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Figure 1: QAPs can be used to model point assignment problems such as in (a), which are then further refined using linear assignment
problems (b). We show that solving QAPs with linear relaxations is often sufficient and expectedly much faster, even when compared to fast
approximative solvers for the SDPs (c) [WSvdHT16].

Abstract

Quadratic assignment problems (QAPs) and quadratic assignment matchings (QAMs) recently gained a lot of interest in computer
graphics and vision, e.g. for shape and graph matching. Literature describes several convex relaxations to approximate solutions
of the NP-hard QAPs in polynomial time. We compare the convex relaxations recently introduced in computer graphics and
vision to established approaches in discrete optimization. Building upon a unified constraint formulation we theoretically analyze
their solution spaces and their approximation quality. Experiments on a standard benchmark as well as on instances of the shape
matching problems support our analysis. It turns out that often the bounds of a tight linear relaxation are competitive with the
bounds of semidefinite programming (SDP) relaxations, while the linear relaxation is often much faster to calculate. Indeed, for
many instances the bounds of the linear relaxation are only slightly worse than the SDP relaxation of Zhao [ZKRW9S, PR09],
which itself is at least as accurate as the relaxations currently used in computer graphics and vision. Solving the SDP relaxations
can often be accelerated considerably from hours to minutes using the recently introduced approximation method for trace bound
SDPs [WSvdHT16], but nonetheless calculating linear relaxations is faster in most cases. For the shape matching problem all
relaxations generate the optimal solution, only that the linear relaxation does so faster. Our results generalize as well to QAMs
for which we deliver new relaxations. Furthermore by interpreting the Product Manifold Filter [VLR* 17] in the context of QAPs
we show how to automatically calculate correspondences between shapes of several hundred points.

CCS Concepts
eMathematics of computing — Semidefinite programming; Convex optimization, eComputing methodologies — Shape
analysis;
1. Introduction point assignments have small isometric distortion [BBMOS5, FS06,
KKBL15] defined over the pairwise geodesic distances d;; € R and
Assigning two point sets, which were sampled on two different d; ; € R, and some parameter G:

surfaces, onto each other is a discretization of the shape matching

problem. We initially assume that the points have a one-to-one

correspondence, which can then be represented by an n-element min Zexp (— (dij —dé,(i)q)( j))z / 62) 1
permutation contained in the symmetric group S,. Good point-to- €Sy 7
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The minimization of the simple functional already yields good point-
to-point assignments as shown in Figure 1a. The minimization is
an instance of a quadratic assignment problem (QAP) - a difficult
discrete optimization problem whose solution is our main interest.

. n® X n’ nxn .
For two cost matrices A € R ,BER and noting A pg, s for
Apn+q,rm+s the quadratic assignment problem (QAP) minimizes:

(QAP-0)  min 3 Aig(y jo(j) +2 LBig(y @
w5y i

Setting A;y j; = exp (— (dij — d,il)z/cz) transforms Eq. (1) in this
new form. B can be removed from the formulation as the diagonal
of A has the same effect.

Several practically relevant hard matching problems can be mod-
eled as a QAP, such as matching shapes as above or matching feature
points between images [BMP02, SRS07, CMC*09, EKG13]. Sadly
approximating QAPs to any precision is already NP-hard [SG76]
and solving instances with as little as 30 points is typically not
considered any more practical.

Convex relaxations estimate a lower bound on the cost and can
be used to approximate solutions with small costs. The idea is to
drop non-convex constraints from the problem formulation such
that the optimization becomes a convex one. Because a solution of
the original problem is still a feasible solution of the relaxation, the
efficiently computable minimal cost of the relaxation are a lower
bound for the original costs. Furthermore as the solution of the
relaxation fulfills all but the dropped constraints, projecting it onto
the feasibility set of the original problem estimates a solution. The
cost difference from the estimated to the minimal solution is smaller
than the cost difference from the estimated solution to the lower
bound of the relaxation, which is therefore a measure of the quality
of the relaxation and is called the optimality gap.

Recent methods in computer graphics and vision relax QAPs
into semidefinite programs [KKBL15, WSvdHT16], which we com-
pare to already established convex relaxations of discrete opti-
mization [AJ94,ZKRW98,PR09]. Interestingly on shape matching
problems a carefully built linear programming relaxations is only
slightly inferior to the best SDP relaxations, but solving it is often
much faster. We furthermore investigate the approximation of the
SDP relaxations by quasi-Newton minimization of the Lagrange
dual [WSvdHT16] and which for certain relaxation is an order of
magnitude faster than calculating their solution with interior-point
methods.

