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Abstract
We propose an automatic approach for fast vertebral body segmentation in three-dimensional magnetic resonance images of the
whole spine. Previous works are limited to the lower thoracolumbar section and often take minutes to compute, which can be
problematic in clinical routine or for data sets with numerous subjects. We address these limitations by a graph cut formulation.
Our formulation involves appearance and shape information as well as star-convexity constraints to ensure a topologically
correct segmentation for each vertebra. For close targets such as adjacent vertebrae, implementing star-convexity without
fusing targets (naive binary formulations) or increasing run time/loosing optimality guarantees (multi-label formulations) is
challenging. We provide a solution based on encoding swaps, which preserve optimality and ensure topological correctness
between vertebrae. We validated our approach on two data sets. The first contains T1- and T2-weighted whole-spine images of
64 subjects. The second comprises 23 T2-weighted thoracolumbar images and is publicly available. Our results are competitive
to previous works (or better) at a fraction of the run time. We yielded Dice coefficients of 85.1± 4.4 % and 89.7± 2.3 % with
run times of 1.65±0.28 s and 2.73±0.36 s per vertebra on consumer hardware.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification I.5.4 [Pattern Recognition]: Applications—Computer vision

1. Introduction

Magnetic resonance imaging has become a valuable non-invasive
tool for the clinical assessment of the spine, including measure-
ments of Cobb angles for rating of kyphosis / scoliosis or the iden-
tification of compression fractures such as crushed / wedged verte-
brae. The rising clinical interest in magnetic resonance-based anal-
ysis has led to a number of works on automatic segmentation of
vertebral bodies (simply called vertebrae hereafter) both model-
and data-driven.

A first model-driven approach was presented in [ŠLPV11], who
use a superquadrics-based parameteric shape model that adapts to
a nearby vertebra based on intensity information. Alternatively,
[ZVE∗14] employ balloon forces to inflate a surface mesh with
smoothness constraints directly inside the vertebra. To avoid am-
biguities between vertebrae, [RET13] arranged multiple vertebrae
into an elastic finite element model, which adapts to the data via
image-derived forces.

Statistical modeling with active shape models was used in
[NFE∗12] to fit each vertebra individually. The concept was gen-
eralized to part-based models by [KLP13] and [SRF∗14], who in-
clude shape and pose relations between multiple vertebrae. Both
used non-linear mappings to improve the shape space representa-
tion. Recently, [KLPV16] showed encouraging results by linking

active shape models with vertebra likelihood maps generated from
convolutional neural networks.

Data-driven techniques are usually patch-based, performing seg-
mentation in a small neighborhood around each vertebra. To this
end, [SFNE14] match a cubically-shaped template to a nearby ver-
tebra via graph cuts. In [HGT16] geodesic active contours and the
Chan-Vese intensity model are combined into a level set segmen-
tation. A learning-based approach is presented in [CBA∗15], com-
bining appearance learned via random forests with shape informa-
tion estimated via Parzen windows into a vertebra probability map,
which is then thresholded.

In purely two-dimensional mid-sagittal settings, data-driven
techniques are typically applied to the whole image. For instance,
[GMCD14] use decision trees to combine appearance, shape and
pose information into a statistical inference task, which is solved
by Gibbs sampling. An augmented Lagrangian method is present
in [APM∗12], who match distributions of vertebrae appearance fea-
tures to a known reference. To ensure compactness for all vertebrae,
normalized cuts with spatial smoothness were used in [ZLF∗13].

To support a wide range of applications, segmentation tech-
niques should apply to different sequences and to the whole spine.
They should be reasonably fast, because time may be critical in
clinical routine or for data sets with numerous subjects. These chal-
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lenges are often overlooked in previous works, which are limited to
the lower thoracolumbar section of the spine, easily take minutes
to compute and - except for [ZVE∗14] - only apply to a single se-
quence. To the best of our knowledge, we are the first to address all
named challenges.

