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Figure 1: Center view: A metro map stimulus from an eye tracking study overplotted with a visual attention map. Surrounding views:
Scatterplots depicting visual scanning behaviors, projected to two dimensions, can be derived from the eye movement data. The visual
outputs are depending on the metro map stimuli to be analyzed and the parameters given in t-SNE.

Abstract
In this paper we describe an approach based on the t-distributed stochastic neighbor embedding (t-SNE) focusing on project-
ing high-dimensional eye movement data to two dimensions. The lower-dimensional data is then represented as scatterplots
reflecting the local structure of the high-dimensional eye movement data and hence, providing a strategy to identify similar eye
movement patterns. The scatterplots can be used as means to interact with and to further annotate and analyze the data for
additional properties focusing on space, time, or participants. Since t-SNE oftentimes produces groups of data points mapped to
and overplotted in small scatterplot regions, we additionally support the modification of data point groups by a force-directed
placement as a post processing in addition to t-SNE that can be run after the initial t-SNE algorithm is stopped. This spatial
modification can be applied to each identified data point group independently which is difficult to integrate into a standard t-SNE
approach. We illustrate the usefulness of our technique by applying it to formerly conducted eye tracking studies investigating
the readability of public transport maps and map annotations.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

Eye movement data contains information about the who, when,
and where, i.e., it consists of spatio-temporal visual attention as-
pects differing between eye tracking study participants, but also
over space and time. Moreover, several metrics can be derived from
the data like fixation durations, saccade lengths, or saccade orienta-

tions and the like. Additional physiological data like pupil dilations,
blood pressure, or galvanic skin response might be used to augment
the pure eye tracking data [BBRW15] while also verbal feedback
might have been recorded. Bringing it to one point, eye tracking
data can become rather complex having a high-dimensional nature
and hence, making it hard to analyze and to visualize with the stan-
dard methods [BKR∗17].

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/vmv.20181260 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/vmv.20181260


Michael Burch / Identifying Similar Eye Movement Patterns with t-SNE

In particular, identifying similarities among the visual scanning
strategies is challenging since the eye movements are difficult to be
aligned to see those commonalities in the visual scanning behav-
ior. This even worsens if more metrics [HNA∗11, Duc03] and data
properties are taken into account in the similarity detection process.
For example, it might be of special interest if a group of people fol-
lowed a similar path or attended a set of areas of interest (AOIs)
in a certain order [AABW12]. Positively, these data aspects might
be used to find insights in the scanpath data, in the form of simi-
lar scanning behavior over participants, space, and time, probably
reflecting problems or design flaws in the corresponding stimulus.

In this paper we describe an approach based on the t-distributed
stochastic neighbor embedding (t-SNE) [vdMH08, vdM14] that
is useful for reducing high-dimensional data into a lower dimen-
sion, in particular if we are interested in keeping low-dimensional
data points of similar high-dimensional points close together. For
eye movement data in which the saccade sequences model the
high-dimensional data points, low-dimensional non-linear mani-
folds like saccadic eye movement patterns can be inherent in the
high-dimensional data. Consequently, t-SNE as a non-linear dimen-
sionality reduction technique can be useful to group those similar
high-dimensional data points in the lower-dimensional space and
hence, to identify similar eye movement patterns. The resulting
two-dimensional eye movement data can be visually represented
by interactive scatterplots (see Figure 1) serving as an overview for
the similarities among the eye movements over space, time, and
participants.

To reach this goal, we first split the eye movements into sub-
sequences (connected parts of scanpaths) and assign each subse-
quence a feature vector of quantities modeling certain user-selected
properties of the eye movement data. These vectors are then used
as inputs for t-SNE while the output in form of an interactive 2D
scatterplot is useful to select a certain number of scanpaths that
share similar properties. Those are reflected by their spatial neigh-
borhood in the scatterplot, i.e., groups of data points modeling the
high-dimensional eye movements. To further strengthen the some-
times merged or wide-spread point groups we add another force-
directed placement [FR91, KK89] process applied to the output of
t-SNE that is able to modify each point group separately. By this
interactive placement modification strategy we are able to identify
similar scanning behavior over space, time, and participant groups.

