
Vision, Modeling, and Visualization (2018)
F. Beck, C. Dachsbacher, and F. Sadlo (Eds.)

Compressed Bounding Volume Hierarchies
for Efficient Ray Tracing of Disperse Hair

M. Martinek1 and M. Stamminger1 and N. Binder2 and A. Keller2

1University of Erlangen-Nuremberg
2NVIDIA

Figure 1: Three different models for little to unstructured hair. From left to right: wavy and curly human hair as well as the dog model with
750.000 (wavy) and 1.000.000 (curly,dog) individual cubic Bézier curves, respectively. The wavy and curly hair models are courtesy of Cem
Yuksel, www.cemyuksel.com/research/hairmodels.

Abstract
Ray traced human hair is becoming more and more ubiquitous in photorealistic image synthesis. Despite hierarchical data
structures for accelerated ray tracing, performance suffers from the bad separability inherent with ensembles of hair strands.
We propose a compressed acceleration data structure that improves separability by adaptively subdividing hair fibers. Com-
pression is achieved by storing quantized as well as oriented bounding boxes and an indexing scheme to specify curve segments
instead of storing them.
We trade memory for speed, as our approach may use more memory, however, in cases of highly curved hair we can double the
number of traversed rays per second over prior work. With equal memory we still achieve a speed-up of up to 30%, with equal
performance we can reduce memory by up to 30%.

CCS Concepts
• Computing methodologies → Ray tracing; Parametric curve and surface models;

1. Introduction

Ray tracing human hair or fur is imperative when aiming for a
realistic appearance of rendered characters. As for light transport
simulation huge numbers of rays need to be traced through hair,
efficiency is paramount. However, the nature of hair consisting of
many thousands of individual strands of different lengths and di-
rections is a challenge for efficient ray tracing: First, hair is usually
modeled as a parametric curve with associated thickness, which
leads to rather expensive intersection tests between a ray and a sin-
gle hair. Second, the performance of a typical acceleration struc-

ture such as a volumetric kd-tree or a bounding volume hierarchy
(BVH) is rather bad for hair due to its curved and thin shape.

In previous work [WBW∗14], a hybrid hierarchy of axis-aligned
and oriented bounding boxes has been proposed that leads to tighter
bounding volumes and thus improved performance. In this paper,
we further elaborate on this idea and propose a novel approach to
construct a BVH for hair by contributing the following ideas:

1. Before building the hierarchy, we adaptively subdivide curvy
hair into shorter, straighter segments, which can be better clus-
tered in a bounding volume hierarchy.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/vmv.20181258 https://diglib.eg.orghttps://www.eg.org

www.cemyuksel.com/research/hairmodels
https://doi.org/10.2312/vmv.20181258

M. Martinek & M. Stamminger & N. Binder & A. Keller / Compressed Bounding Volume Hierarchies for Efficient Ray Tracing of Disperse Hair

2. We then build a BVH for these segments with axis-aligned or
oriented bounding boxes, avoiding the memory-heavier oriented
bounding boxes in the deep levels of the hierarchy.

3. Parameter intervals for hair segments and volume bounds are
stored in a compressed manner, which significantly reduces
overall memory consumption.

With our proposed hierarchy we can trade memory for perfor-
mance: We achieve a speed-up of up to 50% in our test scenes at the
price of increased memory. Using equal memory we still achieve a
speed-up of up to 30% over prior work, whereas with equal perfor-
mance we can reduce memory by up to 30%.

2. Related Work

Usually, individual hair strands are modeled using a parametric rep-
resentation such as cubic Bézier splines, which can be intersected
with rays directly [SN90, NO02, Res17]. However, such direct ray-
spline intersection tests are more expensive than recursively subdi-
viding a curve and intersecting with its line segments as in Naka-
maru et al. [NO02] at the price of an enlarged memory footprint.