We show theoretically that the SDP relaxation of Zhao [ZKRW98]
yields lower bounds at least as large as the SDP relaxations currently
used in computer graphics and vision, and this claim is supported
by our practical evaluation of the QAPLIB [BKR97] benchmark
and on typical shape matching problems. Interestingly the shape
matching problems result in QAPs which are solved exactly with all
investigated relaxations, only the linear methods are typically faster.

Furthermore we show how to use these relaxations to solve the
related quadratic assignment matching (QAM) for which we present
novel relaxations. Last but not least we show, that we can interpret
the product manifold filter [VLR*17] as an iterative minimization
of a QAP. This insight allows us to calculate correspondences of
several hundred points without predefined correspondences.

2. Related Work

Koopmans [KB57] introduced a first restricted version of the QAP to
locate economic activities. The more general formulation of Eq. (2)
was presented by Lawler [Law63] soon after. Since then a variety
of discrete optimization problems have been reformulated as QAPs,
which therefore themselves became an important research topic.
There is much related work on solving QAPs, reviewed in several
good surveys [BCPP98, LdABN*07, Cel13], and in the following
we only present the most relevant developments for our work.

Solving arbitrary QAPs is NP-hard as for example the trav-
eling salesman problem can be modeled as a QAP. Despite ex-
tensive research, solving QAP instances with n > 30 is still not
considered to be practical. Relaxations provide lower bounds for
the minimal cost and estimate a solution. If the estimated solu-
tion is insufficient then the exact solution can be determined by
Branch and Bound methods [Gil62, Law63, Ans03]. Hereby the
solution space is traversed and subspaces, whose lower bound
is larger than the cost of the currently best solution, are dis-
carded. The Gilmore-Lawler bound [Gil62, Law63] is one of the
earliest lower bounds and it is still used, due to its fast calcu-
lation. There are many other relaxations such as spectral relax-
ations [LHOS, ADK13] (which were among the first used in com-
puter graphics and vision), linear programs [HG98, KCCE99],
mixed linear integer programs [KB78,FY83, AJ94], quadratic con-
straint quadratic programs [LMS*10] and semidefinite programs
[GW95,LS91, Kar95,ZKRW98, PR0O9].

There are relaxations of varying sizes, for example using O(nz)
[PZLT15,dKST15] or O(n4) [FY83,AJ94,ZKRW98] variables. Our
interest is in linear and SDP relaxations over the lifted permutation
matrices using (‘_)(n4) variables (as will be introduced below), which
are known to deliver tight bounds. They depend on the second-
order Birkhoff polytope [JK96a,JK96b,JK01, AM14], whose affine
subspace is known but not all of its facets.

Recently there is growing interest in relaxations as copositive
programs [PVZ15,Burl12, PR09, BMP12], which minimize a linear
objective under linear constraints over the convex set of copositive
matrices, i.e. matrices with x! Ax > 0 for all x > 0. Although solv-
ing copositive programs is NP-hard, as several NP-hard problems
can be modeled as copositive programs, there are SDP approxima-
tions of copositive programs to any accuracy.

Solving large SDPs with current interior point solvers is costly,
especially the semidefinite programming relaxations of QAP of size
O(n4), and several methods specialize in solving or approximating
QAP relaxations and the related binary integer programs. For ex-
ample by reformulating the convex program with a separable cost
function [BV06], by approximating the relaxation with the bundle
method [RS06] and recently with a fast approximative semidefinite
program solver of trace bound SDPs [WSVDH13, WSvdHT16]. We
quickly present and evaluate the latter as for some relaxations it is a
magnitude faster than current interior point solvers.

Notation. (a, b, c,...) are vectors, a < b is component-wise
less or equal, and ||al|; /, is the one/two norm. (A, B, C,...) are
matrices, rank(A)/tr(A)/||A||F is their rank/trace/Frobenius norm
and (A,B) = tr(ATB) their inner-product. We write [A] € R" for
the row-wise unrolling of a matrix A € R"*". For a matrix Y €
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2 2
R™ *™ we write Y pg,rs as a shorthand for Y p.n+¢,r-n+s. Furthermore
1 is a vector of ones of suitable dimension and 8" are the real,
symmetric n X n matrices. For A,B € 8" we denote the Loewner

order with >=, that is A = B iff A — B positive semidefinite.

