
Vision, Modeling, and Visualization (2018)
F. Beck, C. Dachsbacher, and F. Sadlo (Eds.)

Clustering for Stacked Edge Splatting

M. Abdelaal1, M. Hlawatsch1, M. Burch2, and D. Weiskopf1

1Visualization Research Center (VISUS), University of Stuttgart, Germany
2TU Eindhoven, Netherlands

Cluster 1 Cluster 2 [Expanded] Cluster 3 Cluster 10 Cluster 11

3

1

2

︸ ︷︷ ︸
stacking representation

︸ ︷︷ ︸
representative graph

Figure 1: A dynamic graph visualization depicting the US domestic flight dataset from October 1st, 1987, to December 31st, 2017. The data is
aggregated on a per-month basis. It contains 402 vertices, which are the airports, 1,300,340 weighted edges, which are the flight connections
and their frequencies, and 363 timepoints, which are given by the graphs per month. The dataset is sequentially clustered at a threshold of 1.1,
resulting in 11 clusters. As annotated, the stacking representation allows us to identify several temporal patterns: (1) Stability, (2) Periodicity,
and (3) Anomaly, whereas the clustering allows us to identify different temporal phases of the graph.

Abstract
We present a time-scalable approach for visualizing dynamic graphs. By adopting bipartite graph layouts known from parallel
edge splatting, individual graphs are horizontally stacked by drawing partial edges, leading to stacked edge splatting. This al-
lows us to uncover the temporal patterns together with achieving time-scalability. To preserve the graph structural information,
we introduce the representative graph where edges are aggregated and drawn at full length. The representative graph is then
placed on the top of the last graph in the (sub)sequence. This allows us to obtain detailed information about the partial edges by
tracing them back to the representative graph. We apply sequential temporal clustering to obtain an overview of different tem-
poral phases of the graph sequence together with the corresponding structure for each phase. We demonstrate the effectiveness
of our approach by using real-world datasets.

CCS Concepts
• Human-centered computing → Information visualization; Visual analytics;

1. Introduction

Dynamic graphs build an important data structure for many appli-
cation domains. For example, in software engineering, the dynam-
ics of call relations [Die07] might be worth investigating in order to
understand the internal processes of a software system and to possi-
bly detect design flaws, prevent bugs, or maintain the system. Simi-
larly, co-author networks formed within scientific communities can

change over time; analyzing those networks is essential to under-
stand the information flows and relationships between researchers
and how they evolve over time. There are many of those examples
and from a data perspective, all of them are commonly based on
vertices, edges, and timepoints. In many cases, additional attributes
are attached, typically leading to some kind of multivariate graph
structure [KPW14].

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

DOI: 10.2312/vmv.20181262 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/vmv.20181262


M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting

Designing a visualization approach that is scalable in the three
data dimensions is difficult but important for data analytics. To
reach this goal, an overview of the evolving graph structure is re-
quired. Such an overview should uncover temporal patterns (i.e.,
stability, periodicity, trends, or anomalies), and temporal phases
(i.e., periods of time where graphs share similar features) that exist
in the data and, therefore, provide a starting point for further data
exploration tasks.

The concept of parallel edge splatting [BVB∗11] depicts dy-
namic data as a sequence of static bipartite layouts. Therefore, it
follows the principle of dynamic stability [DG02] and mental map
preservation [MELS95], making it a good candidate for a time-
scalable dynamic graph visualization. Moreover, pushing the in-
dividual graphs together by an interleaving them [BHW17] makes
the visualization even more time-scalable. However, it comes at the
cost of merging edges and edge attributes, making it sometimes
hard to identify temporal patterns over longer time spans.

In this paper, we overcome some of the formerly mentioned is-
sues by providing a visualization approach capable of depicting
and analyzing temporally long graph sequences. The main con-
tributions of our work are: 1) introducing the stacked edge splat-
ting representation to avoid the over-drawing problem caused by
the interleaving method [BHW17] and, therefore, uncover the tem-
poral patterns, 2) applying sequential temporal clustering to ob-
tain an overview of different graph temporal phases together with
the corresponding graph structure for each phase. To evaluate our
approach, we present two application examples based on a US
domestic flight traffic dataset [Uni18] and a software call graph
dataset [JHo18].