Typical acceleration data structures for ray tracing perform badly
when applied to hair: For spatial partitioning, the same hair has to
be referenced multiple times from all voxels it overlaps, whereas
in object partitioning schemes bounding volumes are largely over-
lapping. Performance thus suffers from either deep tree traversal
or inefficient pruning and culling due to overlap. Although there
are many approaches for the hierarchy generation on general pur-
pose geometric primitives, only little work exists which tackles the
problem of parametric curves such as found in hair or fur mod-
els. Based on the fact that hair strands are often oriented similarly,
Woop et al. [WBW∗14] propose to use a hybrid BVH consisting
of axis aligned bounding boxes (AABB) as well as oriented bound-
ing boxes (OBB). The locally oriented bounding volumes enclose
the parametric curves more tightly and hence prevent much of the
above mentioned overlap. Due to the resulting tighter bounds prun-
ing performance is improved. We use a similar structure, but subdi-
vide primitives before sorting them into the hierarchy. Further, we
also avoid oriented bounding boxes in the deep hierarchy levels,
where their performance-memory trade-off is bad.

Deep acceleration hierarchies also suffer from their large mem-
ory footprint. Selgrad et al. [SLM∗16] use OBBs as well as com-
pression and quantization for a more efficient acceleration data
structure for ray tracing subdivision surfaces. Similar to Ernst et
al. [EG07] and Dammertz et al. [DK08], where triangles are split
before building the BVH, Selgrad et al. [SLM∗16] use a flatness
criterion in order to subdivide the parametric surface. They then
locally orient the bounds to the surface and use those bounding
volumes directly for ray traversal instead of intersecting the para-
metric surface itself. We use ideas from this paper to compress our
hierarchy and significantly reduce its memory footprint.

3. Algorithm

Our new ray tracing acceleration data structure trades memory for
performance. Based on curvature adaptive subdivision of the Bézier
curves and a compact indexing scheme (Section 3.1), we sacrifice

only little memory for the ability to create much tighter bounding
volumes. We then build a bounding volume hierarchy similar to
Woop et al. [WBW∗14], however, with restrictions on the OBBs
being built only for inner nodes, i.e. nodes where all children are
non-leaf nodes (Section 3.2). Then, the hierarchy is further com-
pressed by deciding which bounding volume can be represented at
quantized precision (Section 3.3).

3.1. Bézier Segment Generation

In our system, hair is modeled by individual long B-Spline strands.
In a first step, these B-Spline curves are converted to connected cu-
bic Bézier curves. Each cubic Bézier curve consists of four control
points, c0,c1,c2,c3 with a 3D position and associated width of the
curve. The examples shown in Figure 1 are modeled using approx-
imately 22 Bézier curves per hair strand for the two human hair
models, whereas the dog model consists of 4 Bézier curves due to
the short nature of its fur.

Instead of constructing the bounding volume hierarchy over
these Bézier curves, we first adaptively subdivide all Bézier curves
with high curvature into Bézier segments Bσ to better approximate
them by a bounding volume. We therefore measure curvature as
the maximum distance dmax = max(d1,d2). As pictured in Fig-
ure 2 the distance d1 is defined as the Euclidean distance between
the inner control point c1 and the line through start- and endpoints
c0,c3 of the cubic Bézier curve. d2 is computed in the same way as
d1 using control point c2.

The curve is subdivided recursively, as long as dmax exceeds a
given threshold θ or reaches a maximum number of segments per
curve, see algorithm Algorithm 1.

For each resulting segment Bσ we generate a new primitive and
store a pointer to the original Bézier curve as well as the current
segment offset.

By limiting the number of segments per curve to 2n, the n least
significant bits of a pointer can be used to encode the segment iden-
tifier σ ∈ {0, . . .2n − 1}. In our case, we use 64-bit pointers and
their lower n = 3 bits to represent the curve segment over the pa-
rameter interval

[
σ

2n ,
σ+1
2n

]
.

