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Abstract
Kernel Support Vector Machines (SVMs) are widely used for supervised classification, and have achieved state-of-the-art
performance in numerous applications. We aim to further increase their efficacy by allowing a human operator to steer their
training process. To this end, we identify several possible strategies for meaningful human intervention in their training, propose
a corresponding visual analytics workflow, and implement it in a prototype system. Initial results from two users, on data from
three different domains suggest that, in addition to facilitating better insight into the data and into the classifier’s decision
process, visual analytics can increase the efficacy of Support Vector Machines when the data available for training has a low
number of samples, is unbalanced with respect to the different classes, contains outliers, irrelevant features, or mislabeled
samples. However, we also discuss some limitations of improving the efficacy of supervised classification with visual analytics.

CCS Concepts
• Visualization application domains → Visual analytics; • Kernel methods → Support vector machines;

1. Introduction

Classification is the task of assigning an observation, which is com-
monly described by a vector of numerical features, to one of a finite
number of classes. It occurs in many applications, from predicting
optimal medical treatment based on genetic profiles to telling legiti-
mate from fraudulent uses of credit cards. Supervised classification
learns a function that performs this assignment based on a set of
training data. It is a standard problem in machine learning [HTF11].

Visual analytics is “the science of analytical reasoning facilitated
by interactive visual interfaces.” [TC05]. There is a strong current
interest in using visual analytics to improve supervised classifica-
tion [ERT∗17]. However, most work has focused on two specific
families of classifiers: One are decision trees, which are relatively
easy to interpret. The second one are deep neural networks, which
have achieved outstanding performance on many difficult problems,
due to their ability to learn suitable representations from large and
high-dimensional training data. Our work is concerned with Kernel
Support Vector Machines (SVMs) [SS02], an important supervised
classification method that remains a method of choice when the
amount of training data or computational resources are too limited
to permit effective training of parameter-rich deep neural networks.

Visual analytics increases human understanding of the training
data, the most relevant features, and other factors that determine the
classifier’s performance. In addition to this, we aim to increase SVM
efficacy via human interaction. In agreement with [RFT17], we use
efficacy as a generic term for desirable properties which, depending
on the application, might be best quantified as accuracy, precision,

recall, or area under the receiver operating characteristic (ROC)
curve, while simultaneously reducing the set of features required
by the classifier. Compared to decision trees, an empirical study on
121 data sets has ranked SVMs considerably higher with respect to
classification accuracy [FDCBA14]. This makes it more difficult to
increase their efficacy with open-box training.

It is another difficulty that SVM training is based on solving
an abstract global optimization problem. Our first contribution (in
Section 3) is to analyze this training process with respect to how a
human expert can steer it in a meaningful way. This represents the
first stage in developing and justifying the design of our method.
In the second stage of our design, we decide which specific visual
analytics techniques should be included in our system, and how
they should work together. In Section 4, we base this on a specific
workflow that integrates the previously identified opportunities for
steering SVMs, and we describe our prototype implementation of a
visual analytics system that implements this workflow.

In Section 5, we provide evidence for the usefulness of our system
by comparing results from our system to three automated training
strategies. Based on our findings, and on theoretical results from the
machine learning literature, we discuss benefits and limitations of
open-box SVM training.

2. Related Work

Most approaches to SVM visualization aimed to support their in-
terpretability, but were not specifically concerned with improving
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efficacy. For example, Caragea et al. use projection-based tours
to identify variables on which the SVM relies most strongly for
its classification [CCH01], and to illustrate how decision surfaces
vary when randomly subsampling the training data, or changing
hyperparameter values [CCWH08]. Hamel [Ham06] derives a two-
dimensional visualization of support vectors and decision surfaces
using self-organizing maps, to visually convey how clusters in the
training data relate to the final decision. The nomograms proposed
for SVM visualization by Jakulin et al. [JMD∗05] provide a graphi-
cal overview of how different feature values affect the probability
that the corresponding sample will be assigned to a specific class.

Similar to us, Ma et al. [MCM∗17] include a human in SVM
training. However, we aim to steer the training of kernel SVMs
without fundamentally changing this widely used technique, while
they replace kernel SVMs with local linear SVMs. Poulet [Pou04]
and Do and Poulet [DP04] also involve humans in SVM training,
but their goal is to achieve interactive data reduction, and to enable
training of SVMs when large-scale inputs would otherwise impose
unreasonable demands on memory and processing times.

Most existing visual analytics systems that perform feature se-
lection for classification are agnostic with respect to the classi-
fier. Examples are the SmartStripes software presented by May
et al. [MBD∗11], or the INFUSE system proposed by Krause et
al. [KPB14]. Some has been application-specific, such as an ap-
proach to using visual analytics for constructing white matter hy-
perintensity classifiers by Raidou et al. [RKS∗16]. Our system is
generic with respect to the application, but specific to kernel SVMs.
Some existing extensions and variants of SVMs are relevant to our
work. Their discussion is left to Section 3.1.

