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Abstract

We describe a method to efficiently collect and filter a large set of 2D pixel observations of unstructured 3D
points, with applications to scene-space aware video processing. One of the main challenges in scene-space video
processing is to achieve reasonable computation time despite the very large volumes of data, often in the order of
billions of pixels. The bottleneck is determining a suitable set of candidate samples used to compute each output
video pixel color. These samples are observations of the same 3D point, and must be gathered from a large number
of candidate pixels, by volumetric 3D queries in scene-space. Our approach takes advantage of the spatial and
temporal continuity inherent to video to greatly reduce the candidate set of samples by solving 3D volumetric
queries directly on a series of 2D projections, using out-of-core data streaming and an efficient GPU producer-
consumer scheme that maximizes hardware utilization by exploiting memory locality. Our system is capable of
processing over a trillion pixel samples, enabling various scene-space video processing applications on full HD

video output with hundreds of frames and processing times in the order of a few minutes.

Categories and Subject Descriptors (according to ACM CCS): [.3.1 [Computer Graphics]: Picture/Image
Generation— 1.3.3 [Computer Graphics]: Parallel processing—

1. Introduction

Recent work has shown that many complex video pro-
cessing tasks can be effectively formulated in scene-
space [KWB*15] using a novel sampling based method, as
opposed to traditional image-space formulations. This ap-
proach enables fundamental operations such as denoising,
deblurring, and superresolution, as well as more advanced
effects such as inpainting, virtual aperture synthesis, com-
putational shutter functions, and 3D action shots on monoc-
ular video sequences. Until now, 3D enabled video process-
ing techniques have been limited by the need for exact scene
representations such as accurate meshes, which are challeng-
ing to obtain in real world application scenarios. Sampling
based scene-space processing [KWB*15], on the other hand,
employs a sample collection and filtering strategy which
is robust to inevitable noisy and erroneous scene informa-
tion, such as depth maps and camera poses estimated from
monocular 2D video or measured by depth sensors.

A key computational challenge is how to efficiently gather
an appropriate set of 3D samples (observations of the same
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scene point), given the considerable amount of data con-
tained in video. For example, a 1080p, 30fps, 30 second long
video contains 1.8 billion pixel, and therefore requires 1.8
billion volumetric queries to collect required pixel samples.
If each sample gathering step collects roughly 1000 samples
for each output pixel, about 1.8 trillion samples have to be
considered to process an entire video.

In this paper we first provide a brief overview of sampling
based scene-space video processing [KWB*15], and then
describe in detail how such a framework can be efficiently
implemented on a modern GPU. The basic approach is di-
vided into two steps. First, a general purpose gathering step
collects for each output pixel, the complete set of potential
observations of the same scene point. Then, an application-
specific filtering step computes a weighted sum of these sam-
ples to produce the final output pixel color.

While the work by [KWB*15] introduces the basic, high-
level concept of sampling based scene-space video process-
ing and its applications, the goal of this work is a full and
detailed description of how one can implement sampling
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based scene-space video processing efficiently. Given the
huge amount of data processed, making this concept work
efficiently in practice requires a carefully designed techni-
cal solution. The contributions of this work include a ded-
icated producer-consumer scheme (Section 4), designed to
maximize data parallelism and memory locality and thereby
optimize GPU thread coherence. Additionally, it minimizes
compute kernels, leading to more efficient register and de-
vice compute utilization. Another technical contribution of
this work is an out-of-core data tiling and streaming ap-
proach (Section 5) which allows the method to scale to arbi-
trary input/output resolutions and video lengths by bounding
the maximum memory usage. This is an essential property
for processing high resolution videos as well as compatibil-
ity on GPU devices with limited memory. In addition to the
algorithmic description, we provide a detailed investigation
of memory and runtime performance and conduct a scalabil-
ity analysis with respect to GPU memory.

2. Related Work

Our paper describes in detail the approach of Klose et
al. [KWB™15], and a full overview of scene-space process-
ing related work can be found there. Here, we concentrate
on prior work concerning acceleration techniques for simi-
lar problems.