We illustrate the usefulness of our approach by applying it to eye
movement data from two formerly conducted eye tracking studies
investigating typical tasks in metro map design [BKW14,NOK∗17]
and map annotation [NHB∗17].

2. Related Work

If the task is to identify similar visual scanning strate-
gies [AABW12], not globally but also locally, among eye tracking
study participants, in the stimulus space, and over time [KFBW16,
KBB∗17], this can become a challenging problem for both, data
analysis and visualization. For example, for analyzing local fea-
tures in scanpaths [DDJ∗10], those have to be separated first into
several subsequences which soon produces thousands of trajec-
tories attached with additional data properties or derived met-
rics [HNA∗11, Duc03].

Algorithmically analyzing them typically has a high runtime
complexity but even then the output of these algorithms [KRS∗17]
can be immense and is composed of texts and quantities that
can hardly be explored for similarities, differences, or insights
in general. Using only visualization instead [BKR∗17], like
gazeplots [SPK86], scanpath visualizations [RHB∗14], or visual
attention maps [SM07, Bur16] soon lead to degradations of per-
formance at some task caused by visual clutter [RLMJ05] or ag-
gregation over space, time, and participants.

More sophisticated visual analytics techniques that combine au-
tomatic analysis and interactive visualizations [BJK∗16] also have
problems with the vast amount of spatio-temporal data and can sel-
dom output similar scanning behavior on different temporal granu-
larities, stimulus regions, or groups of participants. They typically
take the entire scanpath for each participant as input and output a
measure expressing the degree of similarity. In most cases such a
measure is then taken for clustering the set of scanpaths and only
represent the clustered output visually without showing a scalable
overview about similar eye movements as a starting point for fur-
ther data explorations. For example, gaze stripes by Kurzhals et
al. [KHH∗16] make use of image thumbnails representing the scan-
paths while the image features might be used to guide a hierarchical
clustering algorithm. Although this strategy might be applicable to
thousands of scanpaths, the output in form of horizontal stripes is
not visually scalable for such an approach nor does it easily de-
pict the local and global structure of the data. Generally, Pezzotti et
al. [PLvdM∗17] investigated the use of t-SNE for progressive vi-
sual analytics focusing on improving the interactivity of analytics
techniques. Jianu et al [JDL09] argue that a combination of original
visualizations like 3D models with lower-dimensional representa-
tions, typically generated by a force-directed-based 2D embedding,
can lead to easier navigations and improved data explorations. Chen
et al. [CDZ∗09] also rely on this combination of high- and low-
dimensional representations and provide an interactive technique
for the exploration of DTI fibers while the reduction is based on
MDS. Rössl and Theisel [RT12] introduce a concept for embed-
ding streamlines in 3D vector fields by preserving the Hausdorff
metric in the streamline space.

Although the aforementioned ideas show some benefits, they
are not easily adaptable to eye movement data. In our work we
transform scanpaths to high-dimensional data points by letting the
data analyst first cut each scanpath into subsequences of a certain
length and then map a feature vector to each of the subscanpaths.
Those vectors are built by a set of eye movement data-characteristic
quantities that model high-dimensional data. This dataset might
be visually represented by standard techniques like parallel coor-
dinates [ID90, HW15], scatter plot matrices [EGSC13], or glyph-
based techniques like star plots [Fri91] or Chernoff faces [Che73].
But as a negative consequence, the thousands of scanpaths con-
sisting of many dimensions each (given by the feature vector)
make traditional visualization techniques non-scalable, i.e., they
are rather cluttered (parallel coordinates) or do not fit on the screen
(scatterplot matrices or glyph-based diagrams). Moreover, it is
not possible to explore the high-dimensional data for local and
global structure, i.e., scanpath similarities or dissimilarities. Con-
sequently, for getting an overview and to identify the scanpath sim-
ilarities, we need a more advanced and scalable approach that first
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reduces the high-dimensional data into a low-dimensional repre-
sentation in which the data can be visually projected by preserving
the similarities as well as possible, while preserving as much of the
significant high-dimensional structure of the data as possible in the
lower dimension.