Different terms have been used to describe different facets of the
interplay between humans and computational systems. Computa-
tional steering describes a human intervention into a computational
process, based on a visual representation of that process, and inter-
active feedback about the consequences of changes made by the
user [vLMvW97]. This term originates from numerical simulations,
but it matches our intended intervention into the SVM training
process. Guidance has been characterized as “a computer-assisted
process that aims to actively resolve a knowledge gap encountered
by users during an interactive visual analytics session” [CGM∗17].
This is another important aspect for our work: We expect that the
user will not have all knowledge required for meaningful steering to
begin with, and has to acquire it by interacting with our system.

3. Opportunities for Steering SVM Training

In this section, we examine the mathematical formulation of kernel
SVMs with the goal of identifying opportunities for meaningful
human intervention. Several textbooks describe the SVM training
process in a comprehensive and accessible manner [SS02, HTF11].
Appendix A recapitulates the facts that are immediately relevant to
our further discussion, and clarifies our notation. Equations with
numbers in the form (A.x) are part of the appendix.

We propose three complementary strategies that allow us to in-
fluence the training in a meaningful way: Sample weighting and
outlier elimination (Section 3.1), feature weighting and selection
(Section 3.2), and semi-automated parameter tuning (Section 3.3).

They provide the basis of our workflow and visual analytics system,
which we describe in Section 4.

3.1. Sample Weighting and Outlier Elimination

By default, all samples that are used to train an SVM are given
equal weight. This can be seen from the fact that, in Eq. (A.2), all
slack variables ξi are penalized by the same factor C, independent
of sample i. When given training data that is unbalanced in the sense
that the two classes are represented by different numbers of samples,
this will lead to a bias in favor of predicting the more frequent class.
When such a bias is undesired, one strategy is to pick different
values of C for samples from the two classes, based on their inverse
frequencies, e.g.,

C{+,−} =
n++n−

2n{+,−}C, (1)

where C{+,−} is used for samples from the positive or negative class,
respectively, and n{+,−} are the number of training samples from
the corresponding class.

Such class weights can be generalized to individual sample
weights. This opens up a way in which a human analyst can in-
fluence SVM training: If she recognizes certain training samples as
atypical, or even as erroneous, their impact on the final classifier
can be reduced by scaling down the penality incurred by the corre-
sponding slack ξi. In the extreme case, weighting a sample by zero
has the same effect as removing it from the training set.

A related trend in machine learning has been referred to as “learn-
ing using privileged information” [VV09], “learning using hidden
information”, or “learning with teacher” [VVP09]. In this context,
SVM+ has been developed. It accounts for additional features in
the training data, access to which is “privileged” in the sense that
they are not available for the test data that is to be classified later
on. When selecting suitable kernels and regularization parameters,
SVMs are consistent in the sense that, given an increasing num-
ber of training samples from a fixed joint distribution P(x,y) of
features and labels, their solution converges to the theoretically opti-
mal Bayes decision rule [Ste02]. It has been proven that a suitable
encoding of prior knowledge can improve the rate of that conver-
gence [PV10], and that the same effect can be achieved by a suitable
weighting of training samples [LHS14]. In particular, atypical sam-
ples (xi,yi) with a low conditional probability P(y = yi|xi) should
receive a lower weight. To our knowledge, we are the first to use
this idea within a visual analytics workflow.

Atypical samples can be spotted directly by viewing the data
distribution, e.g., via dimensionality reduction. In Appendix B, we
list several quantities that can be visualized in our system to provide
additional guidance for sample weighting and outlier removal. Such
outlier scores should not be trusted “blindly”, but should rather
support identification of samples that merit further investigation.
The final sample weights should be assigned by considering all
available information, including prior domain knowledge.

3.2. Feature Weighting and Selection

In most practical scenarios, not all features are equally important.
The assignment of feature weights is another way in which a human
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Figure 1: All stages of our proposed workflow for open-box training of kernel SVMs involve a human expert. An initial parameter tuning is
required to provide guidance for feature and sample weighting. The latter two are so tightly interwoven that we integrate them in a dual view.

analyst can influence the training of an SVM: Scaling a feature by a
factor f > 1 (0≤ f < 1) increases (decreases) its impact. This obser-
vation is not trivial, since some other supervised classifiers, such as
Random Forests [Bre01], are unaffected by such scalings. It might
even seem counter-intuitive since, in Eq. (A.1), scaling a feature
could be compensated by an inverse scaling of the corresponding co-
efficient in the weight vector w. However, this equivalent solution is
generally not the one found by training the SVM with re-scaled fea-
tures. Rather, scaling distorts the space in which Eq. (A.2) optimizes
the margin, or Eq. (A.4) measures distances.