Nearest neighbor search At the heart of our method is
a fast out-of-core volume query implemented on the GPU
using a series of projections. In this sense, our approach
is a specific case of general nearest-neighbor search meth-
ods. Common approaches for this kind of query are KD-
trees [Ben75], locality sensitive hashing [DIIM04], or prod-
uct quantization [JDS11]. Some of these techniques have
been also deployed on GPU, for example efficient hash-
ing [AVS*11, ASA*09, GLHL11]. These approaches are
general purpose acceleration techniques, but are typically
designed for querying nearest neighbors using some metric
distance function, rather than directly querying convex vol-
umes. Additionally, we are interested in datasets containing
over a billion points, and perform over a billion queries on
these datasets. Most of these approaches are not designed for
tasks that require this quantity of data. As opposed to these
methods, we propose a volumetric query technique dedi-
cated to (unstructured) 3D points obtained from structured
2D observations (image points), which allows us to achieve
higher performance.

A recent GPU-accelerated approach by Tsai et
al. [TSPP14] describes how image structure can be
used to reduce the query space for an approximate nearest
neighbor search. Rapid queries can then be used for exam-
ple, for image denoising by NL-means [BCMOS]. Their
method outperforms existing nearest neighbor techniques
such as [GDNB10, SHO8]. We perform at the same speed
as [TSPP14], but provide a more general query framework
that operates on significantly larger amounts of data.

Additionally, Tsai et al. [TSPP14] gain performance by
computing approximate nearest neighbor, whereas our
method computes exact nearest neighbors.

Techniques for out-of-core proximity tests such as Kim et
al. [KSK*14] can handle point clouds in the order of tens
of millions. They perform spherical neighborhood queries
based on a working-block grid maintained by multiple CPUs
and handling local NN-queries on the GPU. The overall
amount of input data for video makes the use of existing
GPU accelerated nearest neighbor algorithms difficult, since
any precomputed data structure would have to be streamed
in and out of the graphics memory. Our approach is designed
to be a general out-of-core spatial query framework, allow-
ing us to handle long and high resolution video sequences.

Object intersection Computing object intersections is a
very common task in computer graphics. Many techniques
have been proposed, for example in the context of object
collision [PKS10, LG07] and to detect whether a point lies
in a 2D polygon or 3D volume [Gla90]. While these tech-
niques are efficient, they are general purpose. In contrast,
we can take advantage of the fact that our (unstructured) 3D
points come from structured 2D observations, which allows
us to more quickly remove a large number of samples lying
outside the query frustum volume in an early step, and then
efficiently check the remaining samples.

Point-based methods Similar to our approach, point-based
rendering techniques deal with large numbers of unstruc-
tured points, mostly for rendering virtual view points. These
methods work by “splatting” unstructured, oriented point
clouds (e.g., acquired by laser scans) into a virtual cam-
era view for displaying complex scenes [RLO0, ZPvBGO1].
Similar to our approach, they accumulate surface samples
in screen space. QSplat [RLOO] uses a bounding volume hi-
erarchy to accelerate queries and a workstation renders be-
tween 1.5 to 2.5 million points per second (in the year 2000).
Later work significantly increased the number of rendered
points using GPU-based implementations for surface splat-
ting [RPZ02]. For instance, using deferred shading tech-
niques, Botsch et al. [BHZKO5] render up to 20M ellipti-
cal splats per second on a GPU. These point-based methods
are designed to render unstructured point clouds and can use
straightforward depth-based visibility tests to discard hidden
samples. Our 3D information is noisy therefore we cannot
make similar assumptions. In the context of geometry fusion
from multiple RGB-D cameras, Kuster et al. [KBO*14] per-
form 3D neighborhood queries by projecting the query 3D
point onto all the cameras and collecting the points within
an area in the 2D domain. In contrast we aim for volumetric
queries in a defined 3D frustum.