We got inspired by t-SNE [vdMH08, vdM14] as a non-linear di-
mensionality reduction technique since the technique is able to pre-
serve the local as well as the global structure of the data. It also fo-
cuses on grouping data points in 2D that lie on a low-dimensional
non-linear manifold in the high-dimensional data which is prob-
lematic for linear techniques like PCA [Hot33] or MDS [Tor52].
Moreover, it promises to find a better solution to the crowding prob-
lem that is typical for many other techniques like SNE [HR02]
while existing techniques [LV07] typically have problems when
it comes to retaining the local as well as the global structure of
the data. Since we still found the crowding problem and the user-
defined number of iterations problematic for our datasets [WVJ16],
even after checking several runs of t-SNE, we further extend t-SNE
by another step applying a force-directed [FR91, KK89] kind of
data point replacement in the 2D scatterplots. This post process-
ing replacement strategy can be applied on each of the identified
data point groups separately with the goal to better visually reflect
the data point groups and hence, to accelerate the visual similarity
identification process.

3. Data Model and Transformations

Eye movement data typically consists of several data dimen-
sions [BBRW15] and can be complemented by additional prop-
erties and derived metrics [HNA∗11]. Moreover, additional phys-
iological data or measurements can augment the traditional eye
movement data that comes in the form of spatio-temporal scan-
paths. In this section we illustrate how the eye movement data is
transformed to make it applicable to t-SNE and how the final re-
sults of the embedding and additional force-directed placement al-
gorithm are generated and look like. Figure 2 illustrates this process
starting with scanpaths depicted in a 2D stimulus, generating fea-
ture vectors modeling high-dimensional data, and applying t-SNE
for dimensionality reduction.

3.1. Eye Movement Data

We model eye movement data as scanpaths recorded during eye
tracking experiments in which participants are shown a stimulus
and they are given a task to be solved. The visual scanning strate-
gies might be explored to identify design flaws or problematic is-
sues in the stimulus in order to improve it or to exchange it by
another (possibly better) one.

We mathematically model a scanpath of an individual participant
i ∈ N by

Si :=
(

pi,1, . . . , pi,ni

)
where pi, j ∈N×N models the fixation points in a two-dimensional
stimulus. It may be noted that each scanpath Si may have a differ-
ent length since study participants typically answer the tasks differ-
ently.

Figure 2: An illustration of the dimensionality reduction applied
to several scanpaths. Feature vectors are computed first that serve
as input for t-SNE. The output in form of a 2D scatterplot is color
coded based on a user-defined criterion like space, time, or par-
ticipants. The point groups based on such a criterion are further
transformed by a force-directed placement strategy that works on
each group independently. Interactions with the 2D scatterplot are
useful to link the grouped data to the original stimulus and the orig-
inal scanpaths.

3.2. Metrics and Feature Vectors

There are several metrics derivable from eye movement data. All of
them might be used for a dimensionality reduction with t-SNE, as
far as they have a quantitative nature, i.e., they are real-valued num-
bers. For example, fixation durations, fixation locations in AOIs,
saccade lengths, saccade orientations, and the like all build metrics
that produce values worth investigating.

If scanpaths are under exploration, those metrics can be applied
to each fixation or saccade resulting in a list of metric values for
each scanpath. The number of values under observation can be se-
lected by the data analyst, but it may be noted, that the more met-
rics are taken into account, the smaller the probability typically be-
comes that two scanpaths are similar. The mapping of such high-
dimensional data to a lower (typical 2D) dimension gets more dif-
ficult and hence, the more metric values are contained the more
difficult and the more time-consuming the dimensionality reduc-
tion process will be. Moreover, individual scanpaths of a certain
length can be split into a list of subscanpaths of a smaller length.
This process supports the detection of local, in-between, scanning
strategies, either for one participant or several of those.

An example would be a set of n scanpaths (maybe from n eye
tracking study participants) while each scanpath is split into equally
long shorter scanpaths of length m (number of fixations is m). By
doing this we get another set of typically many more than n scan-
paths while each of those consists of m fixations and m− 1 sac-
cades. Now, a data analyst might be interested in feature vectors
that describe the sequence of fixation durations in each of these
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smaller scanpaths. By doing this, we obtain a set of m-dimensional
vectors that may contain some patterns based on the fixation dura-
tion sequences.

