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Figure 1: Left: leather sample under single-light illumination. Right: same sample under multiplexed illumination.

Abstract
There is tremendous demand for digital representations that allow for materials to be re-lit under as wide a range
of illumination scenarios as possible. It is therefore desirable to capture the entire dynamic range of a material’s
appearance. This process can require excessive shutter times for many materials that reflect only small amounts
of light for certain lighting and viewing directions, for instance in the presence of low albedo or self-shadowing.
The problem is amplified in the case of image-based appearance models such as the bidirectional texture function
(BTF), where possibly many thousands of images are required to accurately sample high-frequency details in
the angular domain. We propose to capture material BTFs with their dynamic range compressed by multiplexed
illumination. We demonstrate that the signal-dependent noise associated with demultiplexing can be mitigated by
means of an existing database of low-noise material BTFs. Moreover, we investigate a method to quickly create a
suitable database from scratch.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Reflectance

1. Introduction

In many applications it is desirable to be able to predict a
given material’s appearance under illumination that differs
vastly from the controlled illumination that is typically em-
ployed when obtaining a material’s digital representation. It
is therefore important to capture as much of the dynamic
range of material’s reflectance as possible. The process of
doing so, however, may require exposure series of many sep-
arate steps with shutter times that can range from only a few
milliseconds up to minutes, for instance in the presence of
low albedo or self-shadowing. In the case of image-based
appearance models such as the bidirectional texture func-

tion (BTF), where the number of single images contributes
strongly to the quality of reproductions in renderings, the re-
sulting resource requirements can become excessive: Due to
the many and possibly long shutter times, acquiring a single
material’s BTF may take from hours to even days. Moreover,
a BTF typically comprises many thousands of (HDR) im-
ages, which during acquisition is multiplied by the number
of (LDR) images per exposure series. This can easily lead
to terabytes of data and increases the time spent on post-
processing.

We propose to acquire material BTFs using illumination
multiplexing: the material sample is illuminated not by each
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single light source individually, but with a series of patterns
of many light sources at once. That way, the dynamic range
of a material’s reflectance is compressed, because less shad-
ows and highlights appear due to the many different simul-
taneous illumination angles, and the material is exposed to
a larger amount of light. A BTF can thus be obtained with
shorter exposure series and greatly reduced shutter times.
Recovery of the desired images under single-light illumi-
nation amounts to solving an appropriate linear system, ex-
ploiting the linearity of the superposition of light. In the pres-
ence of signal-dependent noise, this demultiplexing process
may yield intolerably noisy images, in particular if the ma-
terial’s dynamic range is wide.

We demonstrate that this effect can be mitigated by pro-
jecting the noisy BTF onto a linear subspace spanned by an
existing database of traditionally measured material BTFs.
In order to make this projection more robust, we heuristi-
cally identify possibly problematic images to be treated as
missing values during projection.

As a suitable database may not always be available, we
investigate a method of speeding up the process of creating
one by using a combination of single-light and multiplexed
illumination. We show that a database with material BTFs
thus obtained performs not much worse in de-noising but is
much quicker to create.

We evaluate our method on a number of real-world ma-
terials in a camera dome setup and show that it is possible
to reduce acquisition times by about 75–95%, often down to
our setup’s physical limits, while maintaining a satisfactory
reproduction quality.

2. Related work

2.1. Multiplexed illumination

Illumination multiplexing belongs to the wider field of
plenoptic multiplexing. An extensive theoretical introduc-
tion to the topic has been provided by Hartwit and
Sloane [HS79]. Essential for the present article is their proof
of the optimality of Hadamard patterns and their binary sib-
lings with respect to a number of measures. They also dis-
cuss the various noise sources in optical systems and their
influence on demultiplexing on a high level.

Wenger et al. [WGT∗05] propose multiplexing for the
purpose of capturing time-varying light fields of human
faces. However, they observed an intolerable amount of
noise when using Hadamard patterns that they were unable
to reduce to a tolerable level through simple filtering.