We contribute a novel binary graph cut formulation, which
fuses patch-based star convex segmentation with whole-image con-
straints, ensuring topologically correctness for each and between
vertebrae. Akin to previous works, we integrate appearance and
shape information as well as boundary attraction priors to drive the
segmentation on the patch level.

2. Method

2.1. Preprocessing

Vertebrae segmentation is typically applied only after a pre-
liminary initialization based on either user-interaction [ŠLPV11,
KLP13, RET13, SRF∗14, HGT16, KLPV16] or automatic detec-
tors [NFE∗12, ZVE∗14, CBA∗15]. We interpret vertebrae localiza-
tion as a pre-processing step, for which many valuable techniques
exist, cf. the recent surveys of [AGKC15,RT16b]. In particular, we
use the fast whole-spine detector of [RT16a], which applies to T1-
weighted and T2-weighted images alike. They combine geometrical
and appearance relations between adjacent vertebrae into a second-
order graphical model, which is then used to infer the most likely
combination of vertebra locations. Please see [RT16a] for further
details on vertebra localization.

Based on the detection, we extract cubically-shaped vertebra-
centered patches for the whole spine as outlined in Figure 1. Patch-
based strategies significantly reduce the problem size compared to
whole-image segmentation and ease modeling by focusing on indi-
vidual vertebrae. However, ambiguities can arise for close targets
when patch-wise results are re-embedded into the image domain,
which is especially true if vertebrae are not well-separated by in-
tervertebral discs. In what follows, we first detail our patch-wise
formulation and show how to combine the patch-wise tasks into a
joint ambiguity-free formulation afterwards.

2.2. Patch-wise Formulation

For each extracted vertebra patch, we interpret its segmentation as
an energy minimization problem. In particular, we seek a binary
labeling l ∈ {0,1}|P| of the voxels p ∈ P of the patch into fore-
ground (lp = 1), i.e. voxels inside the central vertebra, and back-
ground (lp = 0), i.e. voxels outside of it, that minimizes

E (l) = ∑
p∈P

Ap (lp)︸ ︷︷ ︸
Appearance

+ ∑
p∈P

Dp (lp)︸ ︷︷ ︸
Shape

+ ∑
(p,q)∈B

Bpq (lp, lq)︸ ︷︷ ︸
Boundaries

+ ∑
(p,q)∈C

Cpq (lp, lq)︸ ︷︷ ︸
Star-Convexity

. (1)

Our model involves soft priors for appearance, shape and bound-
ary attraction as well as hard constraints that ensure a star-convex

Figure 1: Our patch-based framework for whole spine vertebra
segmentation. Image patches (green) are extracted for each verte-
bra (top). Then, patch-based vertebra segmentation is applied and
the results are re-embedded into the image domain (bottom). The
vertebra segmentation is color-coded to ease the differentiation be-
tween neighboring vertebrae. Please note that there is considerable
overlap between the neighboring image patches.

segmentation. Edge sets B and C comprise the ordered voxel pairs
(p,q) that are linked by adjacency on the patch and by star-
convexity constraints, respectively.

We will design each term such that the resulting energy is graph-
representable, in which case the minimization of Equation 1 takes
O (#voxels · #edges2), cf. [BK04]. To be graph-representable, all
pairwise terms T

(
li, l j

)
, i.e. boundary attraction and star-convexity,

have to obey T (0,0)+ T (1,1) ≤ T (0,1)+ T (1,0) [KZ04]. This
essentially means that assignments of different labels should not be
cheaper than the assignment of similar ones. We now discuss each
term in greater detail.