3. Overview of scene-space video processing

The idea behind sampling based scene-space video process-
ing [KWB*15] is to gather and process all potential observa-
tions of the same scene point. Consider all pixels in a video
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foreach pixel p of output image O do S(p) <+ 0
foreach input image I do
foreach pixel p of output image O do
Construct 3D query shape V(p)
foreach pixel g of I do
Sxyz <— compute the 3D position of g from
its depth value and the camera matrix c/
if sxy; inside V (p) then

Srgh < If (q)

St < f

S(p) «— S(p) U {(Sxyz>srgbvsf)}
end

end

end
end
foreach pixel p of O do
| O(p) < compute output pixel color from S(p)
end

Algorithm 1: Outline of a naive implementation of
scene space processing for one output image O. Note
that the loop over all output image pixels can be exe-
cuted independently and in parallel.

projected into an unstructured 3D point cloud; the viewing
frustum of one pixel from an output frame contains all of
these possible samples. However, due to errors in 3D as well
as occlusions, some samples may correspond to different
objects, and some correct observations may be missing. A
subsequent filtering step therefore removes the contribution
of these erroneous samples to the final output color. More
specifically, the input to the method is a monocular video
with known camera pose parameters and per-frame depth
maps. A pixel p of frame f in the input video I is written
as I/ (p). Our goal is to compute the colors of all output pix-
els O%(p) for all output frames g. For each O%(p), we draw
a set of samples S%(p) directly from the input video I based
on a 3D query volume V&(p). The query shape V&(p) is
constructed for each 0% (p) individually. The most common
query shape for our application is the view frustum of pixel
O%(p), as this frustum is the volume of all scene samples
that could be potentially observed by Of(p). However, our
method could be used to compute volumetric queries of any
convex shape. In the following we drop the index g for clar-
ity when considering sequentially processed output frames.

Each of these selected samples, s € R, is composed
of color (s,g € RY), scene-space position (sxy; € R?), and
frame time (s; € R). We denote the camera matrix used to
project a pixel from frame f together with its depth into
scene-space as C/. The final output color of O%(p) is then
determined from $¢(p) in a filtering operation based on a
weighted sum of these input samples:

0%(p) = o Y w(S)sg )

s€S(p)

(© The Eurographics Association 2015.

where w(s) is an application specific weighting function and
W is the sum of all w(s) used for normalization. In order to
determine which samples in $%(p) are reliable, we rely heav-
ily on the concept of a reference sample (s, ). Because our
task is to process an existing video, we can, in most cases,
use the sample derived from projecting the input pixel V (p)
into scene-space as a reference. Where such a reference ex-
ists, weights can be computed based on the distance of each
sample to this reference, similar to the patch center in bilat-
eral filtering. For example, a weighting function suitable for
video denoising is:

a2
Wdenoise () = €Xp <_(Sr€fs)> . 2

2062

We use the above notation for clarity, while samples are actu-
ally represented in a 7D space and we use a diagonal covari-
ance matrix 6. We call the diagonal entries G, for the three
color dimensions, Gxy; for the scene-space position and 67
for the frame time. The weight falls off exponentially with
distance to the reference sample s,,¢. For more application
specific weighting functions we refer the reader to the origi-
nal work [KWB*15].

While the naive sample checking of Algorithm 1 outlines
the general principle very well and gives insight into the
scale of the problem to be solved, it is not a practical solution
for scene-space video processing. Prior work [KWB*15]
proposed a technique to take advantage of the continuity of
image data to quickly reject a large number of samples by
checking whether they fall in the 2D projections of the 3D
query frustum V (p). One of the advantages of this approach
is that it operates directly in the image domain, avoiding any
intermediary, explicit 3D representation. The performance
gain of this step is a function of the camera motion and
scene structure. Algorithm 2 illustrates the modified algo-
rithm only checking the samples within the convex bounds
of the projected query shape. We extend this concept and in-
troduce a producer-consumer scheme with out-of-core data
streaming. In cases where the filtering functions perform a
weighting based on the frame number, we can further reduce
the set of tested samples to frames that lie within 36 of the
current reference frame.