3. Solving QAP

: : 0 _
A permutation ¢ can be represented by a matrix X® where X; = 1

if ¢({) = j and O otherwise. Then the following is an equivalent
formulation of (QAP-¢):

(QAP) min [X]"A[X]+2 (B.X) 3)
st. XeR™™ X2, =Xpq Vp,q
0<X,X1=1,X'1=1

The convex hull of the permutation matrices {X® | ¢ € S,} is
called the Birkhoff polytope T1" [AM14]:

mn" ::conv({X¢ |6 € Sn}>
={XeR"™|0<X,X1=1,X"1=1}

3.1. Lifted variables

We reformulate (QAP) by replacing the quadratic factors XpgXs

with the lifted variables Y pq.rs. Each permutation ¢ induces a lifted

feasible solution of the form (X?,Y?) := (X?, [X?][X?)7), which is

called a second-order permutation. The convex hull of the second-

order permutations is called the second-order Birkhoff polytope
5 [AM14]:

IT5 := conv ({ <X¢,Y¢> o€ Sn}) (@)

Several authors explored the second-order Birkhoff polytope and
the isomorphic QAP-polytope [JK96a] (which describes the lifted
permutations with a graph structure):

Theorem 1. [JK96a, JKO1] The affine hull of 115 is:

Xi=X"1=1 (5a)
Y =Y diag(Y) = [X] (5b)
quﬁks = qu,sk =0 VkVq # s (5¢)

Zk qu,kx = Zk qu‘sk =Xpq Vp,q,s (5d)
Theorem 2. [JK96a, AM14] Some facets of 115 are given by:
0<Y (6)

For3<m<n-—3and (ig,...,im),(jo,---,jm) €[] :n}m+l pairwise
disjunct other facets are:

Y Yigiojo + Yijriie < Xiojo+ 3, Yo Yigjrir, (D)
And there are additional currently unknown facets.

Every second-order permutation fulfills the following semidefi-
nite constraints, whose equivalence follows from the Schur comple-

ment:
Y = X)X (@(& @3>® ®)
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Because Eq. (8) is a convex constraint fulfilled on all second-order
permutations it is fulfilled on their convex hull as well:
Proposition 1. Egq. (8) holds for all second-order permutations as
well as for any tuple in I15.

3.2. QAP relaxations

In the following we define several convex relaxations of (QAP). Over
a fixed representation of the solutions with variables, the convex
relaxation with the largest lower bounds is the one with the smallest
convex solution space that still contains all valid solutions, i.e. the
convex hull of the valid solutions. Over the lifted permutations
(LIN-OPT) is the convex relaxation with the largest lower bound as
it restricts the solutions to the second-order Birkhoff polytope IT5:

(LIN-OPT) - min (A,Y) +2(B.X)
st. (X,Y) eIl

Despite being a linear program, solving (LIN-OPT) is difficult.
Not only are not all facets of IT; known, but it is also NP-hard:
Theorem 3. (LIN-OPT) and (QAP) have the same minimal cost.
Because the decision problem of QAP ( “is there a solution of cost
less than x”) is NP-complete, so (LIN-OPT) is NP-hard as well.

Proof. Every minimal solution of (LIN-OPT) can be expressed as
a convex combination of second-order permutations ¢1,...,¢; €
Su: (X,Y) = ¥, 00(X%, Y®) with o; > 0,0 = 1. As the cost
FX,Y) :== (A)Y) + 2(B,X) is linear in X and Y, we have
F(X,Y) = Y06/ (X% Y®). Because £(X,Y) is minimal, the sum-
mands of 0 = ¥, o, (f(X%,Y*) — £(X,Y)) are not negative and
therefore all 0. Thus f(X%,Y%) = f(X,Y) for all i. O

(LIN) [FY83,AJ94] is an efficiently solvable linear programming
approximation of (LIN-OPT). It replaces IT; with the approximation
of Theorems 1 and 2, dropping the exponential number of facets
from Eq. (7). It has the same affine subspace as IT3, as Eq. (5¢)
follows from Eqgs. (10b) and (10c):

(LIN)  min(A.Y)+2(B.X)
st. X1=X"1=1 (10a)
0 <Y, diag(Y) = [X] (10b)
Zk qu,kx = Zk qu,sk =Xpqg Vp.q;s (10c)
with X € R Y es"

A tighter relaxation (SDP-R3) follows by adding the semidefinite
constraint from Eq. (8) to (LIN). It was introduced in [ZKRW98]
and reformulated as presented here in [PR09]:

(SDP-R3) 1)1(11{{1 (AY) +2(B,X)
s.t. asin (LIN) and

0 ([rlq @T) (o

Adding one of the following two equivalent non-convex constraints

ran ! [X}T = = T
k([X} Y) 1 & v=[XX
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to (SDP-R3) makes it equivalent to (QAP), as X, € {0, 1} follows
from ¥ = [X][X]" and X3, = Y pq.pq = Xpq-

We compare the above relaxation against two state-of-the-art re-
laxations of the recent computer graphics [KKBL15] and vision
literature [WSvdHT16]. Both are relaxations of a variation of the
QAP, which minimizes over the partial permutations, i.e. it assigns
subsets of the nodes onto each other. Here we present their relax-
ations adapted to (QAP) and postpone a discussion of the differences
to Section 3.5:

(TIGHT)  min (A,Y) +2(B.X)

st. 0<X,X1=X"1=1 (12a)
0<Y, tr(Y)=n, 17Y1 =»? (12b)
qu.kx S qu VPMI’ka (12C)

qu,ks = qu,s'k =0 VquVS 7£ q (12d)

0 (plq Dgr) (120

2
with X e R"™™"Ye§"

(FASTBQP)  min (A,Y) +2(B,X)

st. X1=X"1=1 (13a)

diag(Y) = [X] (13b)

qu,ks = qu,sk =0 Vk\V/qu 7£ q (13¢)
X’

0< ([X] Y ) (13d)

with XeR™™Yes"

We say that a relaxation (A) dominates another relaxation (B)
and write (A) > (B) if they have the same cost function and if the
feasibility set of (A) is contained in the feasibility set of (B). In this
case the minimum of (B) is a lower bound for the minimum of (A).
Theorem 4. Using this notation the following relations hold:

(LIN-OPT) > (SDP-R3)
(SDP-R3) > (LIN)
(SDP-R3) > (TIGHT)
(SDP-R3) > (FASTBQP)

All relaxations have O(n*) variables and O (n*) constraints, except
for (FASTBQP) which has only (f)(n3 ) constraints.

Proof. We show all relations by showing that the feasibility sets are
subsets of each other. Due to Proposition 1 the feasible set of (LIN-
OPT) is a subset of the feasibility set of (SDP-R3). The feasibility
sets of (LIN) + Eq. (11a), (TIGHT) + Eq. (10b) + Eq. (10c) and
(FASTBQP) + Eq. (10b) + Eq. (10c) are equivalent to the feasible
set of (SDP-R3). O

We conclude that, the lower bound of (SDP-R3) is at least as large
as the other lower bounds, except for the lower bound of (LIN-OPT)
which cannot be efficiently computed. Typically the larger the lower

bound, the less projection onto the original feasible set changes
the solution, so that (SDP-R3) is as well likely to have one of the
tightest duality gaps. Despite the bounds of (LIN) being weaker than
the bounds of (SDP-R3), solving a linear program is often faster
than solving a semidefinite program, so that (LIN) offers a trade-off
between performance and the quality of the bounds.

3.3. Fast approximation of semidefinite programs

While (LIN) can be solved efficiently with an interior-point solver,
solving the SDP relaxations (SDP-R3), (TIGHT) and (FASTBQP)
with interior-point solvers is often slow. Recently the authors of
[WSvdHT16] proposed a fast approximation method for SDPs,
whose solution has a fixed trace, which all previous SDP relax-
ation have (tr(Y) = n). For completeness we quickly rephrase the
necessary steps.

After subsituting X and Y by the new variable

Z-ZXY] = (plq [’ﬂT) .

we express (SDP-R3), (TIGHT) and (FASTBQP) in the form:
SDP-F in (Ag,Z
( ) min (Ao,Z)
S.t. <B,’,Z> =b; i€l,...,j
<Bi7Z>Sbi l€]+177]
We approximate (SDP-F) with another convex program (SDP-A):
. 1 2
SDP-A Ay, Z)+ —||Z
( ) IZH;%< 0, >+2YH 7
s.t. asin (SDP-F)

The difference of the minimal costs of (SDP-F) and (SDP-A)
depends on ||Z||r and 7. Let A; > 0 be the eigenvalues of Z, then

2
IZIF =Y A7 < (L) =u@)’=@+1)? (4
and the minimal costs of (SDP-A) and (SDP-F) are related by

, (n+1)?
CSDP-A — 27

< ¢SDP-F < CSDP-A - (15)

For vy large enough the solutions of (SDP-F) and (SDP-A) are arbi-
trarily close and solving variants of (SDP-A) yields arbitrary precise
upper and lower bounds on (SDP-F).