2.2.1. Appearance

Recent works encode appearance information by advanced tech-
niques like decision trees [GMCD14], random forests [CBA∗15]
or convolutional neural networks [KLPV16]. These require training
data, which may become outdated as soon as the imaging sequence
or acquisition parameters change. We use a rather simple but more
case-specific prior, which is estimated directly from the intensities
of the image patch. Our appearance prior reads

Ap (lp) = [lp = 1] ·
(
|Ip−µ|

ασ
−1
)

︸ ︷︷ ︸
ip−1

, (2)

whereby Iverson brackets [ · ] select only the foreground, which im-
plies zero costs for the background. The foreground costs range
between minus one and positive infinity. They depend on the dif-
ference of the voxel intensity Ip to a known reference vertebra in-
tensity µ. To become invariant to intensity shifts and scaling, the
difference is normalized by a known dispersion σ of the vertebra
intensities.
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ip – 1 = 0ip – 1 = 0

Figure 2: Our appearance prior on coronal (left) and axial (right)
slices of a particular vertebra patch (green). Ideally, the appear-
ance costs ip − 1 (second and fourth image) are negative in the
foreground, i.e. inside the central vertebra, and positive for most of
the background. If our appearance prior would be considered on
its own, then the energy minimization would essentially be a voxel-
wise thresholding at the pivot point ip−1 = 0. Please note that we
oversimplified the thresholding (red) for illustration purposes; the
actual result will be leaky and contain spurious components.

Our appearance prior is illustrated in Figure 2. It favors fore-
ground when Equation 2 becomes negative and background oth-
erwise. The pivot point is at an intensity difference of ασ, which
means that parameter α should be chosen such that it differentiates
between the intensity ranges of the foreground and background. We
estimate reference intensity µ and dispersion σ from a small central
part of the patch via the median intensity and the median absolute
deviation, respectively. Both estimators are robust to varying types
of noise and corruption with up to fifty percent of non-vertebra tis-
sue, which makes them reliable even under misalignment due to the
preliminary vertebra localization.

2.2.2. Shape

Since appearance alone cannot differentiate between the central
vertebra of a patch and the neighboring ones, information about
shape is necessary. Recent work uses advanced techniques to im-
plement shape information, e.g. a probabilistic atlas [GMCD14,
CBA∗15] or deformable statistical models [KLPV16]. We found
that such a detailed shape description is not advantageous per se. It
biases the segmentation considerably, which becomes problematic
when the shape prior is not well aligned with the central vertebra
or does not well reflect its particular shape.

Taking this into account, we use a rather coarse description of
shape. We encode shape information by a cylindrical prior that
is aligned with the vertebra’s up-vector. We let the prior decrease
gradually with distance to the center of the patch instead of in-
troducing a steep cut-off at the expected location of the vertebra
boundary like in previous work. Hence, our method is more robust
to misalignment due to the preliminary vertebra localization. Our
shape prior reads

Dp (lp) = [lp = 0] ·
(

1−max
(

sh
2 |hp|

d
,sr

2 |rp|
d

))
︸ ︷︷ ︸

1−dp

, (3)

whereby Iverson brackets [ · ] select only the background, which
implies zero costs for the foreground. The background costs range

h

r

1 – dp = 0 1 – dp = 0

r

Figure 3: Our shape prior on coronal (left) and axial (right) slices
of a particular vertebra patch (green). To compute the shape costs
(second and fourth image), we utilize a cylindrical coordinate sys-
tem that is aligned with the vertebra’s up-vector (orange). The co-
ordinate axes (yellow) are defined along the cylinder (height h) and
away from it (radius r). Ideally, the shape costs 1−dp are positive
in the foreground, i.e. inside the central vertebra, and negative for
the background. If our shape prior would be considered own, then
the energy minimization would essentially be a voxel-wise thresh-
olding at the pivot point 1−dp = 0.

between one and negative infinity (for an unbound patch). They
depend on the distance dp, in cylindrical coordinates (hp,rp), of
the voxel p to the center of the patch. To become invariant to size
changes along the spine, the distance is normalized by the inter-
vertebra distance d.