Schechner et al. [SNB07] provide a careful analysis of
illumination multiplexing using digital photo cameras and
various types of light sources, paying great attention to the
possible kinds of noise. They arrive at a formula as a cri-
terion whether multiplexing is beneficial given the setup’s
relevant intrinsic parameters.

Ratner et al. [RS07] demonstrate an optimization method
which produces illumination patterns that take the noise
characteristics of a given setup into account. They assume
a one-dimensional affine noise model and a nearly diffuse
scene, which does not lend itself well to BTF acquisition.
Furthermore, they show that in the presence of overexposure
it is preferable to reduce the number of light sources instead
of shutter times.

Mitra et al. [MCV14] take this even further and compute
illumination patterns using an optimization based on image
priors. In contrast to previous methods, their method is able
to handle large amounts of light, but it still relies on the
assumption of a one-dimensional affine noise model. They
show how to extend their method to low-resolution light
fields, which is, however, computationally very expensive
and therefore likely prohibitive in the case of BTFs.

As far as the authors are aware, den Brok et al. [dB-
SHK15] are the first to use multiplexed illumination in the
context of BTF acquisition. They, too, use a database of pre-
viously acquired materials for the purpose of de-noising;
they do, however, not provide a means to quickly bootstrap
such a database, and we shall demonstrate that their de-
noising scheme can be improved upon.

2.2. Sparse acquisition

We briefly review a number of articles on sparse acquisition,
even though not directly related, because its purpose, too, is
to reduce acquisition times.

Matusik et al. [MPBM03] demonstrate two sparse recon-
struction methods for measured isotropic BRDFs: In the first
method, they determine a set of basis wavelets they use to
reconstruct previously unseen BRDFs with approximately
1.5 million samples from approximately half that amount of
measurements. In the second, they reconstruct fully resolved
measured BRDFs from 800 out of the original 1.5 million
samples using their entire training BRDF database as a lin-
ear model. Drawbacks are slightly increased reconstruction
errors and the required availability of the BRDF database.
They do not investigate how well their methods generalize
to more general appearance models.

Koudelka et al. [KMBK03] use single per-material linear
models for apparent BRDFs for the purpose of BTF com-
pression.

Peers et al. [PML∗09] introduce compressed sensing
[Don06] to the acquisition of reflectance fields, assuming
both 2D outgoing (here: fixed viewing direction) and inci-
dent light fields. Their algorithm uses a hierarchical, multi-
resolution Haar wavelet basis that takes spatial coherence
into account. It is unclear how to extend their approach to
BTFs, where multiple viewing directions come into play, and
the typically very limited number of light sources counter-
acts the advantage of compressed sensing. We expect shot
noise to become a problem in this scenario as well.
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Dong et al. [DWT∗10] reconstruct a material’s SVBRDF
from a sparse measurement using a manifold constructed
from analytical BRDFs fit to fully measured BRDFs of man-
ually selected representative points on the material’s surface.
The algorithm is unlikely to scale to BTFs because of the
typically much higher intrinsic dimensionality of the mani-
fold of per-texel reflectance distribution functions. A gener-
alization to previously unseen materials is not obvious, albeit
conceivable.

Marwah et al. [MWBR13] use sparsity-based methods re-
lated to compressed sensing in order to sparsely acquire 4D
light fields with an angular resolution of 5×5. They compute
a dictionary of what they call light field atoms – 11 × 11 spa-
tial light field patches which allow for a sparse representa-
tion of natural light fields. It is unlikely that such a dictionary
exists in the case of BTFs, as their dimensionality is much
higher.

Following Matusik et al. [MPBM03], den Brok et al. [dB-
SHK14] demonstrate that there exist linear models that lend
themselves to sparse reconstruction of BTFs. In order to ac-
count for non-local effects, they propose to fit the models
to small BTF patches, manually clustered by material class
to constrain the dimensionality of that data. That way, they
are able to reconstruct BTFs with the acquisition setup’s full
resolution from 6% of the total number of sample images.