Figure 2: A Bézier curve with control points c0,c1,c2,c3 is further
subdivided if the value dmax, defined as the maximum between d0
and d1, is larger than the given threshold θ.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

98

M. Martinek & M. Stamminger & N. Binder & A. Keller / Compressed Bounding Volume Hierarchies for Efficient Ray Tracing of Disperse Hair

ALGORITHM 1
Adaptive Bézier Curve Subdivision

function FINDSUBD(Bσ, s)
dmax← CURVATURE(Bσ)
if dmax > θ and s < n then

le f t← SUBDIVIDE(Bσ)
right← SUBDIVIDE(Bσ)
s← s+1
return max(FINDSUBD(le f t,s),FINDSUBD(right,s))

else
return s

end if
end function

3.2. Bounding Volume Hierarchy Construction

We construct a hybrid bounding volume hierarchy with both axis-
aligned and oriented bounding boxes [WBW∗14, SLM∗16]. The
bounding volume hierarchy (as illustrated in Figure 3) is built top-
down using the surface area heuristic (SAH). For each node, we
decide whether an AABB or OBB is beneficial.

We first build a BVH similar to Wald et al. [Wal07], comput-
ing the expected SAH cost for traditional object partitioning in
world space (creating AABBs) as well as in a local frame (creating
OBBs). The local frame, which we call hair space, is determined
by the dominant direction, i.e. the vector between the first and the
last control point, of a randomly chosen BR

σ and a randomized ori-
entation around this axis.

We also employ the similar orientation clustering as proposed in
Woop et al. [WBW∗14] to better handle cases where two or more
different hair strands intersect with each other. Object partitioning
is not able to separate these strands into non-overlapping AABBs
or OBBs. For this case we search for two Bézier segments BR

σ

and BM
σ which define two clusters. All other Bézier segments are

grouped depending on the Bézier segments’ similar alignment. We
define two curves to be more similar aligned if the angle spanned by
the dominant curves’ directions is smaller. BR

σ is chosen randomly,
whereas BM

σ is the Bézier segment which is most unaligned with
BR

σ . The SAH cost is then computed from the bounds transformed
into the hair space spanned of the hair cluster they belong to, i.e.
either BR

σ or BM
σ .

In most cases the similar orientation clustering takes effect at
almost leaf level and thus produces a massive amount of ori-
ented bounds, which consume much more space than axis aligned
bounds. For a 4-wide BVH, an AABB consumes 128 bytes (96
bytes for the bounds and 32 bytes for the four child pointers),
whereas an OBB consumes almost twice as much, i.e. 224 bytes
(192 bytes for the transformation matrices as well as 32 bytes for
its children).

Since our tree structure is built upon much more elements than
Woop’s BVH [WBW∗14], we decided to allow OBBs to be built
only for real inner nodes, i.e. nodes where all four children are
non-leaves. This has only low impact on performance but reduces
memory requirements by over 50%.

Figure 3: Schematic of our BVH for hair rendering using subdi-
vided curve segments Bσ (red) as primitives. Inner AABB nodes
may either be stored using full precision (blue) or bounds quan-
tized to 8 bits (green). Note, OBBs (yellow) are only created at in-
ner nodes and the repeat section may be repeated throughout the
hierarchy as long as all children of the OBB are inner nodes.

3.3. Bounding Volume Hierarchy Quantization

Once the tree is constructed, all AABBs are quantized relative to
their parent bounding volume using 8-bit precision similar to Cline
et al. [CSE06] resulting in 56 bytes per quantized AABB (24 bytes
for the bounds and 32 bytes for the four child pointers) instead of
128 bytes for a regular AABB.

The recursive quantization algorithm is depicted in Algorithm 2:
For each child we check wether it uses an AABB or OBB. In case
of an AABB the child bounds may be quantized if its parent node is
also an AABB, otherwise a regular AABB is generated. Note that
any AABB that is a direct child of an OBB is stored at full preci-
sion, i.e. is not quantized, as illustrated in Figure 3. This simplifies
the traversal of the bounding volume hierarchy.