Our shape prior is illustrated in Figure 3. It favors foreground
whenever Equation 3 becomes positive and background otherwise.
The pivot point depends on 2sh

d and 2sr
d , which means that scaling

factors sh and sr should be chosen such that they reflect the relative
vertebra height and depth/width, respectively. The particular choice
of sh and sr is uncritical, because our shape costs decrease gradually
with distance to the center without a steep cut-off. We will derive a
reasonable choice for sh and sr before the experiments. The inter-
vertebra distance d and the vertebra’s up-vector are estimated from
the location of the neighboring vertebrae.

2.2.3. Boundaries

To attract the segmentation towards tissue boundaries, we intro-
duce a binary term for each pair of neighoring voxels (under Von
Neumann neighborhood), if they do not share the same label. Such
terms cause additional costs along the boundary of the segmenta-
tion, which may lead to a “shrinking bias” if the relative importance
is too high. To deal with this issue, we use the following prior

Bpq (lp, lq) = [lp 6= lq] ·βmax
(

0,1− |Ip− Iq|
ασ

)
, (4)

whereby Iverson brackets [ · ] select only cases where adjacent vox-
els do not share the same label. Costs range between zero and one.
They depend on the difference between the intensities Ip and Iq
of both voxels. To become invariant to intensity shifts and scaling,
the difference is normalized by the known dispersion σ. Parameter
β ∈ [0,∞) the controls importance of our boundary term.

Our boundary prior applies zero costs if the intensity difference
is large enough. Hence, shrinking cannot occur in these cases. The
rationale for truncation is that above a certain threshold all intensity
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Figure 4: Star-convexity constraints on axial (left), coronal (mid-
dle) and sagittal (right) slices. If voxels ri (dots) would be assigned
to the foreground, then any other voxel on the line segment (green)
to the center voxel c (cross) would be foreground too. The result is
a single connected component without holes.

changes can be safely classified as tissue boundaries. The trunca-
tion occurs at an intensity difference of ασ, which is a reasonable
choice as α will be chosen such that it differentiates between the
intensity ranges of the foreground and background.

2.2.4. Star-Convexity

We employ the star-convexity constraints of [Vek08] to ensure a
topologically correct segmentation of the vertebra. In particular, we
will restrict the segmentation to a single connected component. To
this end, we enforce that for any foreground voxel r, every other
voxel p on the line segment between r and the center of the patch c
is foreground too. The idea is illustrated in Figure 4.

Star-convexity may be implemented by rasterization, transform-
ing the line segment between the center c and every voxel r into a
sequence of voxels (c, . . . , p,q, . . .r) and “tying” together each pair
of neighboring voxels of the sequence by hard constraints. Given
two such voxels p and q the star-convexity constraints read

Cpq (lp, lq) = [lp = 0∧ lq = 1] ·∞, (5)

where Iverson brackets [ · ] assign infinite costs when foreground
shall be assigned after some background voxel. The rasterization
need not be computed “online” during segmentation, because it is
independent of the appearance of the patch and the voxel size.

We precompute the rasterization and all pairs of voxels on a
sufficiently large reference patch via Bresenham’s line algorithm
[Bre65]. The pairs are loaded before the segmentation and cropped
to each particular image patch during segmentation, leading to an
efficient implementation of star-convexity.

2.3. Joint Formulation

For close targets such as neighboring vertebrae, ensuring star-
convexity is challenging, as outlined in Figure 5. Binary whole im-
age formulations will fuse targets and multi-label settings are less
performant / do not share optimality guarantees of binary tasks.
Our binary patch-based problem formulation has neither problem,
but ambiguities may arise when patch-wise results are re-embedded
into the image domain. This is especially true when vertebrae are

p
c2

r

c2

r2

c2

r2

c1 c1 c1r1 r1

Figure 5: Star-convexity implementation for neighboring verte-
brae. A binary whole image formulation (left) will fuse both verte-
brae (green region). The rationale is that any voxel r will be “tied”
to both centers c1 and c2 simultaneously. Multi-label settings (mid-
dle) avoid this issue by imposing star-convexity for each label in-
dividually, but optimality guarantees are lost. Our binary patch-
wise formulation (right) has neither problem, because the vertebra
patches are treated individually.

not well-separated by large intervertebral discs, because the patch
energy could then favor to bridge the thin gap to the neighboring
vertebra.