Miandji et al. [MKU15] introduce a novel compressed
sensing framework they demonstrate to work for 2D images,
videos, and even 4D light fields. They use 2D patches from
training data and show how to convert the problem of 2D
sparse signal recovery to an equivalent problem in 1D. It
would be interesting to investigate if their method could be
lifted to 6D BTFs.

3. Background

3.1. Bidirectional texture functions

BTFs have been used in practice first by Dana et al.
[DvGNK99]. Like spatially-varying BRDFs, they are 6-
dimensional functions of the form

B(x,ωi,ωo),

where ωi,o ∈ R2 denote the directions of incoming and out-
going light, respectively, and x ∈ R2 denotes the position
on a parameterized surface V which, in the case of mate-
rial BTFs, V is typically assumed flat; it does not need to
coincide with the material’s actual surface geometry. Light
sources are usually assumed to be directional and have the
same spectrum, which means that effects such as phospho-
rescene, fluorescence and subsurface scattering cannot be
accounted for accurately.

Note that the values of the function B(x,−) are not
BRDFs in the strict sense: they typically do not adhere to
Helmholtz reciprocity and conservation of energy and, in

(x, y)

(ω
i,
ω
o)

Figure 2: Representation of a discretized BTF as a matrix.

contrast to BRDFs, are therefore capable of capturing non-
local effects such as interreflections and self-shadowing.
When V does not coincide with the material’s actual sur-
face, they also describe parallax effects. For these reasons,
the term apparent BRDF (ABRDF) has been established by
Wong et al. [WHON97] for this kind of functions. The val-
ues of the function B(−,ωi,ωo), in contrast, are straight-
forward 2D textures corresponding to individual pairs of in-
coming and outgoing light directions.

Discrete BTFs have a natural representation as a matrix
B ∈ Rn×m, where the columns represent the w× h discrete
ABRDFs, each entry of which corresponds to a pair (ωi,ωo)
of incoming and outgoing light direction, and the rows cor-
respond to the n rectified 2D textures, where n is the number
of distinct pairs of incoming and outgoing light directions
(cf. Fig. 2). Measured BTFs are assumed to be arranged like
this in the following. For a very detailed overview of BTF
acquisition devices, we refer the reader to the recent survey
by Schwartz et al. [SSW∗14].

3.2. Illumination multiplexing

Multiplexed measurement in general is based on the ob-
servation that by using series of appropriate patterns, the
amount of signal-independent noise in the demultiplexed
measurements will actually be lower than without multiplex-
ing. In the special case of illumination multiplexing, the re-
sulting linear system to be solved is

M · Isingle = Imultiplexed

where M ∈ Zn×n, Isingle ∈ Rn×(w·h) with each row a w × h
image of the scene lit by an individual light source, and
Imultiplexed ∈ Rn×(w·h) where each row is a w× h image of
the scene lit by an individual illumination pattern determined
by the corresponding row of M.

In setups where light sources only have two states, “on”
and “off”, M needs to be binary. It has been shown that a
class of binary matrices called S-matrices is at least very
close to minimizing the average mean square error, and that
the associated signal-to-signal-independent-noise ratio is in-
creased by a factor of

√
n/2 for large n [HS79]. It has, how-

ever, also been shown that the presence of signal-dependent
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noise such as photon noise strongly counteracts this advan-
tage [HS79, SNB07].

A straight-forward way to obtain S-matrices M∈Nn×n of
a given order n = 4p+3 for n, p ∈N prime, is the quadratic
residue construction [HS79]: Let Q be the set of quadratic
residues of 0, . . . , n−1

2 modulo n. Then

m1 j =

{
1, j ∈ Q
0, else

The remaining n− 1 rows of M are obtained by cyclically
shifting the preceding row to the left by one.

If the number of light sources is not prime of the required
form, which will likely be the case in setups not constructed
with multiplexing in mind, one can choose a suitable higher
order and truncate the resulting S-matrix such that the num-
ber of columns equals the number of light sources. The re-
sulting linear system can then be solved in the least-squares
sense [HS79].