ALGORITHM 2
Bounding Volume Hierarchy Quantization

1: function COMPRESS(node, parentUsesOBB)
2: for all childi in node.children do
3: if node.usesAABB then . node is axis aligned
4: if parentUsesOBB then
5: CREATEAABB(childi)
6: else
7: CREATEQUANTAABB(childi,node.bounds)
8: end if
9: else . node is oriented

10: CREATEOBB(child)
11: end if
12: COMPRESS(childi, node.usesAABB == true)
13: end for
14: end function

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

99

M. Martinek & M. Stamminger & N. Binder & A. Keller / Compressed Bounding Volume Hierarchies for Efficient Ray Tracing of Disperse Hair

3.4. Bounding Volume Hierarchy Traversal

We use single ray traversal for hair rendering as in [WBW∗14],
which is heavily inspired by the kernels found in Intel’s Em-
bree [WWB∗14], and added our leaf nodes containing the 64-bit
pointers referencing the individual subdivided segments of the orig-
inal Bézier curves.

The decompression of the quantized nodes is performed during
ray traversal by transforming the quantized bounds stored in a child
using the current bounding volume as a frame as by Selgrad et
al. [SLM∗16].

The Bézier curve intersection is performed as in [NO02], where
each curve is approximated using line segments which are gener-
ated by recursively subdividing the curve using a constant subdivi-
sion level L. This intersection test is approximate and has been vec-
torized and extended by Woop et al. [WBW∗14]. As we adaptively
pre-subdivide our Bézier curves into at most 2n line segments (see
Section 3.1), the constant curve subdivision level has to be adopted
to L−n for each curve individually during ray traversal.

4. Results and Discussion

For comparison we use the two human hair models as well as the
dog model shown in Figure 1, where from left (wavy) to right (dog)
the hair dispersion increases noticeably. For ray-Bézier curve in-
tersection we use a subdivision level L = 3, which corresponds to
8 line segments per Bézier curve. This is sufficient for all three
models, the selected camera position, and resolution, as the origi-
nal hair strands are already represented by a relative large number
of Bézier curves. We compare a regular bounding volume hierar-
chy BVHAABB(B) using the input Bézier curves with axis aligned
bounding boxes only and the BVHWoop(B) as proposed by Woop
et al. [WBW∗14] using axis aligned and oriented bounding boxes
to three variants using our curvature adaptive and pre-subdivided
Bézier segments Bσ as described in Section 3.1:

1. BVHAABB(Bσ) uses only AABBs.
2. BVHWoop(Bσ) uses the original hierarchy as described by

Woop et al. [WBW∗14].
3. BVHOurs(Bσ) uses our compressed hierarchy, which is an evo-

lution of Woop’s BVH [WBW∗14], where AABBs are quan-
tized and OBBs are constructed for non-leaf nodes only as de-
scribed in Section 3.

We evaluate the impact of the threshold parameter θ, which
controls the number of generated Bézier segments (see Sec-
tion 3.1). In all results we use manually set thresholds, which
differ for the different hair models: for the two human hair
models θ = [0.075,0.05,0.025,0.015], for the dog model θ =
[0.15,0.125,0.1,0.075]. A more sophisticated approach to find a
good theta, however, would be to determine θ based on the given
hair curvature statistics. In addition, we analyze the different uses
of OBBs with respect to memory consumption and ray tracing effi-
ciency and show results for equal memory as well as equal perfor-
mance.

Our implementation has been integrated into Intel’s Embree ray
tracing framework [WWB∗14].

4.1. Construction Time

As expected, construction time increases linearly with the number
of subdivided Bézier segments. For the example of the curly human
hair model, BVHWoop(B) needs 0.88 sec. for constructing the hi-
erarchy over 100.000 primitives, whereas building BVHOurs(Bσ)
needs 2.7 sec. for approx. 350.000 Bézier segments including
0.4 sec. for primitive generation and 0.3 sec. for compression.

4.2. Memory Footprint

Figure 4 shows the memory consumption of the curly hair model
for different θ. We show only the curly hair model as the other two
models show similar memory behavior throughout the different hi-
erarchies and only differ from the curly model by a constant factor.

AABB Woop θ0 θ1 θ2 θ3

0

100

200

300

400

500

600

M
e
m

o
ry

[M
B

]

AABB Primitives OBB qAABB

50

75

100

125

150

175

200

R
e
l.