For instance, there might be groups of vectors that are similar
while others are dissimilar. A similarity among such vectors re-
flects that there is a similar visual scanning strategy that can be
further linked to time, space, or participant information. To algo-
rithmically detect those similarity patterns we need dimensionality
reduction techniques that are able to find a good mapping between
the high-dimensional data to a lower dimension, for example, in
2D in order to project the dimensionally-reduced data to a 2D scat-
terplot. This simple and intuitive visualization can then be used to
interactively find patterns in form of point groups sharing a simi-
lar property while they can be linked to the original eye movement
data.

3.3. Dimensionality Reduction with t-SNE

The goal of the dimensionality reduction using t-SNE is the projec-
tion of high-dimensional eye movement data to a low-dimensional
space. This could be done in many ways but the challenge is to
keep similar points in the high dimension also similar in the low
dimension and also dissimilar points in the higher dimension dis-
similar in the low dimension while also preserving the structure of
non-linear low-dimensional manifolds. If the projection is done in
a wrong way, some kind of lie factor in the visualization is gener-
ated which would possibly lead to misinterpretations for the visual
observer.

Traditional dimensionality reduction techniques like PCS or
MDS are linear techniques that do not support the detection of
non-linear low-dimensional manifolds. Moreover, non-linear tech-
niques like CCA, SNE, Sammon mapping, Isomap, MVU, LLE,
or Laplacian Eigenmaps have been used as alternative approaches,
but those are not able to preserve the local and global struc-
ture [vdMH08]. Hence, we base our concept on the non-linear t-
SNE approach. In particular, t-SNE is useful for eye movement
data in which the data can be located on lower-dimensional mani-
folds, like subsequences of scanpaths in which similar orientation
sequences are contained while the rest is noise in the higher dimen-
sion, for example, generated by calibration errors or inaccuracies.
Specific characteristics of eye movement data can be taken into ac-
count by the data analyst when experimenting with the transforma-
tion of the scanpaths into feature vectors based on typical metrics.

In the t-SNE [vdMH08] approach, this projection is achieved by
modeling the similarities or dissimilarities of two high-dimensional
points by conditional probability distributions. To compute the con-
ditional probabilities we follow the same strategy as in [vdMH08]
and use a t-student distribution with one degree of freedom for
the high-dimensional as well as the low-dimensional data. Finally,
those distributions are tried to match by applying the Kullback-
Leibler divergence whereas the sum over all data and projection
points is minimized following a gradient descent strategy. The orig-
inal idea has been extended and improved a lot, for example, by
accelerating it exploiting a tree-based algorithm [vdM14].

In this paper we follow this strategy described by van der Maaten

and Hinton. The goal of our approach is to let the data analyst de-
cide how to interactively build the feature vectors out of a set of
user-defined splitting of scanpaths and then apply dimensionality
reduction in form of t-SNE to reduce the complexity of the data
and to identify similar eye movement patterns. On top of this, in-
teraction techniques can be applied in order to annotate or filter the
represented 2D scatterplot points by categorical information like
space, time, or participants. These combinations of scanpath in-
formation reduced to lower dimensions and extra data annotations
build a novel idea for the application of dimensionality reduction
techniques, but also for eye movement data analyses.

The resulting 2D embedding (like in a scatter plot) can be further
visually enhanced by adding color coding to the points. Those col-
ors could indicate a category given by an extra feature of the data,
for example, areas of interest, time periods, or participant groups.

3.4. Force-Directed Post Processing

We modified the projection result of t-SNE by adapting it for our
purposes. This means it should be easier to separate the point
groups in the 2D visual embedding if t-SNE is not able to really
separate the point groups. To reach this goal, we further transform
the output of t-SNE by attracting and repelling forces between the
points in a certain user-defined category, for example, belonging to
the same AOI, happening in the same time period, or done by the
same individual or group of participants. This gives a clearer pic-
ture of the sometimes overlapping points. This feature can be used
for example, to further spatially aggregate the points while still pre-
serving their group structure and hence, providing a better view on
the remaining point groups. The user can decide to apply this fea-
ture on demand. Integrating those group-based forces into t-SNE
itself is challenging since t-SNE should be applied to the entire
high-dimensional dataset first to depict inherent data structures or
manifolds and then this additional force-directed placement (t-SNE
itself is already force-directed) should be done as a post process.

