-
structure only offers a very minor increase in performance, due to
the better memory layout, at the cost of a slightly higher memory
consumption. This increased cost, however, is only required for rel-
atively small and bounded domains and as such not a problem in
general. For adaptive-methods, we often have to adjust the resolu-
tion of particles to avoid asymmetries and, thus, severe instabilities,
which reduces the overall potential performance gain. In general,
smoother resolution gradients are less affected by asymmetries and
allow for larger speed-ups.

7. Conclusions

Our contributions allow us to efficiently simulate highly adaptive
simulations, with adaptive ratios beyond 1,000 : 1, without caus-
ing performance limitations due to the underlying data structuring.
Using our data structure allows us to simulate unbounded domains,
where the memory consumption only scales with particle count, not
resolution. In addition, by using our propose neighbor list methods
we can further improve performance, or significantly reduce mem-
ory consumption allowing for higher particle counts. In the future
we would like to expand our work on data structures to multi GPU
systems for even larger simulations.

References
[AAT13] AKINCI, NADIR, AKINCI, GIZEM, and TESCHNER, MATTHIAS.

“Versatile surface tension and adhesion for SPH fluids”. ACM Transac-
tions on Graphics (TOG) 32.6 (2013), 182 6.

[AI08] ANDONI, ALEXANDR and INDYK, PIOTR. “Near-optimal hashing
algorithms for approximate nearest neighbor in high dimensions”. Com-
munications of the ACM 51.1 (2008), 117 2.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

106

Rene Winchenbach, Andreas Kolb / Multi-Level-Memory structures for adaptive SPH simulations

[APKG07] ADAMS, BART, PAULY, MARK, KEISER, RICHARD, and
GUIBAS, LEONIDAS J. “Adaptively sampled particle fluids”. ACM
Transactions on Graphics (TOG). Vol. 26. 3. Acm. 2007, 48 2.

[BGI*18] BAND, STEFAN, GISSLER, CHRISTOPH, IHMSEN, MARKUS, et
al. “Pressure boundaries for implicit incompressible SPH”. ACM Trans-
actions on Graphics (TOG) 37.2 (2018), 14 2.

[BGPT18] BAND, STEFAN, GISSLER, CHRISTOPH, PEER, ANDREAS,
and TESCHNER, MATTHIAS. “MLS pressure boundaries for divergence-
free and viscous SPH fluids”. Computers & Graphics 76 (2018), 37–
46 2.

[BK15] BENDER, JAN and KOSCHIER, DAN. “Divergence-free smoothed
particle hydrodynamics”. Proceedings of the 14th ACM SIG-
GRAPH/Eurographics symposium on computer animation. ACM.
2015, 147–155 2, 6.

[BT07] BECKER, MARKUS and TESCHNER, MATTHIAS. “Weakly com-
pressible SPH for free surface flows”. Proceedings of the 14th ACM SIG-
GRAPH/Eurographics symposium on computer animation (2007), 209–
217 2.

[DA12] DEHNEN, WALTER and ALY, HOSSAM. “Improving convergence
in smoothed particle hydrodynamics simulations without pairing in-
stability”. Monthly Notices of the Royal Astronomical Society 425.2
(2012), 1068–1082 2, 3.

[DC99] DESBRUN, MATHIEU and CANI, MARIE-PAULE. Space-Time
Adaptive Simulation of Highly Deformable Substances. Research Report
RR-3829. INRIA, 1999. URL: https://hal.inria.fr/inria-
00072829 2.

[DCG11] DOMÍNGUEZ, J.M., CRESPO, ALEX, and GÓMEZ-GESTEIRA,
MONCHO. “Optimization strategies for parallel CPU and GPU imple-
mentations of a meshfree particle method”. (Oct. 2011) 2.

[DCV*13] DOMINGUEZ, JOSE M, CRESPO, ALEJANDRO JC, VALDEZ-
BALDERAS, DANIEL, et al. “New multi-GPU implementation for
smoothed particle hydrodynamics on heterogeneous clusters”. Computer
Physics Communications 184.8 (2013), 1848–1860 1.

[FM15] FUJISAWA, MAKOTO and MIURA, KENJIRO T. “An efficient
boundary handling with a modified density calculation for SPH”. Com-
puter Graphics Forum. Vol. 34. 7. Wiley Online Library. 2015, 155–
162 2.

[GBP*17] GISSLER, CHRISTOPH, BAND, STEFAN, PEER, ANDREAS, et
al. “Generalized drag force for particle-based simulations”. Computers
& Graphics 69 (2017), 1–11 7.

[GLHL11] GARCIA, ISMAEL, LEFEBVRE, SYLVAIN, HORNUS, SAMUEL,
and LASRAM, ANASS. “Coherent parallel hashing”. ACM Transactions
on Graphics (TOG). Vol. 30. 6. ACM. 2011, 161 2.

[GM77] GINGOLD, R. A. and MONAGHAN, J. J. “Smoothed particle
hydrodynamics-theory and application to non-spherical stars”. Monthly
Notices of the Roy. Astronomical Soc. 181 (1977), 375–389. ISSN: 0035-
8711 1, 2.

[GPB*19] GISSLER, CHRISTOPH, PEER, ANDREAS, BAND, STEFAN, et
al. “Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling”.
ACM Transactions on Graphics (TOG) 38.1 (2019), 5 2.