Feature weighting generalizes feature selection, which can be
achieved by assigning a feature zero weight. Feature selection has
been more widely considered in machine learning [GE03] and visual
analytics [MBD∗11,KPB14]. It is often based on feature importance
scores. However, all of these are, to some extent, heuristic, and their
rankings may contradict each other. We propose that visual analytics
can help a human analyst make an informed choice based on inves-
tigating the relationships between multiple importance scores, and
understanding the reasons for potential discrepancies between them
by referring back to the original data distribution. If she finds certain
features to be less relevant, but not entirely useless, the analyst can
decide to assign a smaller weight to them, rather than eliminating
them completely. A list of specific importance scores implemented
in our system, along with a brief explanation and justification for
including them, is given in Appendix C.

3.3. Parameter Tuning

Achieving good results with Radial Basis Function (RBF) kernel
SVMs requires selecting an appropriate regularization weight C
(Eq. (A.2)) and kernel parameter γ (Eq. (A.4)). These values are
commonly estimated automatically, via a grid search with cross-
validation on the training data [HCL03]. However, depending on the
application requirements, there are different criteria that one might
optimize, such as accuracy, precision P, recall R, and the F1 score
F1 = 2×P×R/(P+R), i.e., the harmonic mean of precision and
recall. In general, different parameter settings will optimize different
criteria. In addition, it is informative to account for the fraction of
support vectors corresponding to each setting: If it is very high, this
indicates that the settings caused the SVM to memorize the data,
rather than to learn a suitable abstraction.

Therefore, we propose that SVM training can benefit from having
a human analyst examine the involved tradeoffs, especially when
a single criterion, such as accuracy alone, might not indicate a
clear and unique optimum in parameter space. Such an investigation
might give a human analyst a legitimate reason to deviate from

the automatically proposed settings, especially since there is no
guarantee that parameters obtained from cross-validation are going
to result in optimal performance also on the final test data.

4. A Proposed Workflow and Prototype System

In Section 4.1, we propose a visual analytics workflow that combines
the ingredients discussed in the previous section. We then describe
and justify the design of a prototype system that implements it.
Our design consists of a dual view in which feature and sample
weighting can be performed (Section 4.2), and a separate view for
parameter tuning (Section 4.3).

We aimed to create a feature-rich system that should provide a
large degree of flexibility to users who have a good understanding
of SVMs. We believe that the experience with this system can
inform the decision whether and how to combine SVMs with visual
analytics in specific applications, and with specific domain experts
as users. In Section 6, we discuss this point in more detail.

4.1. A Workflow for Steering SVM Training

As a basis for the design of our system, we reasoned about depen-
dencies between the building blocks identified in Section 3. This led
us to a specific workflow for steering SVM training. It is depicted in
Figure 1, and motivated as follows:

Parameter tuning is required as an initial step, since several el-
ements that are used to guide feature and sample weighting are
based on the internal state of a pre-trained SVM classifier, or on its
kernel parameters. It can be done with an established automated grid
search [HCL03]. Since removing or re-weighting features and sam-
ples is expected to change the optimum in SVM parameter space,
another parameter tuning is required at least once at the end of the
workflow. A semi-automated fine-tuning, which will be described
in Section 4.3, can further improve results. Since some of the data
views also depend on the parameters, it can make sense to alter-
nate between feature and sample weighting on the one hand, and
parameter tuning on the other, when making substantial changes.

The two core tasks within the pipeline are feature weighting
and selection, as well as sample weighting and outlier removal.
It was highlighted previously [MBD∗11] that these two steps are
intricately interwoven, and should not be strictly separated: For
example, observing the effects of different feature weights on the
sample distribution can provide valuable guidance on which exact
setting is the most useful. In the context of training kernel SVMs,
we recommend using kernel PCA [SSM97] for plotting the sample
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Figure 2: Our visual analytics system supports feature and sample weighting with a window that integrates a customizable dual domain view
of sample and feature space (A), in-depth visualizations of individual feature distributions and correlations, guided by a heatmap of distance
consistency [SNLH09] (B), parallel coordinates (C), and a table that lists all features and their current weights (D).

distribution, since it shows us the data “through the same lens” as
the SVM: When using the same kernel, the projections created by
kernel PCA reflect the same abstract high-dimensional feature space
in which the kernel SVM optimizes the margin for classification.
Therefore, it makes sense to use the (visually assessed) separability
of classes in these projections as guidance for tuning feature weights
[RFT17]. Moreover, exploring the data distribution with respect to
specific features can help the user understand potential discrepancies
between feature importance scores. During this process, some outlier
samples can already become apparent, and we find it much more
practical to modify their weights right away, rather than having to
remember them for a later, separate stage in the pipeline.

The tight integration of feature and sample weighting implies
that it can make sense to alternate between them, and there is no
mandatory starting point. However, in all cases we encountered, we
found it helpful to inspect the features first: When there are many
irrelevant ones, removing them has a profound effect on dimension-
ality reduction based views and outlier scores. Based on them, the
weights of atypical samples can subsequently be reduced.