4. Proposed method

4.1. Thresholded de-noising

As we wish to achieve the maximum gain with respect
to compression of dynamic range and reduction of shutter
times, we chose to use the highest S-matrix order applicable
to our acquisition setup and, by extension, the largest amount
of demultiplexing noise. In order to mitigate that noise, we
assume the availability of a linear model U derived from a
database D of traditionally measured BTFs by means of a
truncated SVD

D≈ UΣVt

of some rank k� n, which has been shown to be an opti-
mal rank-k approximation in the least-squares sense [EY36].
Such models are known to generalize to materials B that do
not belong to the particular database [dBSHK14]; i.e.

min
CB
||UCB−B||< ε.

Den Brok et al. propose to de-noise by simply projecting a
demultiplexed BTF, obtained as described in Sec. 3.2, onto
the corresponding subspace via

Bdenoised = U · (UT ·Bdemultiplexed)

We observed that demultiplexing produces a number of very
noisy outlier textures that may have an undesirable impact on
the projection. We therefore introduce one intermediate step
to make this projection more robust: For the entire BTF, we
compute per-texture variances and do not take the BTF’s tex-
tures that correspond to some percentile of the variances into
consideration during projection. Let Ũ and B̃demultiplexed be
the linear model and demultiplexed BTF, respectively, with
the rows corresponding to the selected textures removed.
The equation thus becomes

Bdenoised = U · (Ũ† · B̃demultiplexed),

where † denotes the Moore-Penrose pseudo-inverse. We
tried various deciles with normalized and unnormalized data
and found the 9th decile of the latter to perform best.

4.2. Database bootstrapping

A drawback of the the outlined method certainly is the
assumed availability of a suitable database. We therefore
propose a bootstrapping scheme that helps constructing a
suitable database faster: Based on the observation that the
amount of demultiplexing noise depends on both dynamic
range and number of light sources, the idea is to divide
the hemisphere of light sources into quadrants of approxi-
mately equal size, such that one quadrant contains the light
sources directly opposite the cameras. As the direct reflec-
tions and Fresnel effect usually contribute most to the dy-
namic range, the images for this quadrant are best captured
using single-light illumination. The images for the remain-
ing three quadrants can be successively captured using ap-
propriate S-matrix patterns. Unfortunately, this approach is
somewhat tied to acquisition setup paradigms where such
a division of the hemisphere is actually possible. Different
means would need to be found for other paradigms.

5. Results

5.1. Experimental setup

We chose 12 materials from 3 classes – cloth, leather, and
wood – each, of which we used the same four materials per
class as den Brok et al. for performance evaluation. For the
purpose of evaluating our database bootstrapping scheme we
further selected four of the remaining leathers.

Figure 3: Our measurement device illuminating a material
sample with an S-matrix pattern.

The measurement device we used in our experiments is a
camera dome with 11 industrial-grade cameras with a max-
imum frame-rate of 8 Hz and 198 LED light sources, 10
of which are placed opposing the lower-most 10 cameras
to produce direct reflections. The material sample is placed
on a turntable that is rotated during acquisition to increase
the setup’s angular resolution. For an extensive description
of the setup, cf. Schwartz et al. [SSWK13]. The quadratic
residue construction requires the S-matrix order to be prime
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of the form 4p+ 3, p prime. The smallest S-matrix order of
that form greater or equal the number of LEDs in our setup
is n = 199, which we used in our experiments.

In order to speed up the acquisition of the ground truth
data, the single-light measurements were obtained using a
camera gain of 10 dB, while the multiplexed measurements
were obtained with a camera gain of 0 dB. Additionally, we
measured 4 small patches (approximately 1 cm × 1 cm) of
different materials of the same class at once. We argue that,
even in practive, this is a reasonable trade-off to be made:
If required, larger BTFs for each single sample can be pro-
duced quickly by measuring them once more using the pro-
posed method, or by extrapolation as described e.g. by Stein-
hausen et al. [SdBHK14].