To circumvent the ambiguities and preserve optimality, we com-
bine the patch-wise formulations into a joint binary minimization
problem with additional topological constraints that guarantee a
non-overlapping vertebra segmentation. In particular, we seek a
combination of patch-wise labelings that minimizes

E
(

l1, . . . , l#vertebrae
)

=
#vertebrae

∑
i=1

Ei
(

li
)

︸ ︷︷ ︸
Patch Energy

+
#vertebrae

∑
i=2

Oi−1,i
(

li−1, li
)

︸ ︷︷ ︸
Non-Overlap

, (6)

where the introduced superscripts enumerate all vertebra patches
from head to foot (or vice versa). The first sum pools the already in-
troduced energies of the individual vertebra patches and the second
sum handles the regions where the neighboring patches overlap. We
now discuss the implementation of the latter in greater detail.

2.3.1. Direct Solution

For any such overlap region, only one of the two involved vertebra
patches shall be allowed to assign foreground to a shared voxel, be-
cause otherwise ambiguities can occur. Hence, we seek to establish
binary terms between the shared voxels of both vertebra patches to
prohibit such situations. The non-overlap requirement of the patch-
wise labelings is equivalent to the hard constraints

Oi j
(

li, l j
)

= ∑
(p,q)∈Oi j

[
li
p = 1∧ l j

q = 1
]
·∞︸ ︷︷ ︸

T i j(li
p,l

j
q)

, (7)

where Iverson brackets [ · ] assign infinite costs when both patches
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assign foreground to a shared voxel. Set Oi j comprises the voxels
shared by both patches. In particular, it contains the ordered pairs
(p,q) of voxels p from patch i and voxels q from patch j that rep-
resent the same voxel after re-embedding into the image domain.

The constraints of Equation 7 cannot be realized with graph cuts
directly, because it is not graph-representable in its current form. In
particular, the T i j (·) violate T (0,0)+T (1,1)≤ T (0,1)+T (1,0)
[KZ04], which essentially means that the assignment of different
labels should not be cheaper than the assignment of similar ones.
We can, however, derive an equivalent formulation that is indeed
graph-representable.

2.3.2. Encoding Swaps

We go back to our representation of foreground and background,
which are implemented by li

p = 1 and li
p = 0, respectively. Notic-

ing that this is a convention, we could just as well have swapped
the meaning of labels. In particular, we could have encoded fore-
ground with lĩ

p = 0 and background with lĩ
p = 1, where the tilde

differentiates between the swapped and the standard encoding.

Obviously, swapping the encoding of every vertebra patch does
not solve the problem, because the resulting non-overlap con-
straints are not graph-representable either. However, when we swap
the encoding only for every other vertebra patch from head to food,
then the hard constraints change to

T i j̃
(

li
p, l

j̃
q

)
=
[
li
p = 1∧ l j̃

q = 0
]
·∞, (8)

where standard encoded patch i overlaps with encoding-swapped
patch j̃. It is easy to verify that both the T i j̃ (·) and their counter-
parts T ĩ j (·) obey T (0,0)+T (1,1)≤ T (0,1)+T (1,0). The patch
energies remain unaffected by the encoding swap if appearance and
shape priors as well as star-convexity constraints are adjusted ac-
cordingly. Please note that the argument does not contradict the
graph-representability of [KZ04]; it rather exploits the available de-
grees of freedom. Eventually, we compute the optimal labeling by
the algorithm of [BK04]. In particular, we use the implementation
provided by the Darwin framework [Gou12].