Please note that the image domain projection and testing
does not restrict the maximum number of samples tested. It
is in fact a necessary step in setting up the problem in such
a way, that we can take full advantage of the parallel GPU
processing power in our producer/consumer scheme.

4. Producer-Consumer Model

While the sample selection method above greatly reduces
computation, it is still not sufficient for practical running
times. As memory transfers and access are the major bot-
tlenecks when performing out-of-core GPU computing, we
break the sampling process into a producer and a consumer
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foreach pixel p of output image O do S(p) < 0
foreach input image I do
foreach pixel p of output image O do
Construct 3D query shape V(p)
U(p) <+ project vertices of V(p) into view I/
Vo(p) < compute the convex hull of U(p)
foreach pixel g of I inside V o(p) do
Sxyz <— compute the 3D position of g from
its depth value and the camera matrix of c/
if sxy; inside V (p) then

Srgh < If (q)

St < f

8(p) = 8(p) U{(sxyz: Srgp,51)}
end

end
end

end
foreach pixel p of O do

| O(p) < compute output pixel color from S(p)
end

Algorithm 2: Outline scene-space processing for one
output image O, incorporating the reduced sample tests
based on convex hulls.

step. The reason for splitting is twofold; first, we can com-
pute the required data in the producer and then only upload
the needed amount on-demand before we run consumer ker-
nels to collect the samples, thereby limiting memory trans-
fers (see Section 5). Second, by splitting the process we get
two smaller kernels with better block coherency and less
resource and register usage to maximize occupancy on the
compute device.

The producer computes a 2D polygon outline of the area
of sample candidates that need to be checked, and writes
line segments into a per output pixel segment storage, for
each pixel row the polygon covers. The consumer kernel
then reads these line segments and performs acceptance tests
for all pixels on the line. This process is described in Algo-
rithm 3, where R(p) is the segment storage. The bounding
boxes of the convex hulls computed by the producer kernel
are used to upload the required input color and depth data
from the CPU to the GPU. The consumer kernels then only
operate on local data areas, which is beneficial for memory
locality and therefore efficient caching.

4.1. Producer

The producer kernel is responsible for computing and stor-
ing line segments that fall under the convex hull of the pro-
jected query volume vertices. The created row line segments
need to cover the entire projected 2D polygon created from
the 3D query shape for each output pixel. Each line segment
is aligned with one row y and is described by its start and
end x-coordinate (y, Xieft, Xright)- Since the storage only holds

foreach pixel p of output image O do S(p) + 0

foreach input image I do
foreach pixel p of output image O do
Construct 3D query shape V(p)

U(p) <+ project vertices of V(p) into view I/
Vo(p) < compute the convex hull of U (p)
R(p) <0
foreach row y in Vo (p) do
compute Xjefy and Xrjgh
R(p) <= R(p) U{(:Xiefe Xrighe) }
end
foreach line segment (y,Xjefr, Xrighs) € R do
for x = x;o4; t0 X,y do
Sxyz <— compute the 3D position of
q = (x,y) from its depth value and the
camera matrix of C/
if sxy; inside V(p) then

Srgh <— I f(q)

st f

S(p) = S(p) UL (51925 srgpost)}
end

end
end

end
end
foreach pixel p of O do
| O(p) < compute output pixel color from S(p)
end

Algorithm 3: Outline scene-space processing for one
output image O, incorporating the reduced sample tests
based on convex hulls and splitting the inner part into a
line segment producer and a consumer.

line segments for one input frame at a time, this six bytes
(2 bytes per value) representation is sufficient to unambigu-
ously describe the raster lines of the polygon.

