Notation

M	Matrix in $\mathbb{R}^{3\times3}$
v	Column vector in \mathbb{R}^3
v_i	Components of a vector v
$(\mathbf{a} \mathbf{b} \mathbf{c})$	Block matrix of multiple matrices/vectors
$\overline{\mathbf{M}}$, $\overline{\mathbf{r}}$	Matrix in $\mathbb{R}^{6\times6}$ /vector in \mathbb{R}^6
\mathbf{j}_i	Unit vector along i-th coordinate
$\mathbf{M}_{x}, \mathbf{v}_{y}, \dots$	Partial derivatives of a Matrix/vector in $x, y,$
∇	Nabla operator $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \dots)^{\mathrm{T}}$

Proof of Theorem 1

Theorem 1 The PEV operator delivers structurally stable curves that are either closed or end at the boundaries of the domain.

The main idea to prove Theorem 1 is to search for PEV lines not in 3D (x,y,z) space but in a 6D (x,y,z,u,v,w) space: at every point $\mathbf{x}=(x,y,z)^{\mathrm{T}}$, all vector directions $\mathbf{r}=(u,v,w)^{\mathrm{T}}$ are checked for being an eigenvector of \mathbf{S} and \mathbf{T} . This means that we search for all 6D points $(\mathbf{x},\mathbf{r})^{\mathrm{T}}$ fulfilling $\mathbf{S}(\mathbf{x})\mathbf{r}\times\mathbf{r}=\mathbf{0}$ and $\mathbf{T}(\mathbf{x})\mathbf{r}\times\mathbf{r}=\mathbf{0}$. We formulate this to search for all 6D points $(\mathbf{x},\mathbf{r})^{\mathrm{T}}$ where a 6D vector field $\overline{\mathbf{h}}$ vanishes:

$$\overline{\mathbf{h}}(\mathbf{x},\mathbf{r}) = \begin{pmatrix} \mathbf{S}(\mathbf{x})\,\mathbf{r} \times \mathbf{r} \\ \mathbf{T}(\mathbf{x})\,\mathbf{r} \times \mathbf{r} \end{pmatrix} = \overline{\mathbf{0}}. \tag{1}$$

Suppose a point $(\mathbf{x}_0, \mathbf{r}_0)^T$ is on a PEV structure, i.e., fulfills (1). In order to study the PEV structures in a linear neighborhood of $(\mathbf{x}_0, \mathbf{r}_0)^T$, we search for all directions $(d\mathbf{x}, d\mathbf{r})^T$ in which $\overline{\mathbf{h}}$ remains zero: $\nabla \overline{\mathbf{h}} \cdot (d\mathbf{x}, d\mathbf{r})^T = \overline{\mathbf{0}}$. In other words: we have to explore the null space of $\nabla \overline{\mathbf{h}}$. Applying elementary differentiation rules gives

$$\nabla \overline{\mathbf{h}} = \begin{pmatrix} \mathbf{G}_1 & \mathbf{G}_3 \\ \mathbf{G}_2 & \mathbf{G}_4 \end{pmatrix}$$

with

$$G_1 = (\mathbf{S}_x \mathbf{r} \times \mathbf{r} \quad \mathbf{S}_y \mathbf{r} \times \mathbf{r} \quad \mathbf{S}_z \mathbf{r} \times \mathbf{r})$$

$$G_2 = (\mathbf{T}_x \mathbf{r} \times \mathbf{r} \quad \mathbf{T}_y \mathbf{r} \times \mathbf{r} \quad \mathbf{T}_z \mathbf{r} \times \mathbf{r})$$

$$G_3 = (\mathbf{S}_{\mathbf{j}_1} \times \mathbf{r} + \mathbf{S}_{\mathbf{r}} \times \mathbf{j}_1 \quad \mathbf{S}_{\mathbf{j}_2} \times \mathbf{r} + \mathbf{S}_{\mathbf{r}} \times \mathbf{j}_2 \quad \mathbf{S}_{\mathbf{j}_3} \times \mathbf{r} + \mathbf{S}_{\mathbf{r}} \times \mathbf{j}_3)$$

$$G_4 = \begin{pmatrix} T j_1 \times r + T r \times j_1 & T j_2 \times r + T r \times j_2 & T j_3 \times r + T r \times j_3 \end{pmatrix}.$$

Then

$$\mathbf{G}_{1}^{\mathsf{T}}\mathbf{r} = \mathbf{G}_{2}^{\mathsf{T}}\mathbf{r} = 0 \tag{2}$$

and from (1) follows

$$\mathbf{G_3}^{\mathrm{T}}\mathbf{r} = \mathbf{G_4}^{\mathrm{T}}\mathbf{r} = 0. \tag{3}$$

and

$$\mathbf{G}_3 \mathbf{r} = \mathbf{G}_4 \mathbf{r} = 0. \tag{4}$$

Equations (2) and (3) give that

$$rank(\nabla \overline{\mathbf{h}}) = 4 \tag{5}$$

in the structurally stable case. This means that for rank $(\nabla \overline{\mathbf{h}}) < 4$, adding noise to \mathbf{S} , \mathbf{T} brings rank $(\nabla \overline{\mathbf{h}})$ to 4. Equation (5) means that the PEV structure around $(\mathbf{x}_0, \mathbf{r}_0)^T$ is a 2-manifold in 6D. To see

Equation (5), we consider a rotation of the underlying coordinate system such that $\mathbf{r}=(0,0,r_z)$. Then Equations (2) and (3) give that the rotated tensors $\mathbf{G}_1,\mathbf{G}_2,\mathbf{G}_3,\mathbf{G}_4$ have vanishing third columns. This and Equation (1) gives that $\nabla \overline{\mathbf{h}}$ has two colums, which proves Equation (5).

One vector in the null space of $\nabla \overline{\mathbf{h}}$ is trivial and denotes a simple scaling of \mathbf{r} : Equations (2) - (4) give $\nabla \overline{\mathbf{h}} \cdot (\mathbf{0}, \mathbf{r})^T = \overline{\mathbf{0}}$. This means that the projection of the null space of $\nabla \overline{\mathbf{h}}$ into the spatial subspace \mathbf{x} gives a one-manifold in 3D. This shows that PEV gives line structures in 3D. To show that they are closed, we consider the 6 components of $\nabla \overline{\mathbf{h}}$ as scalar fields and interpret the PEV structure as intersection of their 5D iso-hypersurfaces. Iso-hypersurfaces are always closed, which means their intersections are also closed.

Note that the proof did not make any assumptions on the behavior of S, T around $(x_0, r_0)^T$. This means that it holds also in case of a transition from real to imaginary eigenvectors of S or T as well as in regions of isotropic tensors.