The concept of encoding swaps is not limited to our particular
application. Let each image patch be a node in a graph and let each
overlap region between two patches be an edge between their asso-
ciated nodes. In this notation, every bipartite graph, i.e. every graph
that has a two-coloring, can benefit from an efficient implementa-
tion of non-overlap constraints via encoding swaps. Specifically,
chain-like overlap layouts like ours are covered, but also all forms
of tree-like layouts and certain grid-like overlap layouts too.

3. Experiments

3.1. Data Sets and Preprocessing

We carried out experiments on two data sets. The first data set
(DS1) comprises T1- and T2-weighted whole-spine images of 64
subjects from the “Study of Health in Pomerania” [VAS∗11]. For
DS1 ground truth segmentations are available from C3 to L5. The
second data set (DS2) comprises 23 T2-weighted thoracolumbar

images and is publicly available [CBA∗15]. For DS2 ground truth
segmentations are available from T11 to L5. Both data sets were ac-
quired by turbo spin echo sequences on Siemens 1.5 Tesla imagers
and reconstructed sagittaly at 1.12 × 1.12 × 4.4 mm and 1.25 ×
1.25 × 2.0 mm, respectively. To simplify processing, we upsam-
pled all images in mediolateral direction to yield isotropic voxels.

The vertebrae localization of [RT16a] correctly detected 96.0 %
of the vertebrae in DS1 at an accuracy of 3.45± 2.20 mm to the
ground truth centers. For DS2 the detection rate was 98.1 % with
3.07±1.78 mm to the ground truth centers. The quality difference
is mainly due to the finer laterolateral resolution (2.0 vs. 4.4 mm).
For both data set, the localizations took around one second per ver-
tebra (Intel Core i5 @ 4×3.30 GHz). All falsely detected vertebrae
were corrected manually before the actual segmentation, i.e. a user-
specified vertebra center was used instead of the found location.

During experiments we used a fixed set of parameters. Since
our segmentation method requires only a rough estimate of the ex-
pected horizontal and radial scaling of the shape prior, we simply
took the first subject of both data sets as reference, yielding sh =

2
3

and sr = 1. The radial scaling needs to be larger to reflect that the
vertebra height is smaller than its width / depth. The parameters for
appearance and boundary attraction were found empirically. We set
α = 4 1

2 and β = 1, but the parameters may be varied ± 1
2 with little

effect on most cases. This is due to the fact that we designed each
energy by linear priors without a steep cut-off rather than non-linear
priors that are used more frequently. For comparison to previous
works, we assessed the Dice coefficient (DC), the average inter-
surface distance (AD) and the Hausdorff distance (HD).

3.2. Results and Discussion

A quantitative comparison to previous works is given in Table 1.
From the results on DS2 we see that our approach surpasses most
previous works on thoracolumbar images. Only the active shape
models of [NFE∗12] and [KLPV16] showed slightly and signifi-
cantly better results, respectively. Since the inter-reader variation
for thoracolumbar vertebrae is reported between 90.3 % [HGT16]
and 91 % [ZVE∗14], considerably better results should be in-
terpreted with caution, because reader adaptation is not unlikely.
This is especially true when machine learning is involved like
in [KLPV16]. Moreover, according to [NFE∗12] the active shape
model fitting takes several minutes per vertebra (Intel Core 2 Duo
@ 2×2.0 GHz), casting doubts about its applicability in practice.
Performance was not reported in [KLPV16], but we expect even
longer run times compared to [NFE∗12] due to their particular con-
volutional neural network. We verified this by implementing their
network in TensorFlow with cuDNN. Under idealized conditions,
the prediction of a medium-sized 51 × 51 × 51 vertebra patch al-
ready took 3.75±0.02 minutes (NVIDIA GeForce GTX 970).