Let I1(C) = ¥, max(0,;) ¢;0] be the projection of a matrix
C with the eigendecomposition C =Y ; Xi(])icbl-T onto the positive
semidefinite cone {X € 8, | X = 0}. Then (SDP-A) can be mini-
mized with a quasi-Newton method on the dual problem:
Theorem 5 ([WSVDHI13, WSvdHT16]). If (SDP-F) is feasible, so
is (SDP-A) for which then strong duality holds. Instead of minimizing
(SDP-A) we can maximize its dual:

max dy(u) = —b"u— ¥ ||I1(C(u))|> (16)
ueﬁ 2
where
0={ueuef|u,»zo \ﬁej+1,...,1} (17)
C(u)=—Ag—) uB;. (18)
i

(© 2017 The Author(s)
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The dual is once but not twice differentiable and its gradient is

(Vdy); = +(B;, II(C(u))) — b; . 19)

3.4. Extracting a solution

The above convex relaxations solve for X and Y, yet what is re-
quired is a permutation ¢ € S,. If Z[X, Y] = 0 and rank(Z[X,Y]) =1
then X is indeed a solution of (QAP), as noted in the comments
of (SDP-R3). But often the rank of Z[X, Y] is larger than 1. In this
case we can project X onto the possible permutation matrices IT" by
solving the Linear Assignment Problem:

: o_ "
min || X [X}TIX

20
q)es/l ( )

1

Often better results are obtained using the randomized approach
2
described in [LMS*10]. Let & € R" be a vector sampled from a cen-

tered multidimensional normal distribution N(0,Z) with covariance
Z. For any matrix A the expected value of &7 A(E is

Et n(0.2)[E AoE] = (Z,Ay) .

Thus (SDP-F) solves for a matrix Z such that sampling from N(0,Z)
fulfills and minimizes (SDP-F) in expectation. It is therefore reason-
able to sample several solutions &; ~ N(0,Y), project each onto the
permutations and choose the one with minimal cost:

X0 e
X~ g &

¢ = min [X*" Ao[x?] +2 (B,X?)

; = min
i i

3.5. Quadratic Assignment Matching

A partial permutation is a bijection from k of n elements onto k of
m elements. Quadratic Assignment Matching (QAM) [KKBL15] is
a generalization of QAP to partial permutations, used for example
for partial graph matching. QAM minimizes the following cost
defined with the matrices A € R"*™ and B € R"*™ over the
partial permutations:

(QAM)  min Y Agiyio(vi) T LBowwe) 2D
ij i
st. 0 {l,...,k} — {1,...,n}, ¢ injective
v: {1,....k} = {1,...,m}, ¥ injective

We can model (QAM) as a QAP of size 7 = n+m — k by adding
extra nodes on both shapes (loosely following an idea from [MD58]).

With A’ € R™ X% B/ ¢ R"" as follows

A/ _ A Pq,rs
pg,rs = .
0 otherwise

B
B, — )P
P4 { 0

we define the following problem:

p,r<nandgq,s <m

p<nandqg<m

otherwise

!’

(QAM-QAP) Minimize the QAP defined by A, B
st. Xpg=0 Vp>nVg>m

© 2017 The Author(s)
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To show the equality of (QAM) and (QAM-QAP) let ¢ be a solution
of (QAM-QAP). Then X = X% it is of the form:

G 0

X has exactly one 1 in each row and column and in total n+m —k
ones. Thus F has n —k, G has m — k and E has k ones. Let
(0(1),y(1)),...,(d(k),y(k)) be the indices of the ones of E then
0, Y defines a solution of QAM. On the other hand if ¢ and y is a
solution of QAM then we can define a solution of (QAM-QAP) of
equal cost by setting Eq;yy(;) = 1 and 0 otherwise, and filling F and

X — (E F) with E € R"™ F e R0 G ¢ Rim—0xm

G such that the constraints are met. Due to the definition of A’ the
costs of both solutions are equivalent and one is optimal if and only
if the other is, thus:

Theorem 6. The problems (QAM) and (QAM-QAP) are equivalent
and a solution of one leads to the solution of the other.

‘We can therefore utilize the previous relaxations (SDP-R3) and
(LIN) to solve (QAM), which we name (QAM-SDP-R3) and (QAM-
LIN).