Our prototype implements this workflow with two main views:
One for feature and sample weighting and selection, shown in Fig. 2,
and one for parameter tuning, shown in Fig. 3. The system has been
written in Python 3.7.2, based on PyQt 5.9.2 for the graphical user
interface, matplotlib 3.0.2 for creating and interacting with the plots,
scikit-learn 0.20.3 for the required machine learning infrastructure,
libxml 2.9.9 and pandas 0.24.1 for data storage and management,
numpy 1.16.2 and scipy 1.2.1 for basic scientific computing.

4.2. A Dual View for Feature and Sample Weighting

We discuss feature and sample weighting and selection first, be-
cause they are at the core of our workflow. To account for the tight
coupling between them, we adapt the idea of dual visual analy-
sis [TFH11, DWF∗19], in which samples and features can be inves-
tigated simultaneously. This dual view is shown in Fig. 2 A. The
effects of changes on one side are immediately reflected in an update
of the other side, i.e., the kernel PCA is automatically re-computed
after changing feature weights, and feature scores are updated when
removing samples.

The views are customizable: Samples can be placed and colored
based on different kernel PCA modes, or on any of the additional
quantities described in Appendix B. Features can be placed and col-
ored based on various importance scores, including those described
in Appendix C. To review the sample and feature weights, they can
also be selected for color coding or placement. Depending on the
nature of the color coded quantity, our system employs matplotlib’s
perceptually uniform sequential (e.g., for nonnegative importance
scores) or diverging colormaps (e.g., for the modified decision func-
tion). In addition, class labels are indicated with marker shape (circle
and triangle), and samples can be colored based on cross-validated
prediction accuracy (black for correct classification, red for incor-
rect), or class labels, for which we chose green and purple to avoid
suggesting an ordering.

To understand why features are ranked in a certain way, we allow
the analyst to refer back to the original data distribution, and to

© 2019 The Author(s)
Eurographics Proceedings © 2019 The Eurographics Association.

66



Mohammad Khatami and Thomas Schultz / Open-Box Training of Kernel Support Vector Machines

Figure 3: Our system supports parameter tuning by comparing cross-validation results from an automated machine learning pipeline to those
of the manually tuned model (A). Results of cross-validation over an adaptable grid are visualized with heat maps of various criteria, such as
accuracy, precision, recall, or fraction of support vectors (B). Characteristics of the data set and parameter choices are also shown (C).

investigate correlations between pairs of features. To this end, we
include scatterplots and density estimates of class-specific feature
distributions (Fig. 2 B), as well as parallel coordinate plots (Fig. 2 C),
because they were successfully used to steer classifier training previ-
ously [CLKP10]. They all use the same colors to convey class labels,
and are linked so that a selection in any scatterplot is reflected in
the others, and in the parallel coordinates. Moreover, to reduce the
complexity of the parallel coordinate plot, a subset of features can
be selected for inclusion, either in the features scatterplot on the
right-hand side of A, or in a separate tabular overview of all features
(D), which also lists the currently chosen weights.

Our initial prototype included a scatterplot matrix, but we found
that it quickly became unmanageable when the number of features
increased. Therefore, we instead present a feature matrix, which
is shown on the left-hand side of Fig. 2 B. Clicking on an entry
selects the corresponding feature pair for an in-depth investigation
in the scatterplot (center) and density plots (right). To guide the user
towards features that are relevant to the classification task, the feature
matrix displays a heat map of distance consistency [SNLH09], a
measure of how well the classes are separated in a scatterplot.

After changing feature or sample weights, our system provides
immediate feedback on whether this appears to benefit the classifi-
cation. For this, the SVM is automatically retrained after each modi-
fication. Accuracy, F1, recall, and precision scores from a five-fold
cross-validation are displayed above the left scatterplot in Fig. 2 A.

In each case, the second number represents the most recent result,
the first one the result before that. It is important to keep in mind that
a decrease in cross-validation accuracy does not necessarily imply
that a change was counterproductive. It might simply indicate that a
given modification resulted in a need to re-tune SVM parameters.
To ensure interactivity, our system does not re-tune the parameters
each time. However, the user can decide to do so at any point, by
switching to the parameter tuning tab, which will be described next.

4.3. Parameter Tuning View

We placed the visual interface for parameter tuning into a separate
tab, shown in Fig. 3. We made this decision to avoid further in-
creasing the complexity of the tab shown in Fig. 2, and because
initializing this view is time-consuming enough that we decided to
perform it only after first loading the data or on request, which is
made by switching to this tab. In our experiments, it took between
one and seven seconds on a single 3.4GHz CPU core.