Those point attractions can be done by a user-defined parame-
ter deciding about the attraction strength and the attraction direc-
tion, i.e., how close the points are moved together, which is similar
to force-directed placement in graph drawing. To better allow the
building of specific characteristic shapes of the point clouds we
let the user decide about those directions, i.e., the points are either
grouped to circular or elliptical shapes. The benefits of such point
position modifications occur if t-SNE itself is not able to produce
uncluttered 2D representations like in the crowding problem when
placing too many points of different categories in the same display
region. However, if the resulting 2D diagram is already useful, the
post processing in form of this force-directed placement should not
be applied.

Moreover, to support several groups of points belonging to the
same category to be separable and not merged together, we fol-
low a certain layout strategy. This algorithm first computes the av-
erage distance of all pairwise distances of all points in a certain
group. Then, as a next step, all point pairs whose distances are ly-
ing below the average distance are forced to attract each other while
those points whose distances are bigger than the average distance
are forced to repel. It may be noted that the attraction should not be
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too large, i.e., not that many iterations should be applied in order to
not merge all of the points into a group of nearby points. This would
destroy the global placement of points that was generated by t-SNE
from the previous step. The force-directed placement process is just
an additional add-on feature to further support the group identifica-
tion. The user can decide how strong the effect should be applied
to the original 2D projection of the data.

4. Visualization of t-SNE Results

The visual encoding of the projected data is important in order to
rapidly identify groups of points that indicate a certain similarity
property. This property depends on the user-defined feature vectors
and the splitting of the scanpaths into shorter subsequences. More-
over, the observer can interact with the 2D scatterplots in order to
get more insights out of it. For example, an additional color cod-
ing depending on categorical data can show point distributions for
certain aspects while the groups can be selected in order to filter
the eye movement data for a certain characteristic feature, like all
scanpaths following a certain spatial pattern. Moreover, the original
point group shapes computed by t-SNE are interactively modifiable
by a post processing in form of a user-defined force-directed place-
ment.

4.1. 2D Scatterplots

We have chosen a simple visualization technique for the 2D pro-
jection of the high-dimensional data which is a typical diagram
type for dimensionality reduction techniques. Each feature vector
becomes a point in the 2D plane while the axes of the 2D plane
are just used for the embedding or projection of the data following
the similarity and dissimilarity properties. The x- and y-values at
the axes do not explain anything about the strengths of the corre-
sponding 2D points like in traditional scatterplots. In our case they
just model the property of the neighborhood of data points. Even
the global distance between point groups is no argument for the
strength or weakness of their similarities.

t-SNE is responsible for generating the mapping of the points,
i.e., each run of the t-SNE algorithm typically causes a different set-
ting of the scatterplot, i.e., the location of the points might be a to-
tally different one, but the grouping structure remains similar. This
aspect is not a big problem for our approach since we are mostly in-
terested in the grouping behavior that can be used to identify com-
mon scanpath patterns in the spatio-temporal eye movement data.
Hence, the t-SNE algorithm can be run several times until the data
analyst is confident with the outcome and if the crowding issue of
data points is still problematic the additional force-directed place-
ment strategy might be helpful.

Additional visual encodings can be added to the standard scat-
terplot like point thicknesses, point shapes, or point colors with the
goal to reflect more than one category at once. If more than one
visual variable is used for each point it may be noted that the visual
observer may then be confronted by a conjunction search, i.e., there
is no pop-out effect any more as in pre-attentive processing. Hence,
identifying patterns might be challenging. It may also be noted that
more complex features might be added like the scanpath’s trajec-
tory or stimulus image thumbnail as a miniature representation, al-

though this will produce vast amounts of overdraw, occlusion, and
visual clutter. Eye movement data has the great benefit that it can
be observed from different perspectives and hence, experimenting
with additional visual variables might be a good strategy to explore
this high-dimensional data.