M
e
m

o
ry

in
%

(a) BVHAABB(Bσ) for different θ

AABB Woop θ0 θ1 θ2 θ3

0

200

400

600

800

1000

1200

M
e
m

o
ry

[M
B

]

AABB Primitives OBB qAABB

50

100

150

200

250

300

350

R
e
l.

M
e
m

o
ry

in
%

(b) BVHWoop(Bσ) for different θ

AABB Woop θ0 θ1 θ2 θ3

0

100

200

300

400

500

M
e
m

o
ry

[M
B

]

AABB Primitives OBB qAABB

40

60

80

100

120

140

160

R
e
l.

M
e
m

o
ry

in
%

(c) BVHOurs(Bσ) for different θ

Figure 4: Absolute memory consumption in MB for different
BVHs for the curly hair model. The black curve indicates the
relative memory consumption of each BVH as compared to the
BVHWoop(B). Note that BVHAABB(B) as well as BVHWoop(B)
do not depend on θ, thus, their memory consumption does not
change throughout Figures 4a to 4c.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

100

M. Martinek & M. Stamminger & N. Binder & A. Keller / Compressed Bounding Volume Hierarchies for Efficient Ray Tracing of Disperse Hair

The absolute memory consumption in MB is shown in Fig-
ure 4 for axis aligned (blue), oriented bounding boxes (yellow), and
quantized bounds (green), as well as primitives (red). Primitives in
this case contain the original Bézier curves as well as our compact
indexing for Bézier segments Bσ for all BVHs but BVHAABB(B)
and BVHWoop(B), which contain the original Bézier curves only.
The amount of primitives does not change for the same θ through-
out the three charts since the number of pre-split curves is always
the same for the same θ. The plotted line indicates the relative
memory consumption in % relative to BVHWoop(B) (= 100%).

As expected, using subdivided curve segments Bσ, we increase
the overall number of primitives while decreasing the thresh-
old θ. As a consequence, all three bounding volume hierarchies
become deeper and the overall memory consumption increases.
This memory increase becomes especially apparent when building
BVHWoop(B) over the segments Bσ (see Figure 4b), where mem-
ory increases by up to 3 times of the original BVHWoop(B). This
is due to the fact, that many OBBs are generated in the deeper lev-
els (almost leaf levels) of the hierarchy. In this case quantizing inner
nodes does not help much, because only few AABBs are generated
in the first place.

Our approach tackles this memory increase by only allowing
OBBs at inner nodes, preventing leaf nodes to become OBBs.
This reduces the amount of memory for OBBs by up to one fifth
of the original data as depicted in Figure 4c. The increase in
AABBs is handled efficiently by quantization resulting in an overall
lower memory footprint than a regular hierarchy using axis aligned
bounds only.

Overall, for the lowest threshold θ3 we use only 20% more mem-
ory than the original BVHWoop(B), which uses no pre-subdivision
of the input Bézier curves.

4.3. Ray Tracing Performance

Figure 5 depicts ray traversal performance in million rays per sec-
ond (MRPS) for coherent (Figure 5a), and incoherent rays (Fig-
ure 5b) for three different hair models shown in Figure 1. Dotted
lines show the performance for the wavy, dashed lines for the curly
and continues lines for the dog model, respectively.

For any of the hair models all BVH approaches outperform the
regular BVHAABB(B) in both cases of coherent and incoherent
rays. However, the performance of BVHAABB(B) improves as θ

becomes smaller.

BVHWoop(B) performs the best for similarly shaped hair as
seen in the wavy human hair model. BVHOurs(Bσ) on the other
hand, performs worse for similarly shaped Bézier curves, because
in this case traversing the deeper BVH with its quantized bounds
is more costly. In case of wavy hair, only for smaller thresholds θ

the bounds can approximate the curve tightly enough so that traver-
sal can be stopped earlier and performance just reaches the one of
BVHWoop(B).

However, when the dispersion of the Bézier curves becomes
more apparent, as is the case for curly hair, and even more for
the dog fur model, BVHOurs(Bσ) performs increasingly better.