Semi-automated parameter tuning requires the analyst to examine
the trade-off between different criteria, and to see whether there
is a clear unique optimum, or several promising alternatives that
may be worth exploring further. We support this with a grid search
over C and γ parameters with five-fold cross-validation. We also
tried splitting the data into fixed training and validation sets, and
visualizing the results separately. This is faster than cross-validation
and we hoped that it might support investigation of potential over-
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fitting. However, it turned out not to be feasible when dealing with
limited training data since it left an insufficient number of samples
for reliable training or validation. To avoid bias, the test data on
which the efficacy of open-box SVMs is finally evaluated, was not
available during the visual analytics process in either case.

Accuracy, F1 score, precision, recall, area under the ROC curve,
or fraction of support vectors are visualized as a function of C
and γ in the heatmap in Fig. 3 B. To keep the interface simple,
we show one user-selected measure at a time. The most favorable
value is highlighted with a circle. Since large parameter ranges
need to be tried out, we sample them on a logarithmic scale. We
follow established recommendations for the range and number of
samples [HCL03], and allow the user to modify them in order to
explore promising regions of parameter space in greater detail.

Parameter values can be selected by clicking on the matrix view.
The corresponding result is then shown in more detail in the right
column of Fig. 3 A. Again, the two values printed for each criterion
compare the current result to the previous one. Classification results
are shown in three ways: For the reasons given above, kernel PCA
(top) is the standard sample view of our system. The central view
relates the SVM decision function (i.e., Eq. (A.1) without reducing
the value to its sign) to the first kernel PCA mode, indicating which
samples ended up close to the decision boundary (horizontal line
in that plot). Finally, an ROC curve of the classifier is shown at the
bottom, indicating possible tradeoffs between true and false positive
rates which could be achieved by shifting the decision boundary.
The number on top of that plot is the area under the ROC curve.

The left column of Fig. 3 A shows the same plots for the automat-
ically tuned classifier. This allows the user to assess the expected
benefit of her modifications. We note that not just the colors of the
samples changed between the scatterplots on the left and the right
(red indicating misclassification), but also the positions in kernel
PCA space, due to changes in feature weights and kernel parameters.

A separate region in this tab, Fig. 3 C, displays the current pa-
rameter values for SVM training and optionally allows the user to
manually edit them. It also shows details about the current dataset.

5. Results and Discussion

5.1. Experimental Setup and Overview of Results

Similar to the closely related work by Ma et al. [MCM∗17], we
compare the results achieved with open-box training with those
from automated training to provide evidence that our system is
useful. Unlike Ma et al., who report results from a single dataset and
a single human operator, we selected three datasets from different
domains, and had two operators work with each, to obtain an initial
impression of between-user variability.

We included multiple datasets because we expected that the extent
to which a human in the loop can improve kernel SVMs depends
on the characteristics of the data. In particular, we expected that the
following limitations of a training dataset should provide room for
improvement over automated training:

L1 Only few training samples are available.
L2 The available features differ substantially with respect to their

Table 1: F1 scores and area under the curve (AUC) achieved on
data from three different domains. Methods are automated SVM
training without (row 1) and with automated feature selection (rows
2/3), as well as our proposed system (rows 4/5).

Wine Brain MRI Liver

Method F1 AUC F1 AUC F1 AUC

No feature selection 0.42 0.78 0.75 0.86 0.55 0.71
F score 0.44 0.66 0.74 0.78 0.51 0.64

Mutual information 0.47 0.72 0.75 0.79 0.48 0.61
Our system (User 1) 0.49 0.85 0.83 0.91 0.55 0.70
Our system (User 2) 0.52 0.86 0.82 0.92 0.54 0.72

relevance to the classification problem, especially when a large
number of irrelevant features is present.

L3 Training data is noisy or contains outliers.
L4 Training data is unbalanced, so that some classes are repre-

sented by a much larger number of samples than others.

While Ma et al. compare their results to those from a linear SVM,
we employ three more challenging baselines: First, we followed
widely used recommendations [HCL03] for automated training.
They combine an RBF kernel with min-max feature normalization
and a grid search over a wide range to establish suitable values
of C and γ . To account for class imbalance, we set class weights
according to Eq. (1), used stratified cross-validation, and optimized
parameters with respect to the F1 score. To create even more chal-
lenging baselines, we also included automated feature selection. For
this, features were ranked according to the F score in one case, mu-
tual information in the other. In either case, the optimal number of
top-ranking features was estimated with stratified cross-validation.
For each candidate feature set, a full grid search was run to deter-
mine SVM parameters leading to largest F1.

The two co-authors of this work (“User 1” / “User 2”) attempted
to optimize SVM efficacy by independently following the above-
described workflow, until they felt satisfied with the result. This
was typically the case after a few minutes of interaction. We report
results on the final test data, which were only available after the
users decided to stop the process.