2. Related Work

Visualizing and analyzing dynamic graphs is a challenging field of
research. Many of the existing techniques are surveyed by Beck et
al. [BBDW17]. The interesting aspects of this kind of data are the
combination of several data dimensions that should be included in
a corresponding dynamic graph visualization: edges, vertices, and
timepoints [BETT99]. Additional attributes like weights or hierar-
chical organizations of the vertices can complicate the visual depic-
tion of this kind of data. Moreover, a dynamic graph representation
should provide a scalable variant for most of the data dimensions
while still preserving the graph structure and topology when show-
ing the temporal evolution of the graph.

Beck et al. [BBDW17] discuss two major concepts for displaying
the time dimension in order to analyze the evolution of the graph
structure over time. Time-to-time mappings make use of graph an-
imation [FT04, DG02] and are typically based on node-link di-
agrams. Time-to-space mappings [BVB∗11, BHW17] exploit the
given display space to show as many graphs as possible next to
each other with the goal to provide an overview of the time-varying
behavior while still showing most aspects of the graph structure.

Although the animation concept can be used to visualize dy-
namic graphs, it typically suffers from mental map preservation
problems [APP11, MELS95] if the graphs do not follow dynamic
stability criteria. Moreover, comparing several graphs over time is
rather difficult with animation [TMB02]. For this reason, much of

the recent research in dynamic graph visualization focuses on static
representations of the dynamic data, making it comparable over
time due to perceptual benefits [HE12].

With these design issues in mind, the parallel edge splatting tech-
nique [BVB∗11] focuses on a time-scalable variant for representing
dynamic graphs by placing the graphs in a bipartite layout next to
each other in a static diagram (apart from interaction techniques).
The problem of visual clutter [RLMJ05] caused by many link cross-
ings is mitigated by computing density fields from the graph edges
similar to the work of van Liere and de Leeuw [vLdL03], who splat-
ted the nodes instead. Color coding these density fields provides an
overview of several graphs in a sequence, making them compara-
ble while still showing the graph structure. Burch et al. [BHW17]
extended this idea by interleaving, obtaining an even more time-
scalable variant that scales up to more than a thousand timepoints.

The visual fusion resulting from interleaving emphasizes the
graph structures. This method, however, suffers from over-drawing
problems, as a result of the overlap between the individual graphs.
This leads to merging of edges and edge attributes, making it hard
to identify the length of periods in which graph edges persist,
hence leading to data misinterpretations. Burch [Bur17] tried to
tackle this problem by showing a splatted sequence of partially
drawn [BEW95, BVKW11, BCG∗12] bipartite layouts, showing
each individual graph in a fixed stripe. However, in this case, the
link information is hard to interpret and target node ambiguities
mostly occur. Moreover, temporal clustering is not used as addi-
tional support for identifying temporal phases in dynamic data.

In our work, we focus on providing a time-scalable overview
that reveals temporal patterns and temporal phases that exist in dy-
namic graph data without losing the graph structural information.
Van den Elzen et al. [vdEHBvW16] tried to achieve time-scalability
by reducing graphs to points, but the actual graph structures were
not visible anymore. Also, massive sequence views [vdEHBvW13]
are time-scalable representations that support different clustering
and reordering techniques. However, there is no temporal clus-
tering and the many parallel lines make a graph structure explo-
ration difficult. Moreover, the matrix cube visualization by Bach et
al. [BPF14] that is based on stacked adjacency matrices is hard to
use [GFC05] to identify temporal patterns in long and dense dy-
namic graphs.

3. Visualization Technique

Our visualization approach builds on the concept of parallel edge
splatting [BVB∗11], which uses a sequence of bipartite graphs
to visualize dynamic graphs. To design a visualization technique
capable of depicting and analyzing temporally long graph se-
quences, we horizontally stack bipartite graphs by drawing par-
tial edges, what we refer to as stacked edge splatting. By doing
this, we avoid the over-drawing problem caused by the interleaving
method [BHW17] and, therefore, uncover the temporal patterns.
The graph structural information is preserved by the representative
graph, where edges are aggregated and drawn at full length. To get
the detailed information about the partial edges (i.e., direction or
target node), we trace them back to the representative graph. We
apply sequential temporal clustering to the entire graph sequence

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

128



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting

to obtain a less-cluttered representative graph. On the one hand, it
improves the edge tracing task. On the other hand, it provides an
overview of different temporal phases of the graph together with
the corresponding graph structure for each phase.