4.2. Interaction Techniques

Apart from inspecting the static scatterplot with the embedding of
the high-dimensional feature vectors, the data analyst is able to
apply a certain number of interaction techniques. In general, an
overview is first provided that depicts all data points in 2D serv-
ing as a starting point for further explorations. The goal of those
interactions is to reduce the amount of displayed data or to inspect
it from different perspectives. Finally, a linking to the original stim-
ulus can support setting the found insights into context to the real
and original eye movement data.

• Category indication: After t-SNE generated a 2D embedding
of the high-dimensional data, the user can apply an additional
visual encoding of categorical information. This can be done by
color coding, shapes, or point thicknesses. It may be noted that
too many features can distract the diagram and may lead to prob-
lems when interpreting the data.

• Category filter: The embedded data can also be restricted or fil-
tered to a certain kind of category. This reduces the visual clutter
effect in the diagram and may lead to novel insights that might
not have been found by the original unfiltered scatterplot.

• Scanpath splitting: Before applying t-SNE the user can decide
to split the scanpaths into equally long subsequences. This pa-
rameter is deciding for the number of feature vectors to be taken
into account as high-dimensional data to be embedded into the
plane.

• Feature vector assignment: Eye tracking metrics as well as
additional data can be used for describing a scanpath. It may
be noted that the more features are given the more dimensions
have to be taken into account possibly leading to many dissimi-
lar points.

• Force-directed placement: The final step of our algorithm can
be used to merge groups of points belonging to a similar cate-
gory spatially closer together. In this step the user can adapt sev-
eral parameters interactively like the number of iterations, the
strengths of the attraction, or the directions of attraction.

It may be worth saying that there are many more interaction tech-
niques, too many to describe all of them in this paper. Moreover, we
plan to add some more in the future.

5. Application Example

We applied the extended t-SNE approach to eye movement data as
described in the former sections. First we preprocessed the data
from two formerly conducted eye tracking experiments investi-
gating visual scanning strategies in metro map designs [BKW14,
NOK∗17] and map annotations [NHB∗17].

The feature vectors could be modeled by various alternatives.
For illustrative purposes we look at the saccade sequences of sub-
scanpaths and try to figure out if the saccade orientations can give
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(a) (b) (c)

(d) (e) (f)

Figure 3: Scatter plots showing the similarities of subscanpaths of lengths 7 while taking into account the 6 saccade directions: number of
iterations 500, perplexity 50. The color coding shows a space subdivision into AOIs. Route finding tasks in metro maps are asked: (a) Berlin.
(b) Antwerp. (c) New York. (d) Hamburg. (e) Frankfurt. (f) Venice.

insights about similar visual scanning strategies. To reach this goal,
each scanpath is first transformed into angle sequences expressed
by value pairs using Euler’s formula. We experimented with several
subscanpath lengths while lengths 7 and 10 were used as example
applications. It may be noted that longer scanpaths lead to larger
feature vectors and hence, to more dissimilar points. If the length is
too small, then the scanpaths would show too many similarities and
shorter subsequences are not that significant for the visual analysis.
In the following subsections we demonstrate insights from concrete
eye movement data examples and how particular configurations and
parameters can be applied to manipulate the visual output and per-
spectives on the data.

5.1. Metro Maps

One of our eye tracking studies investigates the readability of dif-
ferent metro maps. A typical route finding task is asked while 40
participants took part in the study. All the maps were designed by

the same characteristic style to achieve similar preconditions for
the eye tracking study.

For illustrative purposes we split the scanpaths of the study par-
ticipants for the same stimulus into sequences of length 7, i.e., the
scanpaths are composed of 6 saccades. It may be noted that any
other splitting number could be applied, we just take 7 to show
the usefulness of our approach while we also experimented with
other parameters. Generally, if the length of the sequences is too
high, there will not be many similarities, on the other hand, if it is
too low, there will be too many. This challenge of finding a good
length value can be solved interactively.