To create the 2D convex hull we use an augmented version
of the Jarvis March (JM) convex hull computation [Jar73]
that jointly computes the convex hull and polygon edge ta-
bles for rasterization. The JM algorithm is also known as gift
wrapping, because it starts at one vertex and adds vertices to
the convex hull polygon in a defined order. This enables us to
keep track of a left and right edge list for the polygon raster-
ization step later, while computing the convex hull. We start
from the lowest left coordinate in U(p) and add vertices to
the convex hull in a counter-clockwise manner. Starting from
the first vertex, all edges of the hull polygon that have an in-
creasing y-coordinate belong to the left edge list 77, and any
edge after the tipping point to the right edge list 7. This ap-
proach for computing a convex hull is well suited for GPU
implementation, as it does not require additional data struc-
tures to be maintained. Since we compute a convex hull for
each output pixel in every query into an input image, even
small memory overhead has a huge impact.
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T; < Left edge table

T, < Right edge table

e <0

er <0

for y = ymin t0 ymax do
e; < increment to edge containing y
er < increment to edge containing y
x; < evaluate edge T;(¢;) aty
xr + evaluate edge Tr(e,) at y
output (y,x;,xr)

end

Algorithm 4: Polygon row line segment creation as used
in the producer kernel.

While computing the convex hull we also keep track of
the upper and lower bound of the polygon ymax and ymin,
respectively. After computing the left and right edge lists,
the producer iterates over all rows spanned by the polygonal
hull. We keep two indices into the left and right edge table,
evaluating the edges at that index for the current y coordinate
(see Algorithm 4).

Since line segment data has to be stored for each indi-
vidual output pixel, it is necessary to constrain the number
of rows stored. We define a fixed maximum of stored seg-
ments rmax = 512 that the producer kernel will create in
one call. At the end of each producer run we store the yj,q
row for each output pixel that was written and call the con-
sumer kernel to process the line segments. Upon the next
producer kernel launch, we continue from that row yj,s un-
til we reach ymax and terminate. The number of alternat-
ing producer and consumer calls can be computed from
ceiling((ymax — Ymin)/rmax). The required iteration count
depends on the number of rows in the projected 2D polygon
of V(p). For small camera motions in the horizontal direc-
tion, usually only one or two producer-consumer iterations
are needed. For diagonal or upward camera motions, the
worst case iteration count is the input image height divided
by rmax. Since the increased kernel launch counts introduce
a small overhead, and the producer kernel has to recreate the
2D polygon to the point where it stopped computing, it is de-
sirable to choose rmax as large as the GPU memory allows.

4.2. Consumer

The consumer kernel determines which samples actually fall
into the query volume. One CUDA kernel is run per output
pixel, which reads line segments stored by the producer. It
loops over all pixel coordinates (x,y) with x € [Xmin, Xmax] of
defined by the line segment. After loading the z component
from the input I/ at (x,y) it computes the sample candidates
scene-space position Sxy; = c’. (x, y,z)T with the current
input frames camera matrix c’.

The fact that the current pixel is checked by the consumer,
is evidence of it falling into the convex hull of the projected

(© The Eurographics Association 2015.
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Figure 1: Two parallel streams are executing the producer
(dark green) and consumer (light green) computations, en-
tirely hiding the input data upload (red). Before the first up-
load in stream one, the required input data bounds are com-
puted (blue) and the filtering (yellow) takes place after the
last producer-consumer block has finished.

Stream 2

query volume V(p). This is a necessary condition for the
sample syy falling into V(p). For simple convex geometries
thresholding the distance of syy; to the center of the query
shape is sufficient, resulting in a box for L; distance, and a
sphere for L. Since we want to query a frustum shape, we
reproject the sample syy; into the current output view, and ac-
cept the sample based in its 2D distance to the current query
point p and depth value. Note that there are highly efficient
ways to perform inside tests for 3D points on general con-
vex shapes and we refer to the related work in Section 2 for
further reading. If the final inside test is passed, the sample
candidate is added to the sample set S(p).

5. Out-of-Core Data Streaming

Up to this point, we explained how the sample gathering step
loops over the input frames for each output frame. As the
input can potentially be hundreds of frames, the resulting
data is often in the order of multiple gigabytes and cannot fit
entirely on the limited memory available on current GPUs.
With the demand for video processing of ever larger resolu-
tions this will become even more of a problem in the future.
We therefore do not upload the entire input video, but rather
stream the input data one frame at a time into GPU memory.