3.1. Stacked Edge Splatting
t1 t2 t3 t4 t5 t6

(a) Parallel edge splatting [BVB∗11]

interleave actual representation

(b) Interleaving method [BHW17]

stacking representative graph actual representation

(c) Our approach: stacked edge splatting

Figure 2: Stacking bipartite graphs to obtain a time-scalable vi-
sualization. (a) Parallel edge splatting: bipartite graphs are drawn
next to each other. (b) Interleaving method: bipartite graphs are
interleaved. (c) Our approach: bipartite graphs are horizontally
stacked by drawing partial edges.

Figure 2 (a) shows traditional parallel edge splatting after trans-
forming the individual directed graphs into corresponding bipartite
layouts and visualizing them next to each other. The graph vertices
are hierarchically clustered and then reordered to obtain a good vi-
sual representation. For hierarchical clustering, we use the Jaccard
similarities to compute the number of shared links for all vertex
pairs. We then apply a vertex reordering technique [iS98] to find
a better arrangement of vertices while preserving the hierarchical
relationships between vertex-clusters.

With the aim of obtaining a more time-scalable visualization,
Burch et al. [BHW17] introduced the interleaving method where
the individual graphs are pushed together by interleaving them.
The visual fusion resulting from the interleaving emphasizes the
internal graph structures. The method, however, suffers from over-
drawing problems, as a result of the overlap between the individual
graphs, making it hard to identify the length of periods in which
graph edges persist and, therefore, hiding the temporal patterns. As
shown in Figure 2 (a), the bottom-most edge exists only at three
timepoints (t2, t4, and t6). However, the resulting visualization in

Figure 2 (b) leads to the false impression that the edge is persisting
from timepoint t2 to timepoint t6.

To avoid the over-drawing problem caused by the interleaving
method without losing the time-scalability advantage, we horizon-
tally stack the bipartite graphs by drawing partial edges (see Fig-
ure 2 (c)). To recover the lost information about the graph struc-
ture caused by drawing partial edges, we added the representative
graph, where edges are aggregated and drawn once at full length.
The representative graph is then placed next to the last graph in the
sequence (see Figure 2 (c)).

With this design, we use the representative graph to depict the
graph structure, whereas the stacked edge splatting representation
reveals the temporal patterns that exist in the data. By drawing the
full-length edges only once in the representative graph and placing
it at the end of the sequence, we prevent the graph structural infor-
mation from interfering with the temporal patterns. To obtain the
edge information (i.e., direction and target nodes) that corresponds
to the identified temporal pattern, we follow the partial edges across
the entire sequence until we reach the representative graph, what we
refer to as edge tracing.

Figure 3: First 159 timepoints of the flight dataset visualized using
stacked edge splatting (top) and the interleaving method (bottom).
Temporal patterns are more recognizable in the stacked edge splat-
ting representation as a result of avoiding over-drawing problems
caused by the interleaving method.

Figure 3 shows a visual comparison between our stacked edge
splatting technique (at the top) and the interleaving method (at the
bottom); we choose to visualize the first 159 timepoints of the flight
dataset. As one might notice, both methods have analogous time-
scalability. The representative graph in the top visualization allows
us to obtain an overview of the graph structure. The same infor-
mation can be obtained in the bottom visualization by observing
the entire graph sequence. However, the temporal patterns are more
recognizable in the top visualization as a result of avoiding the over-
drawing problem.

As shown in Figure 3, we use a multi-hued color scale consisting
of five colors (white, blue, purple, orange, and yellow). The multi-
hued color scale is essential for visualizing the transformed pixels

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

129



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting

scalar weights resulting from the edge splatting technique. We addi-
tionally apply a logarithmic transformation to the pixels weights to
reduce the dynamic range of the final image. To de-emphasize the
edges with lower weights (less frequent), we choose the color of
the minimum value to be the same as the background color (white).

The edge tracing task is influenced by the occurrence frequency
of the edge over the entire sequence. Edges that occur for a short pe-
riod of time (i.e., outliers), are harder to trace and usually not visible
in the representative graph. We address this problem in two ways.
First, we apply temporal clustering to obtain a better representative
graph (see Section 3.2). Second, we implemented a mouse-hover
interaction technique to expand the individual graphs to the full
width (see Figure 9). This technique visualizes the graph’s chang-
ing structure as an animation when the users move the mouse cursor
over the entire graph.