But we can also build smaller, less tight relaxations by dropping
F and/or G altogether, turning equality into inequality constraints
where necessary:

(QAM-LD)  min (A.Y) +2(B,X)

st. 0<X,X1<1,X'1<1,1"X1 =% (22a)
0<Y, diag(Y) = [X], 17Y1 = (22b)
max(zk YP‘Z-,kS7Zk qu,sk) <Xpg Vp,q,s (220)
Yigps = Ygksk =0 VkVqVs #q (22d)

1 x)T
0 ([X] Y > 220

with X e R"™™Y 8™

This is similar to the QAM relaxation of [KKBL15], which we add
for completeness:

(QAM-TIGHT)  min (A,Y) +2(B.X)

st. 0<Y, tw(Y)=k 17Y1 =4
qu,ks < qu
and Eqgs. 22a, 22d, 22e and X, Y as above

(23a)

Vp,q,k,s (23b)

Theorem 7. For the relaxations the following relations hold:
(QAM-SDP-R3) > (QAM-LIN)
(QAM-SDP-R3) > (QAM-LD) > (QAM-TIGHT)

(OAM-SDP-R3) and (QAM-LIN) use (n+m—k+ 1)4 variables and
(QAM-LD) and (QAM-TIGHT) use (nm+ 1)2 variables.

Proof. The first relation follows from Theorem 4. “(QAM-LD) >
(QAM-TIGHT)”: The feasibility set of (QAM-TIGHT) + Eq. (22b)
+ Eq. (22¢) is equivalent to the feasibility set of (QAM-LD). “(QAM-
SDP-R3) > (QAM-LD)”: Let X, Y be a solution of (QAM-SDP-
R3). Then X’ = E with E as above and Y’ € 8™ with Y;,qﬁm =
Y pq,rsVp,q,r,s are a valid solution of (QAM-LD) and by construc-
tion of A’ of equal cost. O
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In conclusion modelling (QAM) as (QAP-SDP-R3) gives lower
bounds at least as large as the other relaxations. For & large solving
(QAM) via (QAM-LIN) is likely fastest and still gives good results.
If k is small (QAM-QAP) is significantly larger than the relaxation
(QAM-LD), which are therefore fastest. The lower bound of (QAM-
LD) is always larger than the lower bound of (QAM-TIGHT).

4. Evaluation and Applications
We compare solving QAPs by the following methods:

e solving the linear programming relaxation (LIN) with the Mosek
[Mos10] state-of-the-art interior-point solver (“LIN/IP”),

e solving one of the semidefinite programming relaxations with the
Mosek interior-point solver (““.../SDP”)

e approximating the semidefinite programming relaxations via max-
imization of the dual of (SDP-A) with the L-BFGS [Noc80]
quasi-Newton method (*.../QN”).

For a relaxation of a QAP instance let ¢~ be the lower bound,
¢ be the minimal cost of 100 projected solutions as discussed in
Section+ 3.4 and ¢* be the minimal cost of the instance. The relative

error < |C_*‘|'* measures the quality of the solution. It is bounded by

cF—c”

the relative optimality gap |;| , whose calculation is independent

of the minimal cost ¢*.

4.1. QAPLIB

QAPLIB [BKR97] is a collection of QAP instances of various
authors. Despite being released in 1997 it is commonly used to
benchmark QAP solvers, as the difficulty of QAPs increases quickly
when their dimensions grow. Our first evaluation is on the QAPLIB
instances of dimension 20 and less. Figure 2 shows the relative
optimality gap and the relative error, and Figure 1c depicts the
times the different algorithms used. The table in Figure 3 depicts the
fraction of the instances, in which one method had smaller optimality
gap/error than the other.

Solving problem instances depends on the convex relaxation as
well as on the solver and this dependency on the solver makes a
reliable practical evaluation of the relaxations difficult. For con-
vex programs with strong duality, remedy comes from primal-dual
solvers. They not only minimize the objective, but delimit it with
lower and upper bounds. Once the bounds are sufficiently close
the global optimum has reliably been found. The Mosek [Mos10]
interior-point solver is such a primal-dual solver, which we therefore
strive to use in our evaluation when possible.

On the downside interior-point solvers can be slow, so that not all
instances can be solved with an interior-point solver in a reasonable
time. For the relaxations (SDP-R3) and (TIGHT) solving with the
Mosek interior-point solver even the smaller instances took hours,
which we therefore did only on the instances “chr12a” to “chr15c”.

When solving the SDP approximation (SDP-F) we limit the ap-
proximation introduced error to 1% of the (known) minimal cost by
choosing y accordingly. The reliability of the results then only de-
pends on the minimization of a convex function on a convex domain
with a quasi-Newton method. From our experiments we draw the
following conclusions:

-
o
o

o

¥ 400 — SDPR3/QN
£ — FASTBQP/QN
8%/ -- FAsTBQP/P
2 200 TIGHT/QN

g LIN/IP

el

2 )

®

o

relative error (in %)

Figure 2: Optimality gap and relative error on the QAPLIB in-
stances.