Our approach took only 19.1± 2.5 seconds per image on DS1
(Intel Core i5 @ 4×3.30 GHz). This is a considerable speed-
up compared to all previous works, where the segmentation of
a section of the whole spine may take minutes. For compari-
son, [CBA∗15] reported 1.3 minutes (unknown multi-core sys-
tem @ 3.0 GHz) for thoracolumbar images with seven vertebrae
and [SRF∗14] segments lumbar images in “less than two min-
utes” (Intel Core i5 @ 4×2.5 GHz). The difference becomes most
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Table 1: Quantitative comparison to previous works on magnetic resonance-based vertebra segmentation. Work is categorized into 2d
(mid-sagittal) and 3d (volumetric) analysis. For each category, work is sorted chronologically. Please note that we included the 2d analysis
techniques for completeness, their results are not comparable to the 3d setting, which is considerably more challenging. Underlining indicates
a common data set. Abbreviations: DC - Dice coefficient; AD - average inter-surface distance; HD - Hausdorff distance; C - cervical; L -
lumbar; TL - thoracolumbar; W - whole spine; T1w - T1-weighted; T2w - T2-weighted; P provided by author; R recalculated from results.

2/3d Works Section Sequence #Images #Vertebrae DC [%] AD [mm] HD [mm]

2d

Huang [HCLN09] C, L, W T2w ? 52 96±? - -
Ayed [APM∗12] L T2w 15 75 85±5.1 - -
Zheng [ZLF∗13] L T1w, T2w 5 ? 96.6±0.3 - 1.7±0.2

Ghosh [GMCD14] L T2w 13 ? 84.4±3.8 - -

3d

Stern [ŠLPV11] TL T2w 9 75 - 1.85±0.47 -
Neubert [NFE∗12] TL T2w 14 132 90.8±1.8R 0.67±0.17R 4.08±0.94R

Kadoury [KLP13] TL T1w 8 136 - 2.93±1.83R -
Schwarzenberg [SFNE14] L T2 2 10 81.3±5.1 - -

Suzani [SRF∗14] L T1w 9 45 - 3.02±0.82R 9.20±2.43R

Zukic [ZVE∗14] TL T1w, T2w 17 153 79.3±5.0P 1.76±0.38 11.89±2.65P

Chu [CBA∗15] TL T2w 23 161 88.7±2.9 1.5±0.2 6.4±1.2
Hille [HGT16] TL T1w 6 34 84.8±? 1.29±0.42 6.55±?

Korez [KLPV16] TL T2w 23 161 93.4±1.7 0.54±0.14 3.83±1.04

3d
Ours DS1 W T1w, T2w 128 1412 85.1±4.4 1.41±0.36 5.36±1.48
Ours DS2 TL T2w 23 161 89.7±2.3 1.31±0.27 5.30±1.12

clear when considering the run time per vertebrae. For instance
in [HGT16] the computation “never exceeded 60 seconds” and
[ŠLPV11, NFE∗12] report several minutes per vertebra (Intel Core
2 Duo @ 2×2.0 GHz and 2.83 GHz, respectively). In general, all
previous works state run times well above ten seconds per vertebra,
while our’s can be computed in 2.73±0.36 seconds.

The results in Table 1 indicate that DS1 is more challenging than
DS2. This is due the lower laterolateral resolution (4.4 vs. 2.0 mm)
and the presence of cervical and upper thorarcic vertebrae, which
are more affected by partial volume effects. Exemplary results for
both data sets are depicted in Figure 6. Despite these challenges,
our results are better than most previous works (see Table 1),
whereby only the mediocre results of [SFNE14,SRF∗14,ZVE∗14]
are based on images with a similarly coarse laterolateral resolu-
tion. Considering T1- and T2-weighted subsets, we observe that the
latter gave better results (84.5±4.9 vs. 85.6±4.0 % DC). Presum-
ably, this is due to the increased constrast to intervertebral discs.
As could be expected, the result quality increased from cervical
(83.9± 5.0 % DC) over thorarcic (84.9± 3.7 % DC) to lumbar
vertebrae (87.2±3.3 % DC). Since the average patch is smaller in
DS1, the run time per vertebra decreased to 1.65± 0.28 seconds
(Intel Core i5 @ 4×3.30 GHz) on average.