An additional factor that affects that edge tracing task is the
length of the partial edges. Shorter partial edges result in a com-
pressed representation that consumes less screen space, whereas
longer partial edges provide more edge information. Figure 4 shows
examples with different lengths of partial edges. We experimen-
tally identified 5 pixels length as a good value because the space
requirements are not too large and the edge information is still rec-
ognizable. Nevertheless, the users can adjust the length using an
interactive slider.

(a) 1 pixel (b) 3 pixels (c) 5 pixels (d) 7 pixels

Figure 4: Stacked edge splatting with different lengths of partial
edges. Shorter partial edges result in a more compressed represen-
tation, whereas longer ones provide more edge information.

Since the bipartite graph restricts the layout of vertices to one
dimension, it increases the visual clutter caused by edge crossings.
Therefore, it is hard to obtain the precise edge information only
by looking at the representative graph, especially, when graphs are
very dense. For this reason, we support mouse interaction to high-
light the graph edges corresponding to the hovered vertex (see Fig-
ure 7).

3.2. Temporal Clustering

Using a single representative graph to depict the graph structure
for the entire graph sequence results in a cluttered representation
caused by many edge crossings, especially when the dynamic graph
data is changing frequently from one timepoint to another. Obtain-
ing an overview of the graph structure from such representation is
a challenging task. To address this problem, we apply sequential
temporal clustering, allowing timepoints that share the same graph
structure to be grouped together in one cluster. In this way, each

cluster is a subsequence of the original graph sequence, reflecting
a certain graph structure. The time interval covered by each cluster
is the interval between the first and the last timepoints within the
cluster, what we refer to as temporal phase.

By having multiple representative graphs, one per each cluster,
we obtain an overview of different temporal phases in the graph
sequence together with the corresponding graph structure for each
phase. It also improves the edge tracing task, since the edges of
individual graphs are better depicted in the cluster-representative
graph.

Similar to the work of Bach et al. [BHRD∗15], we employ a
distance-based clustering method that achieves good results at low
computational cost. Clustering is done sequentially by computing
the Euclidian distance d between the two adjacency matrices m(ti)
and m(c j) for the current timepoint ti and the aggregated timepoint
of the current cluster c j. Given a user-defined threshold p, and if
d < p, ti is added to the cluster c j. If d >= p, a new cluster is cre-
ated for ti. We implemented a semi-automatic clustering where the
users can experimentally try different threshold values in an inter-
active way. High thresholds result in fewer clusters, whereas lower
thresholds result in more and smaller clusters but with a higher sim-
ilarity within each cluster. The users can optimize the results by
splitting/merging clusters manually.

By default, each cluster is depicted by the cluster representative
graph. We refer to this view as the collapsed view, where individ-
ual graphs within the cluster are not shown. By doing this, we save
screen space and provide the users with an overview of different
graph-topological states without going into detail. In contrast, in the
expanded view, users can explore the stacking representation within
each cluster (see Cluster 2 in Figure 1) and exploit the mouse-hover
interaction to expand individual graphs to the full width. The users
can switch between both views by clicking on the cluster represen-
tative graph.

When graphs are very dense, it is hard to detect visual dif-
ferences between different clusters by comparing the representa-
tive graphs. For this reason, we provide an algorithmic compar-
ison to detect the differences between different temporal phases
in terms of added and deleted edges (see Figure 5). The set of
edges Eadd

Gi
that are introduced in the graph Gi is expressed by:

Eadd
Gi

= EGi \EGi−1

In contrast, the set of edges Edel
Gi

that are deleted in the graph Gi is
expressed by:

Edel
Gi

= EGi−1 \EGi

Here, i ∈ N denotes the i-th timepoint, i.e., the i-th graph in the
graph sequence, EGi denotes the edge set of graph Gi.