Details on the three datasets (“wine”, “brain MRI”, and “liver”)
are given in Sections 5.2– 5.4, respectively. Two example sessions
are illustrated in supplementary videos. Results are summarized
in Table 1. Since accuracy is not suitable for evaluating classifiers
on unbalanced data, we specify the F1 score and area under ROC
curve (AUC), for independent test sets that were not available during
automated feature selection or interactive tuning. For each dataset
and criterion, the best result is highlighted in bold.

5.2. Wine Quality Estimation

Our first experiment used the wine quality dataset from Cortez et
al. [CCA∗09], which is available from the UCI Machine Learning
Repository [DKT17]. Limitations L1–L4 are addressed as follows:
A small random subsample of 50 wines was used for training (L1);
features (such as alcohol content, residual sugar, acidity) naturally
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Figure 4: User interaction with the wine quality dataset. A: Scatter-
plot in which User 1 assigned weight 0.1 to an outlier with respect
to residual sugar. B: Scatterplot in which User 1 assigned weight 0.5
to an apparent outlier. C: Feature plot in which User 2 eliminated
three features (names given in text). D: In a kernel PCA plots, User 2
reduced the weights of five atypical samples to 0.1.

varied with respect to their importance (L2); labels were not fully re-
liable due to the subjective nature of wine quality (L3); unbalanced
classes were formed by thresholding the quality score into “high
quality” (quality> 6) and “medium and low quality” (quality≤ 6),
leading to only 14% “high quality” wines (L4).

Both users started with the parameters C = 0.5,γ = 2 from the
automated pipeline. User 1 investigated the F scores and SVM
weights of all features. Four of them (pH, residual sugar, fixed
acidity, chlorides) stood out as scoring low with respect to both
measures, so he decided to reduce their weights to 0.1. During this
inspection, he also discovered an outlier with respect to residual
sugar and reduced its weight to 0.1 (cf. Fig. 4 A). In a scatterplot of
one-class SVM scores vs. PCA mode 1, he identified a misclassified
sample that was far away both from other samples of the same class,
and other misclassified samples (cf. Fig. 4 B). He decided to reduce
its weight to 0.5. Fine-tuning the parameters led him to select the
parameters C = 0.1768,γ = 2 for the final classifier.

User 2 eliminated three features (residual sugar, fixed acidity,
chlorides) entirely, since they scored low according to F score,
mutual information, and linear SVM weights (cf. Fig. 4 C). At this
point, he decided to re-tune the parameters (to C = 213,γ = 2−9)
and identified five outliers in the kernel PCA plot. He reduced their
weights to 0.1 (cf. Fig. 4 D). When color coding the αi, one point
stood out with an exceptionally high value. The user reduced its
weight to 0.5 to avoid giving it too much influence. Fine-tuning the
parameters led him to C = 55.72,γ = 0.0364.

5.3. Brain MRI Gender Classification

Our second experiment was to distinguish between men and women
based on brain MRI from 145 subjects, 86 (59%) of them male, from
the Human Connectome Project [SJX∗13]. 59 subjects (35 male)

Figure 5: User interaction with the brain MRI dataset. A: Feature
plot in which User 1 removed many low-ranking features. B: Sample
plot in which User 1 assigned weight 0.1 to outlier samples. C:
Feature plot in which User 2 removed low-ranking features. D:
Sample plot in which User 2 reduced the weight of outliers.

were used for training, the remaining ones for evaluation. 110 fea-
tures that reflect tissue microstructure in specific white matter
bundles have been extracted using the CoBundleMAP approach
[KWS19]. Here, the number of samples is naturally low (L1) and
features vary strongly with respect to their importance (L2). How-
ever, labels are reliable, and class imbalance is limited.

Both users started with C = 8,γ = 0.125. Due to the overwhelm-
ing number of features, User 1 decided to remove a bulk of low-
scoring ones without investigating them in detail, leaving only 30
that exhibited either high linear SVM weights or between-class vari-
ance (cf. Fig. 5 A). In a scatterplot of one-class SVM scores vs. PCA
mode 1, the weights of seven atypical samples were reduced to 0.1
(cf. Fig. 5 B). The final parameter tuning led to C = 32,γ = 0.5.

User 2 reduced the number of features to 32, based on F score,
mutual information, and Gini importances (cf. Fig. 5 C). He then re-
tuned parameters (to C = 2,γ = 0.125) and, based on a scatterplot of
αi versus one-class SVM scores, reduced the weights of samples that
were rated as strong outliers by the one-class SVM (values below
−0.25), but received high αi in the classifier, to 0.1 (cf. Fig. 5 D).
Parameter fine-tuning led him to C = 213,γ = 2−13.

5.4. Detection of Liver Disease

Our third dataset contained medical records of 579 patients, 414
(72%) of which suffered from liver disease [RBV11]. We split it into
290 samples (207 with liver disease) for training, 289 for testing.
The goal is to detect liver disease based on 10 features that include
age, gender, as well as results from several blood tests. In this case,
there was a moderate class imbalance (L4), but the data was not
overly sparse, there was not a large number of irrelevant features,
and there were no obvious issues with noise or outliers.