4. Conclusion

We proposed an automatic approach for fast vertebral body seg-
mentation in three-dimensional magnetic resonance images. Our
work is novel, because it applies to T1- and T2-weighted images
and to the whole spine, which we demonstrated on image data of
64 subjects (128 images in total). Compared to previous work, we
are the first to show a working solution on a reasonably large data
set. Moreover, our results on a publicly available benchmark data

set with 23 T2-weighted thoracolumbar images are competitive to
previous works (or better) at a fraction of the run time.

Our approach has two limitations. First, the segmentation quality
may decrease when the preliminary vertebra localization produces
too large misalignments, which was not the case for our data but
might be elsewhere. To deal with such cases, we suggest to im-
prove the estimate of each vertebra center and each up-vector by a
quick symmetry-based self-registration of each vertebra, the details
of which are given in Appendix A.

Second, in case severe pathologies alter the appearance or shape
of the vertebrae, e.g., strong metastases or burst fractures, the seg-
mentation may be poor. Any available appearance or shape model-
ing technique will struggle to capture the large diversity accompa-
nied with such cases. To be precise, we are not aware of any work
addressing this challenge. Machine learning techniques may be an
option, but only after a large pathological training data set becomes
available, which is - as of today - not the case. In the future, we
want to address this challenge.
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Appendix A: Symmetry-based Vertebra Self-Registration

When the vertebra locations or up-vectors are too inaccurate, we
suggest to improve it by establishing a vertebra-centric coordinate
system via a symmetry-based self-registration. To this end, we seek
to find a transformation between the hypothesized vertebra-centric
coordinates and the image domain such that the vertebral symmetry

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

150



M. Rak and K. D. Tönnies / Star Convex Cuts with Encoding Swaps for Fast Whole-Spine Vertebra Segmentation in MRI

Figure 6: First two rows: segmentation results on T1-weighted (left) and T2-weighted (right) images of a subject from DS1. Last two rows:
segmentation results on T2-weighted images of different subjects from DS2. First and third row: mid-sagittal slices after re-embedding
of patch-wise segmentation results into the image domain. Vertebra coloring reflects encoding swaps. Second and fourth row: coronal,
transverse and sagittal views of the individual cervical, thoracic and lumbar vertebrae.

planes are aligned with the axes of the coordinate system. The idea
is illustrated in Figure 7.

The transformation involves six degrees of freedom: three for
translation and three for rotation. These are determined completely
if all three symmetry relations (top-bottom, left-right and front-
back symmetry) are utilized. Hence, we establish the vertebra-
centric coordinate system (x,y,z) by minimizing

E (T ) = C
(

IT (x,y,z), IT (−x,y,z)

)
︸ ︷︷ ︸

Top-Bottom

+C
(

IT (x,y,z), IT (x,−y,z)

)
︸ ︷︷ ︸

Left-Right

+C
(

IT (x,y,z), IT (x,y,−z)

)
︸ ︷︷ ︸

Front-Back

, (9)

where T (·) is the sought transformation into the image domain and
IT (·) is the image expressed in vertebra-centric coordinates. C (·) is
an appearance-based cost function, which compares IT (x,y,z) with
the x-, y- and z-mirrored copies of itself to quantify the symmetry.

To implement the cost function, virtually any intensity-based
measure of alignment quality may be used. More important than
that is the distance-based weighting of the quality measure, because

the symmetry assumptions are less reliable the farther away we are
from the vertebra boundary. We found that a Gaussian weighting
with a standard deviation of roughly one half of the inter-vertebra
distance is an adequate choice. Depending on the quality measure,
a suitable non-linear optimization method should be chosen.

Some self-registration results based on mean squared intensity
differences and a quasi-Newton method are shown in Figure 8.
Even for the lumbar spine section, the self-registration took below
one second per vertebra (Intel Core i5 2500, 4×3.3 GHz) for all
tested images. Based on visual inspection, the rate of failure is be-
low two percent for both data set and imaging sequences.
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