4. Application Examples

In this section, we demonstrate the applicability and usefulness of
our approach. We present two different application examples based
on two different dynamic graph datasets: a US domestic flight traf-
fic dataset [Uni18] and a software call graph dataset [JHo18]. The
US domestic flight dataset demonstrates the scalability of the tech-
nique with respect to the number of edges, whereas the software

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

130



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
Oct. 1987 July 1993 June 1999 Jan. 2001 Sep. 2001 Jan. 2003 July 2004 Jan. 2006 Feb. 2009 July 2013 Jan. 2014

Figure 5: Sequentially clustering the flight dataset at a threshold of 1.1, resulting in 11 clusters: (bottom) the clusters’ representative graphs,
(middle) links deleted by each cluster, (top) links added by each cluster. Each of the representative graphs at the bottom is a result of adding
the links at the top to the previous representative graph, followed by subtracting links at the middle.

call graph dataset shows the scalability of our visualization tech-
nique with respect to the number of timepoints. For each example,
we show how the visualization allows us to identify different graph
structures and temporal patterns.

4.1. US Domestic Flight Dataset

We extracted the flight data for 30 years starting from October
1st, 1987, to December 31st, 2017. The data is aggregated on a
per-month basis, it contains 402 vertices, which are the airports,
1,300,340 weighted edges, which are the flight connections and
their frequencies, and 363 timepoints, which are given by the
graphs per month.

We apply temporal clustering to identify different temporal
phases in the flight data. We experimentally identified 1.1 as a good
threshold value, resulting in 11 different clusters as shown in Fig-
ure 5 (bottom). Each cluster is depicted by the cluster representa-
tive graph and marked by the time interval at the top. By looking
at the representative graphs in Figure 5 (bottom), we notice that
the middle region is rather similar across all clusters. However, we
can observe some visual differences as we approach the top and the
bottom regions.

For example, in the top region, we notice horizontal connections
that existed between the years 1987 and 2001 (clusters C1 to C4)
and started to fade-out in the years 2002 and 2003 (clusters C5 and
C6), until they disappeared between 2004 and 2017 (clusters C7 to
C11). Also, we see crossing links in clusters C6, C7, C8, C9, and
C11. Some of these links existed in cluster C1. Then, they nearly
disappeared between clusters C2 and C5 until they returned with
high frequency starting from cluster C6. In the bottom region, we
can detect similar behavior with the connections that come from
the bottom of the graph toward the middle. Additionally, we notice
these horizontal connections at the bottom that are only introduced
in clusters C9, C10, and C11. These horizontal connections are not
a result of self-connections, but they are connections between two
adjacent airports on the vertical axis.

To investigate these changes in more detail, we use the difference
feature to calculate the added and deleted connections introduced
by each temporal phase. Figure 5 (top) shows the added links intro-
duced by each cluster, whereas Figure 5 (middle) shows the deleted
ones. In this arrangement, each of the representative graphs at the
bottom is a result of adding the links at the top to the previous repre-
sentative graph, followed by subtracting links at the middle. In this

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

131



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting

1

2

3

5

6
7

9

10

1

2

3

4
7

8

1

2

3

4

Figure 6: The expanded view of the first three clusters of the flight dataset. The stacking representation allows us to identify several temporal
patterns.

way, we trace the evolution of the graph by going through Figure 5
column-by-column and reading top-down within each column.

As one might notice, there are many changes that occur in the
middle region and that are hardly observed by only looking at
the representative graphs at the bottom. For example, the added
connections in cluster C3 reflect new flights between Austin –
Bergstrom International airport and 14 other airports distributed
over the East and the West of USA. We notice the similarity be-
tween the added and deleted connections in cluster C3, this due to
the periodic behavior of some of these connections within the same
cluster. The airports of Dallas/Fort Worth International, Chicago
O’Hare International, John F. Kennedy International, and La-
Guardia are the center of the change in cluster C4. Each airport
runs new flights to relatively small airports located in the same or
an adjacent state.

The big change at cluster C6 reflects many new connec-
tions between East Coast airports, most notably, the airports of
Hartsfield-Jackson Atlanta International, Chicago Midway Inter-
national, Cincinnati/Northern Kentucky International, and Wash-
ington Dulles International. It also reflects new flights that connect
George Bush Intercontinental/Houston airport with other neigh-
boring airports. Additionally, it involves new connections between
Denver International/Colorado airport and the main airports lo-
cated in the northern states of the USA. The new links in cluster
C11 involve new flight connections between the Eastern airports
(Chicago, Washington, and Florida) and the Western airports (San
Francisco, San Diego, Portland (Oregon), and Seattle) through Dal-
las Love Field airport at the center of USA. We notice the similarity
between the added connections of cluster C11 and the deleted con-
nections in cluster C9.