The materials are placed on the turntable, which during
measurement is rotated 12 times by 30◦. For each turntable
position, the cameras take pictures of the material lit by each
of the LEDs separately using several exposure times deter-
mined manually before the actual acquisition. The test mate-
rials were additionally measured using S-matrix patterns of
order n = 199 before proceeding to the next turntable posi-
tion. In the case of leather, the four leathers selected for eval-
uation of the database bootstrapping scheme were addition-
ally measured using S-matrix patterns of orders n{1,2,3}= 47
for each of the three of the illumination hemisphere’s quad-
rants not sampled using single-light illumination.

After measurement, we combine the low dynamic range
(LDR) raw images into high dynamic range (HDR) im-
ages and subsequently demosaic and rectify them. We use
LED calibration data in order to account for variations in
the LEDs’ spectra. For further details on the various post-
processing steps, cf. Schwartz et al. [SSW∗14].

Finally, the resulting images are cropped to minimize in-
fluence from the materials’ surroundings and arranged and
stored as matrices, which in the case of multiplexed mea-
surements are then demultiplexed. For rendering we resam-
ple the BTFs in the angular domain such that the light and
view hemispheres are the same for each texel.

5.2. De-noising

We compute the linear models intended for de-noising seper-
ately from the per-color channel ABRDFs of each of the
three material classes, leaving out one test material at a time.
We use the log(Y) U/Y V/Y color space, which lends itself
well to least-squares fitting [MPBM03, dBSHK14].

For our experiments we used 768 basis vectors for log(Y)
and 128 for both U/Y and V/Y channels, which is sufficient
for the material classes under consideration and allows for
better comparability with the method proposed by den Brok
et al. [dBSHK15].

Tab. 1 shows relative errors

ε =
‖Breconstructed−Breference‖F

‖Breference‖F

for BTFs reconstructed in the denoted ways. Errors are com-
puted on the log(Y) channel to approximate human percep-
tion. We found the general tendencies to be the same for the
other color channels.

In the case of wood, the relative errors are relatively small,
and indeed there are no obvious differences between the ren-
derings of ground truth, demultiplexed and denoised BTFs,
even though the relative error is reduced significantly by de-
noising (cf. Fig. 4, 1st row). Curiously, this is the only ma-
terial class where the proposed method performs worse than
the state of the art in purely numerical terms. We have yet
to investigate what the reason might be. Possibly the error
introduced by sparse reconstruction exceeds and hence does
not counteract the low demultiplexing error. A higher thresh-
old might mitigate this problem.

In contrast, Cloth 1 and Leather 2 exhibit annoying ar-
tifacts for grazing viewing angles, as seen at the cylinder’s
borders. The BTF de-noised using den Brok et al.’s method
looks much more plausible than the demultiplexed BTF, but
it still exhibits minor artefacts which are close to unnoticable
in the BTF with our method (cf. Fig. 4, 2nd and 3rd row).

Demultiplexed Leather 4, however, exhibits so much
noise (yielding a relative error of over 27%) that both denois-
ing strategies break down (cf. Fig. 4, 4th row), even though
the relative error is more than halved by den Brok et al’s
method and reduced even further by ours. Note that the in-
tensity at grazing angles in the result produced using den
Brok et al.’s method is much too low. Our method does not
suffer from this problem; it fails, however, at reducing the
demultiplexing noise to an acceptable level for this particu-
lar material.

As can be seen in Tab. 2, the larger amount of light reach-
ing the material samples on each particular image makes it
possible to reduce total acquisition times by about 75–95%,
even though the ground truth data was obtained with a much
higher camera gain. In the case of Leather 1–4 and Wood
1–4, our setup’s minimum acquitision time is reached. For
all materials, 4 different shutter times were necessary under
single-light illumination, whereas with multiplexed illumi-
nation, only a single exposure step was needed in the case
of leather and wood, and two in the case of cloth, the latter
because the cloths exhibited significantly different albedos.
As a result, storage requirements for the raw measured data
are reduced by 50–75% from originally 0.5–1.5 TB.