Looking at the memory requirements for the collected
sample sets reveals a similar observation. Given 13 bytes per
sample (3 rgb + 4 depth + 4 xy-position + 2 time) and 1000
samples to store, an estimated 11.9 gigabytes of sample stor-
age is necessary to hold the samples for a single output frame
at 1280 x 720 pixels resolution. Note that we store the sam-
ple position sxy; implicitly in form of its 2D image location
xy and its depth value from the depth map, resulting in 8
bytes of storage, rather than 12 bytes required for 3 floating
point values. The full scene-space position can be recom-
puted at any time using the sample 2D location, depth and
camera matrix of the samples input frame s;.

In order to handle arbitrary output resolutions, we split
the output image into multiple tiles. By performing a pro-
ducer dry-run (as in Section 4) to compute bounding boxes
on each respective input frame, we can conservatively esti-
mate the input pixels required for the current output tile. Up-
loading only the input pixels that will be used by the current
output tile, limits the memory transfer times for each input
frame. It is still desirable to have fewer output tiles, since re-
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Figure 2: Three frames from each input sequence. (top)
OFFICE dataset featuring a mostly rotation camera motion,
(mid) KITCHEN dataset with predominant left to right cam-
era motion, (bottom) GLOBE dataset with a forward motion.

dundant uploads appear in between output tiles that require
overlapping input data. The size of the tiling is mainly gov-
erned by the available GPU memory. While larger tiles result
in faster processing, the approach can be run on GPUs with
less memory available by using smaller tiles. The tiling of
the output has the additional benefit of resulting in a natural
way to distribute the algorithm onto multiple GPUs, where
each GPU processes one of the independent output tiles.

To achieve maximum resource usage, we run two CUDA
streams in parallel, processing producer-consumer collec-
tions on two input frames in parallel. The general kernel ex-
ecution scheme is illustrated in Figure 1. This interleaved
process enables us to hide the upload of input data behind
computation, as well as to make use of parallel kernel exe-
cution whenever the GPU resources permit.

Please note that, for applications requiring simple
weighted sums, it would be possible to accumulate a run-
ning sum instead of explicitly collecting the sample set S(p).
However, to harness the full versatility of scene-space sam-
ple processing for other tasks such as video inpainting or
occlusion reasoning within the sample sets, the collection of
the entire sample sets is required. If we disable the explicit
storage of sample sets, we observe an average performance
gain of 15%. The computational bottleneck of the algorithm
lies not with writing the accepted samples, but rather testing
the sample candidates.

To optimize the memory access when storing and reading
the sample sets we store the output sample tile grouped by
sample count first. Therefore every thread storing the first
sample results in coalesced writes. Although the per output
pixel sample set size is bound to diverge over querying mul-
tiple input frames, in practice this access order results in a
high degree of aligned writes due to spatially coherent struc-
ture inherent in the color and depth data.

10* —
B —— OFFICE ]
10° | ~—— GLOBE f
5 I —— KITCHEN ||
D 10 P —— Naive ]
Iy r ]
E 10 | E
100 .
1071 % | | | | é

0 100 200 300

frame

Figure 3: Sample gathering times per frame, for different
datasets. The per-frame computation time for the GPU ver-
sion of the naive solution does not vary with the dataset. We
are able to outperform the baseline by three orders of magni-
tude. The variance within as well as in between the datasets
stems from the impact camera motion has on the projected
shape of the query volumes in other input frames.

6. Memory and Timing Analysis

We implemented our approach using CUDA on a NVIDIA
GeForce GTX 980 with 4GB of GPU memory. The host
code is written in Python and run on a desktop Intel(R)
Core(TM) 17 CPU. The datasets for which we provide tim-
ings are videos processed at 720p resolution.