Expanding the clusters allow us to see the stacking representa-
tion where we can identify the temporal patterns and trace them
back to the representative graphs. Figure 6 shows the expanded
view of the first three clusters in Figure 5. As we explore the graphs,
we identify several temporal patterns. We explain some of these
patterns as follows:
Stable Patterns: Patterns 1 and 2 reflect a high number of flight
connections that run over the entire graph period. The busiest air-
ports in the US typically belong to that group.
Periodic Patterns: Pattern 3 shows flight connections that occur

Pattern 1 Pattern 3

Pattern 5 Pattern 6

Figure 7: The edge-highlighting interaction technique is used to
view the source and destination vertices of the previously identified
temporal patterns.

every year between December and April. In contrast, pattern 4
shows flight connections that occur between May and October.
Shift Patterns: Patterns 5 and 6 reflect frequent flight connections
that stopped by the year 1993. In contrast, pattern 7 shows one flight
connection that frequently occurred between the years 1992 and
1996, whereas pattern 8 shows another flight connection occurred
between the years 1994 and 1999.
Anomalies: Patterns 9 and 10 show unusual flight connections that
occurred only for a short period of time.

To identify the source and destination vertices of these patterns,
we trace the partial edges corresponding to each pattern back to the
representative graph (i.e., patterns 1, 2, and 5). To obtain a less clut-
tered view, we utilize the edge-highlighting interaction technique to
show only the edges corresponding to the hovered vertex as shown
in Figure 7. We refer to the supplementary materials to view the
figures in the paper. The figures are best viewed on a monitor.

4.2. Software Call Graph Dataset

The software call graph dataset contains 787 vertices, which are
the software functions, 25,906 weighted edges representing the call
relations during the program execution, and 1,077 timepoints. The
call graph models the call relations between program functions dur-

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

132



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting
Cycle 1 Cycle 2 Cycle 3

P1 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P2 P5 P2 P4

Figure 8: Visualization of the software call graph dataset using our approach: Five different patterns can be identified along with the cyclic
behavior starting from timepoint 47.

Timepoint 1 Timepoint 2 Timepoint 3

move mouse

Figure 9: Closeup segment of pattern P3 shows a dynamic be-
havior that keeps altering between three distinct timepoints. The
mouse-hover interaction technique is used to expand the timepoints
to the full width.

ing runtime. By visualizing the call graphs we could examine and
analyze how the software is performing.

We choose to visualize the entire dataset without applying tem-
poral clustering. Figure 8 shows the visualization using our ap-
proach. Since the dataset contains 1,077 timepoints, we adjusted
the partial edge length to two pixels, so that the screen space is
enough to depict the entire graph sequence. Similar to the flight
dataset, the periodic patterns are clearly visible by looking at the
resulting graph. We notice that the software dataset is rather sparse
compared to the flight dataset. Since we did not apply temporal
clustering, the representative graph contains visual clutter caused
by many edge crossings, making it hard to obtain an overview of
the graph structure.

By exploring the graph in Figure 8, we can identify five different
patterns: P1, P2, P3, P4, and P5. Also, we notice the cyclic behavior
starting from timepoint 47. The patterns cycle exhibits the follow-
ing order: P1 → P2 → P3 → P4. The complete cycle occurs twice
between timepoints 47 and 812. However, at the third time, we can
observe a different order of patterns along with a newly introduced
pattern (P5). We also notice the existence of single timepoints when
switching from one pattern to another. We refer to those single
timepoints as transition timepoints. Moreover, by looking closely

at pattern P3, we observe its dynamic behavior that keeps altering
between three distinct timepoints. We use the mouse-hover inter-
action technique to expand the three timepoints in a full-width as
shown in Figure 9.

To investigate the cyclic behavior in more detail, we choose to
cluster the graph sequentially. Instead of using a threshold, we split
the graph manually at the transition timepoints. Figure 10 shows
the representative graphs of the resulting clusters. Each transition
timepoint is a cluster that has a single timepoint. As we explore the
first cycle, we notice three different transition timepoints (T1, T2,
and T3). Transition T1 occurs between patterns P1 and P2. Transi-
tion T2 occurs between patterns P2 and P3. Transition T3 followed
by transition T1 both occur between patterns P3 and P4. In contrast,
we notice that pattern P1 directly follows pattern P4 with no transi-
tion timepoints in-between. The second cycle of the graph follows
the same behavior as the first one, except for transition T1 being
introduced after transition T2 between the patterns P2 and P3.