Both users started with C = 32,γ = 2. After investigating Gini
importances, linear SVM weights, and F scores, User 1 assigned
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Figure 6: User interaction with the liver dataset. A: Feature plot
in which User 1 assigned weights 0.1 and 3 to the marked features,
respectively (features names in text). B: Sample plot in which User 2
assigned weight 0.1 to an apparent outlier sample.

weight 0.1 to gender, and increased weights of the high-scoring fea-
tures direct bilirubin, alkaline phosphotase, and alamine aminotrans-
ferase to 3 (cf. Fig. 6 A). User 1 decided not to modify any sample
weights. In the final parameter tuning, he selected C = 8192,γ = 0.5.

User 2 assigned weight 0.2 to gender, age, total proteins, albumin,
and A/G ratio, based on their low F score, mutual information, and
linear SVM weights. He noticed one outlier in the kernel PCA plot,
and reduced its weight to 0.1 (cf. Fig. 6 B). Parameter fine-tuning
led him to C = 6208,γ = 0.092.

5.5. Discussion of Experimental Results

It can be seen in Table 1 that the use of our system improved F1
scores and AUC in two of the three investigated datasets, wine
quality and brain MRI. These results are in line with our hypothesis
that limitations L1–L4 pose a difficulty for standard SVM training,
and provide room for improvement with visual analytics. In the liver
case, which suffered least from the limitations, none of the more
advanced methods, neither automated feature selection nor manual
steering, substantially improved over the baseline.

It might happen that human intervention decreases F1, or any
other quality criterion that we might have hoped to optimize. The
view in Fig. 3 A provides valuable guidance to guard against this, by
directly comparing the accuracy of the automated and the manually
tuned classifier, estimated via cross-validation. However, the final
evaluation happens on test data that was not available during training,
and there can never be a guarantee that observations made on the
training data will generalize to them. This limitation affects not
just open-box training, but also any automated method for feature
selection. In our results, examples can be seen in the liver data,
where both automated feature selection methods caused a decrease
of F1 and AUC, even though the option to keep all available features,
which would have produced the same result as the baseline without
feature selection, was included in their solution space.

The observation that feature selection may decrease performance
on the test set can be explained by the fact that it introduces addi-
tional degrees of freedom into the training process, which increases
the risk of overfitting. One way to reduce this risk is to perform
feature selection within a visual analytics system that encourages
users to make choices not purely based on a single feature impor-
tance score, but by comparing multiple ones, combined with a visual
examination of the data itself, and informed by domain knowledge.

Given the good performance of fully automated SVMs, and the
fact that we can never guarantee that putting a human into the loop
will lead to an improvement, one might ask whether the use of visual
analytics to support supervised classification is really worthwhile.
In our opinion, the answer depends on the characteristics of the
data and application: The more the available data suffers from the
above-mentioned limitations, the more we can hope to benefit from
visual analytics in terms of prediction accuracy. The greater the
practical consequences of a classifier’s decision (e.g., in terms of
human well-being or economic value), the higher the value of being
able to make even small improvements.

Even though users did not take exactly the same steps, between-
subject variability of F1 and AUC scores was low. However, it is
a limitation of our work that experiments were performed by only
two operators, both of which were experts in the involved methods.
We note that most related works are either vague with respect to
who performed the experiments (“the user”, “test persons”) [Pou04,
MBD∗11, MCM∗17] or use language that suggests that authors did
the experiments themselves (“we”) [DP04,RKS∗16,RFT17]. Krause
et al. [KPB14] work with a team of four clinical researchers, but
report that they had a good understanding of the involved machine
learning techniques even before they started using the visual analyt-
ics system. We believe that the current practice of having test users
who are closely familiar with machine learning amounts to quantify-
ing the benefit from visual analytics under favorable conditions. It is
an interesting challenge for future work to design systems that are
specifically targeted at domain experts without a strong technical
background and to evaluate them with proper user studies.

6. Discussion and Conclusion

We identified opportunities for steering SVM training with visual an-
alytics, proposed a workflow that includes them, and implemented
it in a prototype system. Finally, we applied the system to three
datasets with different characteristics and from different domains.
Results indicate that visual analytics can improve SVM efficacy
when the training data is sparse or unbalanced, or when it includes
many irrelevant features, noise, or outliers. However, the benefit
decreased when comparing against automated feature selection tech-
niques. We expect that, in many use cases, increased understanding
of the training data and the SVM’s decision process will be a stronger
motivation for using visual analytics than the increase in efficacy.

The effectiveness of our visual encodings, and interactive re-
sponse of our system, is limited to datasets that do not have too
many samples (in our examples, up to a few hundred). However,
with increasing availability of training data, SVMs have been proven
to converge to the optimal solution [Ste02] even without human in-
tervention. Therefore, settings with limited training data are the
most relevant ones for putting a human into the loop.

