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Abstract
Vector Field Topology describes the asymptotic behavior of a flow in a vector field, i.e., the behavior for an integration time
converging towards infinity. For some applications, a segmentation of the flow into areas of similar behavior for a finite integration
time is desired. We introduce an approach for a finite-time segmentation of a steady vector field and equip the separatrices with
additional information on how the separation evolves at each point with ongoing integration time. We analyze this behavior and
its distribution along a separatrix, and provide a visual encoding for the 2D and 3D case. The result is an augmented topological
skeleton. We demonstrate the approach on several artificial and simulated vector fields.

1. Introduction

Vector Field Topology has been established a standard approache
to visualizing steady vector fields, see e.g. [?, LHZP07, PPF∗11].
Its main idea is to separate the field into regions of similar asymp-
totic flow behavior. This way, even complex flow structures can be
represented by a low number of graphical primitives. In addition to
this separation, Vector Field Topology has an attractive property in
terms of computation: The segmentation as a whole is determined
by only few points (critical points, boundary switch points) and only
few lines or surfaces called separatrices have to be computed.

This work is an extension of [FRT15]. We present a method
for quantifying the separation on separatrices based on finite-time
information. We then set them in relation to their behavior when
integrating towards infinity and provide visual encodings both for
the 2D and 3D case.

2. Computation

In a steady field v(x), we integrate the Vector Field Topology us-
ing the flow field φ(x,τ). To compute a separation value in each
point along a stream line φ(x1,τ), one possibility is to integrate
a secondary stream line in the close neighborhood and measure
the distance after a set integration time. This however requires the
integration of several lines and depends on the initial offset. For
separatrices as a special case of stream lines, it can be shown that
the computation simplifies to

s(x,τ) =
∫

τ

0
w(φ)T J(φ)w(φ) dr

with w(x) being the normalized orthogonal field of v(x). This allows
for a single integration only. For more details, we refer to [FRT15].
While s will not neccessarily capture the maximal distortion of
the field, the value will be close to maximal and thus give a good
approximation.

In 3D fields, all computations stay basically the same. Instead of
lines, separatrices are now surfaces originating in the saddle planes.
In terms of computation, we need to integrate and triangulate these
surfaces. The perpendicular field w(x) is defined locally as the
normal of the separatrix plane.

3. Visualization

In the linear neighborhood of a saddle, s(x) converges to a lin-
ear function aτ. Instead of a direct visual mapping, we chose to
display the difference function b(x) to this final linear behavior
as limτ→∞ s(x,τ) = a τ+ b(x) which can be evaluated iteratively
as b(y) = b(x)+ s(x,τy)−a τy.

For a more intuitive visualization and to set the different values
of a into relation, we further map b(x) to the visualized function

h(x) = a ek b(x)

where k > 0 is a free parameter steering the visual prominence of
deviations from linear behavior. As b(x) = 0 in the linear neighbor-
hood of a saddle, h(x) = a in the same region. Figure 1 shows a
simple dataset and the functions s, b and h computed on it.

2D Visualization

For steady 2D vector fields, we map h(x) to transparent walls stand-
ing on the planar separatrices. The field is displayed by a LIC texture.
The height of the wall represents the function values of h(x), while
the color represents positive (red) or negative (blue) separation. Crit-
ical points are raised to cylinders and colored based on their kind
(sink, source or saddle). Figure 2 shows 4 example datasets.

© 2016 The Author(s)
Eurographics Proceedings © 2016 The Eurographics Association.

DOI: 10.2312/vmv.20161457

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20161457


A. Friederici & T. Günther & C. Rössl & H. Theisel / Finite Time Steady Vector Field Topology

x0x1x2x3

saddle csource s

(a) Simple 12×3 field, bilinear interpolation

τ
τx3

τx2
τx1

s(x0, τ)

x0

b(x3)
b(x2) b(x1)

(b) Graph of s(x,τ) on field in (a)

source s saddle c

b
h, k = 0.05
h, k = 0.25

(c) Graphs of b and h for varying k

Figure 1: s, b and h in a simple field. Spatial distance in (a) and integration time τ are not proportional, as can be seen at points x1,x2 and x3.

(a) Dataset in figure 1a (b) Random vector field

(c) Rayleigh-Bénard convection cell dataset (d) South Pacific Ocean

Figure 2: 2D visualization on datasets of increasing complexity

3D Visualization

In 3D fields, the mapping to wall heights becomes infeasible. In-
stead, we map h(x) using color and opacity: Areas of high relative
separation are displayed light and opaque while areas of low h
fade out. Saddles are displayed as octahedral with eigenvector signs
mapped to red and blue color. Figure 3 shows an example. Addition-
ally, the analysis of the surface can be enhanced by several methods.
Figure 4 shows a comparison of other techniques for surface visu-
alization. In the left image, angle-based transparency [HGH∗10],
layer adaptivity [CFM∗13] and silhouettes were computed. The cen-
ter image maps importance to opacity and silhouettes were added.
Finally, we applied opacity optimization [GSE∗14] to emphasize
the important structures (right). Shadows are realized via Fourier
Opacity Mapping [JB10] in all cases.

Figure 3: Magnetic field around a Benzene molecule

Figure 4: Alternative visualizations of 3D separatrices

4. Conclusions

The proposed approach shares the benefits of steady vector field
topology, which is stable and well-defined. It also shares the dis-
advantages of general topological methods: When the topological
skeleton has too many primitives, the visualization becomes to com-
plex to be feasible, see for example figure 2d. On a small enough
skeleton however the separation functions add new information on
the behavior and relevance of separating structures.
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