5.3. Database bootstrapping

We evaluated the performance of our database bootstrapping
scheme in two steps. First, we compared the projection er-
rors when projecting onto linear bases computed from the
ground-truth and the bootstrapping measurements, respec-
tively (cf. Tab. 3). We found projection errors to be only
slightly bigger for the bootstrapping measurements. It is
thus also to be expected that de-noising performance will
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Class εdemult εdenoised εthreshold

1 2 3 4 ∅ 1 2 3 4 ∅ 1 2 3 4 ∅

Cloth 16.2 12.2 10.5 11.3 12.6 7.5 6.2 5.8 5.6 6.3 5.3 4.5 4.3 4.7 4.7
Leather 17.7 20.1 23.0 27.4 22.1 8.8 8.3 9.4 10.5 9.3 6.3 7.5 7.8 7.6 7.3
Wood 7.3 7.6 9.3 7.2 7.9 3.6 3.7 4.2 3.7 3.8 4.9 5.1 4.2 4.3 4.6

Table 1: Comparison of log(Y) relative errors [%], demultiplexed and denoised.

(a) Reference. (b) [dBSHK15] (c) Proposed method. (d) Demultiplexed.

Figure 4: Renderings of Wood 1, Cloth 1, Leather 2, and Leather 4.

Class shutter times [ms] acquisition times [h] rel. ∆

single multiplexed single multiplexed

Cloth 1 – 4 150, 608.2, 2466.2, 10000 15, 45 10.8 1.8 −83%
Leather 1 – 4 10, 144.2, 2080.1, 30000 30 23.6 1.2 −95%
Wood 1 – 4 10, 60.4, 364.4, 2200 20 4.4 1.2 −75%

Table 2: Comparison of shutter [ms] and acquisition times [h], single light vs. multiplexed.

be slightly worse, which our experiments confirmed. How-
ever, both numerically and perceptually, we found it still to
be better overall than that of den Brok et al.’s method, and the
resulting BTFs are perceptually close to the those produced
with the traditionally obtained basis (cf. Tab. 3 & Fig. 5). The

acquisition itself took approximately 9 hours, as opposed to
almost 24 hours for the ground-truth.
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(a) Reference. (b) [dBSHK15] (c) Bootstrapped basis. (d) Original basis.

Figure 5: Bootstrapping: renderings of Leather 4.

1 2 3 4 ∅

εproj ground-truth 8.4 7.6 8.6 9.3 8.5
εproj bootstrapped 8.7 8.0 9.0 9.5 8.8

εdenoise ground-truth 6.3 7.5 7.8 7.3 7.3
εdenoise bootstrapped 7.0 8.3 8.8 8.5 8.2

Table 3: Comparison of projection and reconstruction er-
rors for Leather 1–4 with a bootstrapped database.

6. Conclusion & Future work

We demonstrated the feasibility of illumination multiplexing
in the context of BTFs, supported by using linear models de-
rived from an existing database of material BTFs as a prior
for a de-noising method that perceptually and, most of the
time, numerically outperforms the state of the art. We found
that using illumination multiplexing enables both dramati-
cally reduced dynamic ranges and shutter times. As a result,
storage requirements for raw measurement data could be re-
duced by up to 75%, and total acquisition times by up to
95%, even reaching the limits of our acquisition setup.

Moreover, we presented a “bootstrapping” method that al-
lows for faster creation of a database suitable for the purpose
of de-noising by using a hybrid approach where the quad-
rant of the illumination hemisphere likely to cause noise is
sampled using single-light illumination, and the remaining
quadrants are separately sampled using multiplexed illumi-
nation. That way, acquisition time could be reduced by about
63%. We found linear models derived from a database such
obtained to perform not much worse than linear models de-
rived from our ground-truth database.

It seems worthwhile to determine a proper noise model
for our camera dome setup to use with the method proposed
by Mitra et al. [MCV14] (cf. Sec. 2.1 for more details),
which might help decrease the amount of demultiplexing
noise even further.
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