The third cycle, however, shows a different behavior, in com-
parison to the previous two cycles. By inspecting it, we notice the
following. First, the transition T2 does not look exactly the same
and is followed by a new transition timepoint (T4), which reoc-
curs before pattern P4. Second, pattern P3 is significantly shorter
in length compared to the previous cycles, we can hardly see it in
Figure 8. Additionally, it occurs again before pattern P4. Third, we
can detect the newly introduced pattern (P5) along with the altering
behavior between pattern P5 and pattern P2 before transition T3.

To interpret these insights, we looked-up the function names cor-
responding to the vertices in the graph. In the first two cycles, the
user tried to draw an ellipse (transition T2), then he used the scrib-
ble tool (transition T3), whereas in the third cycle, the user draws
a rectangle instead (transition T2), then again he used the scribble
tool (transition T3). Furthermore, pattern P1 corresponds to func-
tion calls that release the used computing resources, whereas pat-
tern P4 reflects the deactivation of the current drawing tool, which
explains why pattern P1 always follows pattern P4.

5. Conclusion

In this paper, we introduced a time-scalable approach for visual-
izing dynamic graphs based on bipartite graph layout. To achieve
time-scalability together with revealing temporal patterns, individ-

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

133



M. Abdelaal, M. Hlawatsch, M. Burch, and D. Weiskopf / Clustering for Stacked Edge Splatting
Cycle 1 Cycle 2 Cycle 3

P1 T1 P2 T2 P3 T3 T1 P4 P1 T1 P2 T2 T1 P3 T3 T1 P4 P1 T1 P2 T2 T4 P3 T1 P5 P2 P5 P2 P5 T3 T1 P3 T4 P4

Figure 10: The dynamic graph from the software system sequentially clustered so that timepoints that share the same temporal pattern belong
to the same cluster. Each cluster is represented by the representative graph.

ual graphs are horizontally stacked by drawing partial edges, lead-
ing to stacked edge splatting. By introducing the representative
graph and placing it next to the last graph in the sequence, we pre-
serve the information about the graph structure. Therefore, the de-
tailed information about edge direction and target node can be ob-
tained by tracing the partial edges back to the representative graph
where edges are drawn once at full length. We apply temporal clus-
tering to group similar graphs together in one cluster. On the one
hand, it provides an overview of different temporal phases of the
graph sequence together with the corresponding graph structure for
each phase. On another hand, it improves the edge-tracing task.
We demonstrated the effectiveness of our approach using two real-
world datasets. For future work, we plan to explore other heuristics
for temporal clustering (i.e., the model-based clustering methods).

References
[APP11] ARCHAMBAULT D., PURCHASE H. C., PINAUD B.: Ani-

mation, small multiples, and the effect of mental map preservation in
dynamic graphs. IEEE Transactions on Visualization and Computer
Graphics 17, 4 (2011), 539–552. 2

[BBDW17] BECK F., BURCH M., DIEHL S., WEISKOPF D.: A taxon-
omy and survey of dynamic graph visualization. Computer Graphics
Forum 36, 1 (2017), 133–159. 2

[BCG∗12] BRUCKDORFER T., CORNELSEN S., GUTWENGER C.,
KAUFMANN M., MONTECCHIANI F., NÖLLENBURG M., WOLFF A.:
Progress on partial edge drawings. In Proceedings of the Symposium on
Graph Drawing (2012), pp. 67–78. 2

[BETT99] BATTISTA G. D., EADES P., TAMASSIA R., TOLLIS I. G.:
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-
Hall, 1999. 2

[BEW95] BECKER R. A., EICK S. G., WILKS A. R.: Visualizing net-
work data. IEEE Transactions on Visualization and Computer Graphics
1, 1 (1995), 16–28. 2

[BHRD∗15] BACH B., HENRY-RICHE N., DWYER T., MADHYASTHA
T., FEKETE J.-D., GRABOWSKI T.: Small MultiPiles: piling time to
explore temporal patterns in dynamic networks. Computer Graphics Fo-
rum 34, 3 (2015), 31–40. 4

[BHW17] BURCH M., HLAWATSCH M., WEISKOPF D.: Visualizing a
sequence of a thousand graphs (or even more). Computer Graphics Fo-
rum 36, 3 (2017), 261–271. 2, 3