[Gre10] GREEN, SIMON. “Particle Simulation using CUDA”. Cuda 4.0
Sdk May (2010) 1–3, 7, 8.

[GSSP10] GOSWAMI, PRASHANT, SCHLEGEL, PHILIPP, SOLEN-
THALER, BARBARA, and PAJAROLA, RENATO. “Interactive SPH
simulation and rendering on the GPU”. Proceedings of the 2010
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Eurographics Association. 2010, 55–64 1, 2.

[IABT11] IHMSEN, MARKUS, AKINCI, NADIR, BECKER, MARKUS, and
TESCHNER, MATTHIAS. “A parallel SPH implementation on multi-core
CPUs”. Comput. Graph. Forum 30.1 (2011), 99–112. ISSN: 01677055.
eprint: 1110.3711 1–4.

[ICS*13] IHMSEN, MARKUS, CORNELIS, JENS, SOLENTHALER, BAR-
BARA, et al. “Implicit incompressible SPH”. IEEE transactions on visu-
alization and computer graphics 20.3 (2013), 426–435 2.

[IOS*14] IHMSEN, MARKUS, ORTHMANN, JENS, SOLENTHALER, BAR-
BARA, et al. “SPH Fluids in Computer Graphics”. Eurographics STARS
2 (2014), 21–42. ISSN: 1017-4656 2, 3.

[KAD*06] KEISER, RICHARD, ADAMS, BART, DUTRÉ, PHILIP, et al.
Multiresolution particle-based fluids. Technical Report 520. Department
of Computer Science, ETH Zurich, 2006, 10 2.

[Kar12] KARRAS, TERO. Thinking Parallel, Part III: Tree Construction on
the GPU. Accessed: 2019-06-17. 2012. URL: https://devblogs.
nvidia . com / thinking - parallel - part - iii - tree -
construction-gpu/ 3.

[KB17] KOSCHIER, DAN and BENDER, JAN. “Density maps for im-
proved SPH boundary handling”. Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM.
2017, 1 2, 6.

[LH06] LEFEBVRE, SYLVAIN and HOPPE, HUGUES. “Perfect spatial
hashing”. ACM Transactions on Graphics (TOG). Vol. 25. 3. ACM.
2006, 579–588 2, 4.

[MCG03] MÜLLER, MATTHIAS, CHARYPAR, DAVID, and GROSS,
MARKUS. “Particle-Based Fluid Simulation for Interactive Applica-
tions”. Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Animat. 5
(2003), 154–159. ISSN: 17275288 2.

[MLJ*13] MUSETH, KEN, LAIT, JEFF, JOHANSON, JOHN, et al. “Open-
VDB: an open-source data structure and toolkit for high-resolution vol-
umes”. Acm siggraph 2013 courses. ACM. 2013, 19 2.

[MM13] MACKLIN, MILES and MÜLLER, MATTHIAS. “Position based
fluids”. ACM Trans. Graph. 32.4 (2013), 1. ISSN: 07300301. DOI: 10.
1145/2461912.2461984 2.

[Mon05] MONAGHAN, JOSEPH J. “Smoothed particle hydrodynamics”.
Reports on progress in physics 68.8 (2005), 1703 2, 6.

[OK12] ORTHMANN, JENS and KOLB, ANDREAS. “Temporal blending
for adaptive SPH”. Computer Graphics Forum. Vol. 31. 8. Wiley Online
Library. 2012, 2436–2449 2.

[Pri12] PRICE, DANIEL J. “Smoothed particle hydrodynamics and
magnetohydrodynamics”. Journal of Computational Physics 231.3
(2012), 759–794 2.

[SP09] SOLENTHALER, BARBARA and PAJAROLA, RENATO. “Predictive-
corrective incompressible SPH”. ACM transactions on graphics (TOG).
Vol. 28. 3. ACM. 2009, 40 2.

[WHK16] WINCHENBACH, RENE, HOCHSTETTER, HENDRIK, and
KOLB, ANDREAS. “Constrained Neighbor Lists for SPH-based Fluid
Simulations”. Proceedings of the 15th ACM SIGGRAPH/Eurographics
symposium on computer animation. July 2016 2, 6–8.

[WHK17] WINCHENBACH, RENE, HOCHSTETTER, HENDRIK, and
KOLB, ANDREAS. “Infinite Continuous Adaptivity for Incompressible
SPH”. ACM Transactions on Graphics (TOG) 36.4 (2017), 102:1–
102:10 1–3, 5, 7, 8.

[WRR18] WINKLER, DANIEL, REZAVAND, MASSOUD, and RAUCH,
WOLFGANG. “Neighbour lists for smoothed particle hydrodynamics on
GPUs”. Computer Physics Communications 225 (2018), 140–148 1.

[WTYH18] WU, KUI, TRUONG, NGHIA P, YUKSEL, CEM, and HOET-
ZLEIN, RAMA. “Fast Fluid Simulations with Sparse Volumes on the
GPU”. 2018 2.

[YT13] YU, JIHUN and TURK, GREG. “Reconstructing surfaces of
particle-based fluids using anisotropic kernels”. ACM Transactions on
Graphics (TOG) 32.1 (2013), 5 7.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

107

https://hal.inria.fr/inria-00072829
https://hal.inria.fr/inria-00072829
1110.3711
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/
https://devblogs.nvidia.com/thinking-parallel-part-iii-tree-construction-gpu/
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.1145/2461912.2461984