After having done the split operation, we obtain a set of scan-
paths consisting of 2,500 to 3,500 scanpaths. The feature vectors
are again given by the saccade orientations given as angular value
pairs. In this exploration setting we do not apply a time-based cate-
gorization, but we apply an area of interest-based one. This should
show us, which similar scanpath patterns occur in which AOIs. For
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(a) (b) (c) (d)

Figure 4: Similarities of subscanpaths of lengths 10 while taking into account the 9 saccade directions: number of iterations 500, perplexity
50. The color coding shows a space subdivision into participants: (a) Free search. (b) Atlas search. (c) Grid-based search. (d) Partial links.

the AOI subdivision we chose a grid-based splitting into 10 times
10 grid cells. The granularity can be adapted on users’ demand.

Figure 3 shows that there is some kind of clear structure for
the AOI subdivision that holds in nearly any metro map shown in
the figure. We further enhanced the cluster structure by applying a
force-directed placement with 40 iterations. Each color indicates an
AOI and it is clearly visible that the AOIs contain similar scanning
strategies. This phenomenon can be explained by the route finding
task which has to be done in a structured way by following metro
lines and changing trains at interchange points.

This is an example where the color coding could be enhanced by
an additional shape encoding for the time periods. Moreover, also
the metro line color might be used for the point colors.

5.2. Map Annotations

Finding labels in geographic maps can become a tedious task if not
supported by additional indicators. In an eye tracking study several
map annotations were compared in terms of which scanning strate-
gies were applied by the study participants. In this study 40 partici-
pants were confronted by artificially generated maps with randomly
placed labels.

The goal was to find the given label in the map by using one
of the three annotations. This search improvement effect was com-
pared to a free search, i.e., the map was not annotated by any kind
of additional symbol or feature.

Figure 4 shows four different scenarios for scanpaths of length
10 with 9 saccades. The feature vectors are computed by using
the saccade orientations as angular value pairs. In this example we
chose longer scanpaths since the participants had to follow longer
steps and we hypothesize that different patterns occur than in the
other two experiments in terms of the lengths of the saccades, i.e.,
the participants did longer jumps with their eyes. In this example,
we encode the participants by color, i.e., each individual participant
gets his own color.

In (a) we can see the free search scenario but even there a cer-
tain kind of similar scanpaths exists. It seems as if the participants
applied a certain kind of search strategy to find the label. Although

there are clusters, the individual cluster points have mostly differ-
ent colors indicating that several participants did a similar search
behavior.

In (b), (c), and (d) we can see a point group structure. From the
results of the former study we know that people are able to apply the
map annotations in a way that they can solve the task more rapidly
than in the free search scenario. However, from the t-SNE examples
and the scatterplots we cannot really see a difference between point
group structures. In (d) the structure seems to be a bit stronger,
and there seems to be a clearer color coding in terms of study par-
ticipants. The partial link representation demands for following an
invisible line given by the partial link, i.e., the label search task be-
comes a pointing task, meaning the participants mostly looked into
a similar direction which may be the reason for the larger point
groups in terms of number of elements in this example.

6. Conclusion and Future Work

In this paper we investigate t-SNE as a non-linear dimensionality
reduction technique applied to eye movement data. We first split
the scanpaths from several eye tracked people into subsequences
of a certain user-defined length. Then feature vectors can be com-
puted for each scanpath subsequence based on typical eye track-
ing metrics or additional data. Those feature vectors build a set
of high-dimensional data consisting of several dimensions. Find-
ing insights in those high-dimensional datasets is challenging and
hence, dimensionality reduction comes into play projecting the
high-dimensional vectors to a lower dimension like a 2D scatter-
plot. To mitigate the situation of the crowding problem we further
apply a force-directed approach for each point group category sep-
arately to further emphasize the group structures. Interactions can
be applied to filter the data based on the visual output which fur-
ther supports the pattern and insight detection in the eye movement
data. For future work we plan to add additional visual encodings
for the lower-dimensional data while we will also experiment with
other dimensionality reduction techniques in order to understand
the differences of the algorithmic outputs. Those techniques might
be linear ones like principal component analysis (PCA) or multidi-
mensional scaling (MDS) as well as non-linear ones like isomap or
locally linear embedding (LLE) and the like.
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