The quasi-Newton method and the interior-point solver yield
similar results for the (FASTBQP) relaxation as well as for the
(SDP-R3) relaxation on the instances “chrl2a” to “chr15c¢” and
for the (TIGHT) relaxation on the instances “chrl2a” to “nugl4”.
Thus in most cases the quasi-Newton approximation gave reliable
estimations of the lower bound. Only when solving (TIGHT) on the
instances “chrl5a” to “chr15¢” did the quasi-Newton method fail to
converge and delivered a much smaller lower bound then the interior-
point solver, whose lower bounds were much more comparable to
the results of (SDP-R3). This is especially important as research
hints that the relaxations (TIGHT) and (SDP-R3) are indeed equal
( [DML17], proof of lemma (2) in the appendix).

After this note of caution we proceed with interpreting the results.
(SDP-R3) (and possibly (TIGHT)) provides in nearly all cases the
smallest relative error and the tightest bounds as expected from
Theorem 4. Where this is not the case it might be due to missing
convergence of the quasi-Newton solver and due to the randomiza-
tion of the upper bound. (LIN) and (FASTBQP) have similar relative
errors and optimality gaps, although in a few examples (FASTBQP)
has a very large relative error and optimality gap.

(SDP-R3) is not only known for its good results but also for
the long time interior-point solvers require solving it. For most in-
stances (LIN) and (FASTBQP) are the fastest methods, which is
clearly demonstrated in Figure 1c showing the solver time relative
to (LIN/IP). Approximating (SDP-R3) and (TIGHT) by maximizing
the dual of (SDP-A) with a quasi-Newton method is much faster
than solving (SDP-F) with an interior-point solver. Indeed in nearly
all cases the interior-point solver requires much more than 30 min-
utes. This is a striking difference, from seconds (LIN) to minutes
(SDP-R3/QN) to hours (SDP-R3/IP) (note the logarithmic scale in
Figure Ic).

The various SDP relaxations differ not only in their solutions but
also in their timings. Typically adding constraints to a relaxation
restricts the solution space and decreases the number of iterations,

(© 2017 The Author(s)
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Error
FAST | SDPR3  LIN

Optimality gap
SDPR3  LIN

FAST

Figure 3: Fraction of experiments, where methods have smaller
optimality gap/error (FAST is FASTBQP, TIGHT was left out due to
uncertainties of the quasi-Newton solver).

but increases the time for each iteration. (TIGHT) has the most
constraints and a feasible set at least as large as (SDP-R3) and
accordingly takes the most time to solve. (FASTBQP) on the other
hand has got only O(n3) constraints and takes the least time to solve.

4.2. Shape matching

Graph and shape matching is an application of the QAP in computer
graphics and vision [SRS07, KKBL15, VLR*17]. In the following
we evaluate the performance of our relaxations and solvers to match
shapes from the Tosca [BBKO08] and the Shrec [GBP07] datasets.

On both surfaces, that are to be matched, we choose all points
of extremal average geodesic distance in a geodesic neighborhood
of 1/5 the geodesic diameter, which are usually located at semanti-
cally meaningful locations. Then we iteratively add the geodesically
farthest point until we have n points. Let d;; and d be the pairwise
geodesic distances on both shapes, let ¢ be the mean of the distances
from each point to its closest neighbor. Then we define the geodesic
distortion as:

= 24)

ABO, —exp (_
Good assignments have low distortions and the minimizer of the
QAP defined by A0 s often a good assignment of the points
[LHOS5, KKBL15].

(dp,_d;y)

Figure 4 shows several example shapes with sampled and assigned
points on isometric and near-isometric shapes. Figure 5 and Figure 6
depict the relative optimality gaps and the times required to solve a

ﬁ“@w»
v

Figure 4: Solving on pairs of shapes sampled at 15 points.
Corresponding points have random colors, which are then diffused
over the shape. (b,e) match the intrinsic symmetry and is not a
failure case. Points are sampled as described in the text and do not
necessarily agree exactly, e.g. head in (b,d).

d

AISO
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Figure 5: Optimality gap after solving the QAP of Eq. (24) with
several methods.

series of test cases such as the examples in Figure 4 sampled with 5,
10 or 15 points.