Bézier Curves θ0 θ1 θ2 θ3

0

5

10

15

20

25

30

R
a
y
tr

a
v
e
rs

a
l

[M
R

P
S
]

BVHAABB(Bσ)

BVHWoop(Bσ)

BVHOurs(Bσ)

dog wavy curly

(a) coherent rays

Bézier Curves θ0 θ1 θ2 θ3

0

2

4

6

8

10

12

R
a
y
tr

a
v
e
rs

a
l

[M
R

P
S
]

BVHAABB(Bσ)

BVHWoop(Bσ)

BVHOurs(Bσ)

dog wavy curly

(b) incoherent rays

Figure 5: Ray tracing performance of all three approaches for dif-
ferent thresholds θ for coherent and incoherent ray traversal. Dot-
ted lines represent the wavy, dashed lines the curly and continues
lines the dog model, respectively.

AABB Woop θ0 θ1 θ2 θ3

0

10

20

30

40

50

60

T
ra

v
e
rs

e
d

N
o
d
e
s

[M
]

AABB Primitives OBB qAABB

Figure 6: Traversed nodes in millions split for the curly hair model
using our proposed hierarchy BVHOurs(Bσ).

Though, in this case, BVHOurs(Bσ) performs only slightly bet-
ter than BVHWoop(Bσ) from θ1 on, it consumes only half of the
memory of BVHWoop(Bσ). BVHOurs(Bσ) at θ2, which needs
the same amount of memory as BVHWoop(B), is 2 times faster
than BVHWoop(Bσ) for coherent as well as incoherent ray traver-
sal.

Figure 6 explains the performance behavior seen in Figure 5 for
BVHOurs(Bσ). More precisely, it demonstrates the large impact
of traversing leaf nodes, explicitly the costly ray-Bézier curve in-
tersection test, which explains the drastic performance gain from
BVHAABB(B) over BVHWoop(B).

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

101

M. Martinek & M. Stamminger & N. Binder & A. Keller / Compressed Bounding Volume Hierarchies for Efficient Ray Tracing of Disperse Hair

Wavy Hair
Equal Memory Equal Performance

coh./incoh. [MRPS] [MB]
BVHAABB(Bσ) 17.0/7.1 500
BVHWoop(Bσ) 22.1/10.3 820
BVHOurs(Bσ) 21.8/10.0 380

Curly Hair
Equal Memory Equal Performance

coh./incoh. [MRPS] [MB]
BVHAABB(Bσ) 17.0/5.6 550
BVHWoop(Bσ) 20.2/7.4 900
BVHOurs(Bσ) 26.2/9.5 370

Dog Hair
Equal Memory Equal Performance

coh./incoh. [MRPS] [MB]
BVHAABB(Bσ) 23.1/6.9 320
BVHWoop(Bσ) 17.2/4.5 600
BVHOurs(Bσ) 29.3/10.6 260

Table 1: Table comparing BVHAABB(Bσ), BVHWoop(Bσ), and
BVHOurs(Bσ) with respect to performance in MRPS when all three
approaches require similar memory space, as well as with respect
to memory in MB when all three approaches have similar perfor-
mance.

The further performance increase of any BVH using curve seg-
ments Bσ in case of disperse hair is explained by looking not only
at the number of traversed leaf nodes but also at the number of
traversed oriented bounding boxes. Even when the number of tra-
versed leaves is slightly increased, in some cases of BVHOurs(Bσ)
the reduction of traversed oriented bounding boxes lets us gain
overall performance, e.g. BVHOurs(Bσ) at θ2 as compared to
BVHWoop(B). When the number of ray-Bézier curve intersections
is similar we can trace 20% more rays per second.

In case of BVHWoop(B) the number of traversed leaf nodes is
never larger than the one of BVHWoop(Bσ) explaining the con-
tinuously good behavior of this BVH, even in case of wavy hair.
However, this is the BVH, which by far needs the most memory
space (more than 3 times as much as BVHWoop(Bσ)).

4.4. Comparative Results

For a better overview we show the evaluation of the three ap-
proaches for Bσ for equal memory as well as equal performance.
Table 1 shows the results of these two setups for all three ap-
proaches.