[BPF14] BACH B., PIETRIGA E., FEKETE J.: Visualizing dynamic net-
works with matrix cubes. In Proceedings of Conference on Human Fac-
tors in Computing Systems (2014), pp. 877–886. 2

[Bur17] BURCH M.: Visual analytics of large dynamic digraphs. Infor-
mation Visualization 16, 3 (2017), 167–178. 2

[BVB∗11] BURCH M., VEHLOW C., BECK F., DIEHL S., WEISKOPF
D.: Parallel edge splatting for scalable dynamic graph visualization.
IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2344–2353. 2, 3

[BVKW11] BURCH M., VEHLOW C., KONEVTSOVA N., WEISKOPF
D.: Evaluating partially drawn links for directed graph edges. In Pro-
ceedings of the Symposium on Graph Drawing (2011), pp. 226–237. 2

[DG02] DIEHL S., GÖRG C.: Graphs, they are changing. In Proceedings
of the Symposium on Graph Drawing (2002), pp. 23–30. 2

[Die07] DIEHL S.: Software Visualization – Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, 2007. 1

[FT04] FRISHMAN Y., TAL A.: Dynamic drawing of clustered graphs.
In Proceedings of 10th IEEE Symposium on Information Visualization
(2004), pp. 191–198. 2

[GFC05] GHONIEM M., FEKETE J., CASTAGLIOLA P.: On the readabil-
ity of graphs using node-link and matrix-based representations: a con-
trolled experiment and statistical analysis. Information Visualization 4,
2 (2005), 114–135. 2

[HE12] HEALEY C. G., ENNS J. T.: Attention and visual memory in vi-
sualization and computer graphics. IEEE Transactions on Visualization
and Computer Graphics 18, 7 (2012), 1170–1188. 2

[iS98] I SILVESTRE J. P.: Approximation heuristics and benchmarkings
for the MinLA problem. In Proceedings of Algorithms and Experiments
(1998), pp. 112–128. 3

[JHo18] JHotDraw Start Page. http://www.jhotdraw.org/,
2018. (Accessed on 03/22/2018). 2, 4

[KPW14] KERREN A., PURCHASE H. C., WARD M. O.: Introduction
to multivariate network visualization. In Multivariate Network Visual-
ization, Kerren A., Purchase H. C., Ward M. O., (Eds.). Springer, 2014,
pp. 1–9. 1

[MELS95] MISUE K., EADES P., LAI W., SUGIYAMA K.: Layout ad-
justment and the mental map. Journal of Visual Languages and Comput-
ing 6, 2 (1995), 183–210. 2

[RLMJ05] ROSENHOLTZ R., LI Y., MANSFIELD J., JIN Z.: Feature
congestion: a measure of display clutter. In Proceedings of Conference
on Human Factors in Computing Systems (2005), pp. 761–770. 2

[TMB02] TVERSKY B., MORRISON J. B., BÉTRANCOURT M.: Anima-
tion: can it facilitate? International Journal of Human-Computer Studies
57, 4 (2002), 247–262. 2

[Uni18] UNITED STATES DEPARTMENT OF TRANSPORTATION: On-
Time Performance. https://www.transtats.bts.gov/
DL_SelectFields.asp?Table_ID=236&DB_Short_Name=
On-Time, 2018. (Accessed on 03/22/2018). 2, 4

[vdEHBvW13] VAN DEN ELZEN S., HOLTEN D., BLAAS J., VAN WIJK
J. J.: Reordering massive sequence views: Enabling temporal and struc-
tural analysis of dynamic networks. In Proceedings of IEEE Pacific Vi-
sualization Symposium (2013), pp. 33–40. 2

[vdEHBvW16] VAN DEN ELZEN S., HOLTEN D., BLAAS J., VAN WIJK
J. J.: Reducing snapshots to points: A visual analytics approach to dy-
namic network exploration. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (2016), 1–10. 2

[vLdL03] VAN LIERE R., DE LEEUW W. C.: GraphSplatting: Visualiz-
ing graphs as continuous fields. IEEE Transactions on Visualization and
Computer Graphics 9, 2 (2003), 206–212. 2

© 2018 The Author(s)
Eurographics Proceedings © 2018 The Eurographics Association.

134

http://www.jhotdraw.org/
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