In the previous evaluation of QAPLIB the instances led to varying
optimality gaps and the optimality gaps can be seen as a measure of
hardness of the QAP instance. Interestingly, the QAP instances from
Eq. (24) lead to a very tight relaxation, i.e. a small optimality gap.
(LIN) has an optimality gap of 0 in all cases and the optimality gap
of the SDP relaxations stems from the approximation with (SDP-
A) and can be further reduced by increasing Y. Therefore with the
correct Y all relaxations result in the optimal solution.

Yet the methods differ greatly in the time required to solve. Solv-
ing (LIN) and possibly (FASTBQP) with an interior-point solver
is the fastest method although fast approximations of (SDP-R3)
and (FASTQAP) with (SDP-A) are only by a factor 2-4 slower.
Approximating (TIGHT) with (SDP-A) or solving the SDP relax-
ation of (SDP-R3) with an interior-point solver is still one order of
magnitude slower.
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Figure 6: Solver times for the different methods to solve the QAP of
Eq. (24).
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4.2.1. Product Manifold Filter

The product manifold filter (PMF) [VLR*17] uses a few predefined
correspondences to infer improved ones. Typically the method is ap-
plied iteratively until convergence. Let the current correspondences
be encoded in a matrix X; € R"*" where (X;)pq = 1 if points p
and ¢ are assigned and 0 otherwise. Let ¢ be as above and let r and
1’ be measures of locality on both shapes. Then we calculate new
correspondences ¢;4 by solving the Linear Assignment Problem:

(PMF-LP) 0;; = argmin [X°]" APMF [x}]
9€S,

0 dpr < r/\d;s > 2
/ /
with APMF _ 0 dgs <1 Ndpr >2r

pq,rs — 2
dprtd,
eXp (_( P 7 qs) )

Requiring only a few initial correspondences, this method was
shown to compute correspondences of several hundred points. We
show next that the above formulation can be interpreted as an itera-
tive minimization of the following QAP:

otherwise

(PMF-QAP)  ¢* = argmin %[X‘”]T APMF [x9] (25)

IS

First we relax both formulations onto the Birkhoff polytope IT":

(PMF-LP’) X, =argmin [X]T APMF[X]] (26)
Xell
(PMF-QAP’)  X* = argmin 1[X]T APME 1x 27)
Xelr

Theorem 8. The stationary points of (PMF-LP’) are the local min-
ima of (PMF-QAP’). If APMF s not positive definite, (PM-QAP’)
might have several local minima.

Proof. X* is a local minimum of f(X) = 4[X]” APMFX] if and
only if f(X*) grows in any direction d which does not leave the
convex set IT". Such directions can be parameterized by X € I1"
withd =X —X*:

X* is a local minimum of f(X)
& (Vx Nlgxe) X=X]>0 vXell"
o X*TAPMFX) > (X7 APMF X vX e T
e X = arg;nin[X*}TAP MEIX] O

By interpreting PMF as a local minimization of a QAP energy
we can remove the requirement of predefined correspondences. We
first solve (PMF-QAP) over a small set of points (n /~ 15) and then
refine the solution using (PMF-LP), which has only O(nz) instead
of O(n4) variables and scales better. Some example applications
can be seen in Figure 7, which shows the correspondences after
(PMF-QAP) and after (PMF-LP).

5. Conclusion

We compared several methods to solve the quadratic assignment
problem with a focus on their application to shape matching. Our
results show that the formulation as a linear program (LIN) is often

Figure 7: Matching 15 points with (PMF-QAP) and refining the
result with (PMF-LP). Maps are shown by mapping a random color
signal. (a,b,d,e) matched correctly, although (b,e) match the in-
trinsic symmetry which happens in little less than half of the times;
Failures: QAP twisted the feet in (c), finding the k best solutions with
Branch&Bound could help; (PMF-LP) had problems converging on
the shoulder of (f).

preferable to the more complicated SDP relaxations. At least for
n < 15 it is nearly always faster. Its bounds are often tighter than the
bounds of (FASTBQP). If required, (SDP-R3) yields lower bounds
at least as large as the others. Furthermore, approximating (SDP-R3)
or (TIGHT) using (SDP-A) [WSvdHT16] is always much faster
than using state-of-the-art interior-points solvers. We showed how to
use these insights to solve quadratic matching problems and how to
utilize the results for shape matching. Furthermore our interpretation
of (PMF) as a (QAP) allows to remove the requirement of predefined
correspondences. Investigating the possibilities to iterate several
low-cost solutions with a Branch and Bound approach might be
interesting possibilities for future work.
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