In the future, we are planning to study a wider range of supervised
classifiers, both for the binary and the multi-class cases. We also
hope to extend the design of our system to include explicit support
for collaborative use by a domain expert and a data scientist.
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Appendix A: Background on SVMs

In their original form, SVMs are binary linear classifiers that map a
given feature vector x ∈ Rd to one of two labels y ∈ {−1,1} via a
weight vector w ∈ Rd and bias term b:

y(x) = sign
(

wT x+b
)

(A.1)

Given training data {xi,yi}, i ∈ {1,2, . . . ,n}, soft margin SVMs
obtain suitable parameters w and b by optimizing

argmin
w,b

1
2

wT w+C
n

∑
i=1

ξi (A.2)

while, for all i, keeping the constraints

yi(wT xi +b)≥ 1−ξi and ξi ≥ 0. (A.3)

The hyperparameter C in Eq. (A.2) has to be provided by the user,
and balances the two competing objectives encoded in that equation:
Maximizing the margin, i.e., the distance between the available
training samples and the decision boundary, while minimizing the
overall extent to which individual samples fall into the margin, or
even get mis-classified. For the ith sample, this is encoded in the
slack variable ξi, which is included in the optimization.

Many real-world cases require nonlinear classification. In SVMs,
this is achieved via linear classification in a higher-dimensional
feature space to which the inputs are mapped implicitly with a
kernel k : Rd ×Rd → R. The RBF kernel

k(xi,x j) = exp(−γ ‖xi−x j‖2) (A.4)

is a common choice.

The kernelized version of Eq. (A.1) can be written as

y(x) = sign

(
n

∑
i=1

αiyik(xi,x)+b

)
, (A.5)

which includes one Lagrangian multiplier αi ≥ 0 per training sample.
The weight vector w can be expressed as ∑

n
i=1 αiyik(xi, ·), but is

now a member of an abstract higher-dimensional feature space. The
decision in Eq. (A.5) only depends on those training samples xi for
which αi > 0. These are referred to as support vectors.

Appendix B: Outlier Measures

Our system implements the following outlier measures:

• A modified SVM decision function, which can be obtained from
Eq. (A.1) or its kernelized counter-part Eq. (A.5): Instead of
taking the sign of the expression in parentheses, we multiply it
by the known label y. This way, the final value will be positive
if the SVM made a correct decision, negative if the sample was
misclassified. The modified decision function is evaluated using
cross-validation, so that the sample for which it is computed is not
included in the training set that was used to make the prediction.

• The value of αi (cf. Eq. (A.5)) that was assigned to sample i,
averaged over all cross-validation folds in which it was part of the
training data. This highlights the samples that are actually used
for classification, so that changing their weights is most likely to

have an impact. Visualizing the product αiyi allows us to identify
samples that influence the decision towards one specific class.

• A score from a one-class SVM [SWS∗99], which we train sepa-
rately on the training data from each of the two classes. Given a
training set {xi} that is assumed to contain independent samples
from a common distribution P(x), one-class SVMs estimate a
function that is positive on a subset of feature space that con-
tains a prespecified fraction ν of the probability mass, and which
should be as “simple” or regular as possible. Thus, we can inter-
pret samples that are assigned higher values to be closer to the
“core” of the respective class distribution; lower values are more
likely to be at the fringe, or outliers.

Appendix C: Feature Importance Scores

Our system implements the following feature importance scores:

• The F score from a one-way analysis of variance [McD14]. It is
fast and simple to compute, and straightforward to interpret: It
indicates whether the difference between the class-specific means
of a feature is large compared to its within-class variance.

• The mutual information between a given feature and the class
labels [KSG04]. Compared to the F score, it still works when the
relationship between feature and label is more complex. However,
it is more difficult to estimate from limited data.

• SVM feature weights, obtained from training a linear SVM. As-
suming the features have been normalized initially, the absolute
value of the corresponding coefficient in weight vector w (cf.
Eq. (A.1)) is taken as an indicator of their relevance for the final
decision. Unlike the F score and mutual information, this ac-
counts for all features simultaneously, and is therefore affected by
interactions between them. Unfortunately, when using a kernel,
the weight vector is defined in an abstract higher-dimensional
space, and can no longer serve as an indicator of feature relevance.

• Since SVM feature weights are limited to linear classification, we
include Gini importances as a measure that accounts for nonlinear
classification. It is derived from Gini impurity IG, a measure
of class label heterogeneity. Given a set of samples in which a
fraction pi, i ∈ {1,2, . . . ,C}, belongs to the ith of C classes,

IG(p) =
C

∑
i=1

pi(1− pi) . (A.6)

IG = 0 when all samples have the same label. The overall decrease
of Gini impurity brought by a given feature when training random
forests [Bre01] or extremely randomized trees [GEW06] can be
taken as an indicator of its importance.
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