When comparing all three methods at the same memory foot-
print, BVHOurs(Bσ) performs the worst in only one case, which
is for the wavy model, 5% for coherent and 3% for incoherent
rays worse than BVHWoop(Bσ). As soon as hair becomes more
disperse, which is the case for the curly hair and dog model,
BVHOurs(Bσ) performs faster than the other two approaches. Es-
pecially for the dog model it performs more than 2 times faster
than BVHWoop(Bσ) in case of equal memory. Note that in or-
der to achieve equal memory, the structure of BVHWoop(Bσ)

resembles the one of BVHWoop(B) as it performs subdivision
only for a few of the original Bézier curves. However, in this

case also the BVHAABB(Bσ) shows better performance than
BVHWoop(Bσ) due to the short nature of the Bσs, which are
already well-bounded by AABBs. In this case, BVHOurs(Bσ)
is 26% faster than BVHAABB(Bσ), and even 70% faster than
BVHWoop(Bσ) for coherent rays.

On the other hand, when all three approaches have similar traver-
sal speed, for all three hair models BVHOurs(Bσ) requires always
less memory space, approximately only 50% of BVHWoop(Bσ)

and at most 80% of BVHAABB(Bσ).

5. Conclusion

We improved the performance of ray tracing of disperse hair by
constructing a bounding volume hierarchy that prunes more effi-
ciently. Key of the performance gain are oriented bounding boxes,
compression by quantization and indexing, as well as an adaptive
subdivision scheme. In future work, we will investigate the imple-
mentation of our scheme on the GPU using compressed wide hier-
archies as introduced by Ylitie et al. [YKL17].

References
[CSE06] CLINE D., STEELE K., EGBERT P.: Lightweight bounding vol-

umes for ray tracing. Journal of Graphics Tools 11, 4 (2006), 61–71. 3

[DK08] DAMMERTZ H., KELLER A.: The edge volume heuristic-robust
triangle subdivision for improved bvh performance. In Interactive Ray
Tracing, 2008. RT 2008. IEEE Symposium on (2008), IEEE, pp. 155–
158. 2

[EG07] ERNST M., GREINER G.: Early split clipping for bounding vol-
ume hierarchies. In 2007 IEEE Symposium on Interactive Ray Tracing
(Sept 2007), pp. 73–78. 2

[NO02] NAKAMARU K., OHNO Y.: Ray tracing for curves primitive. In
WSCG (2002), pp. 311–316. 2, 4

[Res17] RESHETOV A.: Exploiting budan-fourier and vincent’s theorems
for ray tracing 3d bézier curves. In Proceedings of High Performance
Graphics (New York, NY, USA, 2017), HPG ’17, ACM, pp. 5:1–5:11. 2

[SLM∗16] SELGRAD K., LIER A., MARTINEK M., BUCHENAU C.,
GUTHE M., KRANZ F., SCHÄFER H., STAMMINGER M.: A com-
pressed representation for ray tracing parametric surfaces. ACM Trans.
Graph. 36, 1 (Nov. 2016), 5:1–5:13. 2, 3, 4

[SN90] SEDERBERG T., NISHITA T.: Curve intersection using bézier
clipping. Computer-Aided Design 22, 9 (1990), 538–549. 2

[Wal07] WALD I.: On fast construction of sah-based bounding volume
hierarchies. In Interactive Ray Tracing, 2007. RT’07. IEEE Symposium
on (2007), IEEE, pp. 33–40. 3

[WBW∗14] WOOP S., BENTHIN C., WALD I., JOHNSON G., TABEL-
LION E.: Exploiting local orientation similarity for efficient ray traversal
of hair and fur. In Proceedings of High Performance Graphics (Aire-la-
Ville, Switzerland, Switzerland, 2014), HPG ’14, Eurographics Associ-
ation, pp. 41–49. 1, 2, 3, 4

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G., ERNST
M.: Embree: A kernel framework for efficient cpu ray tracing. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 143. 4

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient incoherent ray
traversal on gpus through compressed wide bvhs. In Proceedings of High
Performance Graphics (New York, NY, USA, 2017), HPG ’17, ACM,
pp. 4:1–4:13. 6

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

102