One of the advantages of our out-of-core processing is
that it can easily scale to accomodate large memory con-
sumption requirements. The most important factor determin-
ing the GPU memory footprint is the out-of-core sample tile
size u;. To get better insight of the scalability with respect
to memory we describe the required memory usage in Ta-
ble 1 in two separate parts. The first part (Table 1, rows 1-
5) shows reference image data and the currently processed
frame, as well as the resulting image and camera parameters.
These rows constitute the small fixed memory requirement
of our algorithm that is independent of the output sample tile
size. For 720p resolution this data is roughly 30 megabytes
in size. The second part stores intermediary data such as
line segments as well as the collected samples. These scale
mostly with the output sample tile size and constitutes the
largest part of the GPU memory (Table 1, rows 6-10). The
choice of the tile size influences execution time and for best
performance on our hardware (NVidia GeForce GTX 980),
we choose the output tile size to be u; = 512 x 384 pixels,
such that our input frames fall into six tiles at a memory
requirement of 3.6 GB. By reducing the sample tile size to
128 x 128, we observe that the required memory drops dras-
tically to 304 MB. This hugely reduced footprint comes at
a moderate computational cost, i.e. the average per frame
computation time for the KITCHEN sequence increases from
1.213 seconds to 1.424 seconds (+17%). The increased com-
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COMPONENTS BYTES PER ELEMENT ~ MEMORY u;, [KB] MEMORY u, [KB]
Reference Frame RGB-D uj 3+4 6152 6152
Camera Matrices nx3x4 4 46 46
Precomputed Bounding Boxes n x4 4 15 15
Input RGBD u; X 2 streams 3+4 12 304 12 304
Result uo X 4 4 14 063 14 063
Sample Count Uz 4 63 750
Tile Storage ur X Us 13 208 000 2 496 000
Segment Storage Ur X Fmax X 2 streams 6 96 000 1 152 000
Producer State u; X 2 streams 2 62 750
TOTAL MEMORY REQUIRED 304 125 3649 500

Table 1: Detailed overview of the GPU memory consumption. Numbers are computed for input and output resolutions of
u; = uo = 1280 x 720 in a sequence of n = 1000 frames with u; = 1024 samples per pixel. In some cases, two CUDA streams are
used for better parallelism considering memory transfer, which results in twice the memory consumption but faster processing.
We also show the memory usage with different output tile sizes u;, = 128 x 128 and uz, = 512 x 384.

TIME [MS] TIME %
precompute upload 93 2.9
producer kernel 527 16.5
consumer 2464 76.6
output color computation 128 4.0

Table 2: Average per-frame runtime distribution over indi-
vidual kernel calls computed over a 100 frame, 1280 x 720
input video. Note that the memory upload is entirely hidden
by computation and therefore does not appear in this table.
The majority of the time is spent on checking candidate sam-
ples in the consumer kernel.

putational cost stems from the overhead of the out-of-core
streaming.

To illustrate the time consumption of individual kernels,
we present the runtime distribution of one frame in Table 2.
The timings shown are averages computed over a 100 frame
sequence, where each output frame used all 100 input frames
to gather samples. The majority of the time is spent in the
projection steps and inside tests of the consumer kernel. The
kernel launch configurations for all algorithms and timings
is one GPU thread per output tile pixel with 16 x 16 threads
launched concurrently per block. For each input frame Algo-
rithm 1 and 2 each launch one monolithic kernel performing
the projection, sample checking and collection. Algorithm 3
alternately launches producer and consumer kernels multiple
times, that only project frustums or check samples respec-
tively. The alternation of kernel launches is stopped, once
the producer kernel does no longer create new line segments
to be checked by the consumer kernel. Although the num-
ber of samples to be checked varies with camera motion,
the coherence in number of sample checks between differ-
ent output pixels within one frame is high. This fact can be
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observed in the low average divergence of 5 % within thread
blocks of the consumer kernel.

The technical specifications of the NVIDIA GTX 980
state the theoretical limit for floating point operations per
second (Flops) to 5.632 TFlops. Using the NVIDIA pro-
filer we measure an average of 5.1 TFlops for our produce-
consumer algorithm implementation. While the difference
that is lost in program structure overhead and memory/cache
latencies could be mitigated even further in a CPU imple-
mentation, our reported performance exceeds that of a mod-
ern day CPU by a factor of 50 (Intel(R) Broadwell 17-5557U:
32 FLOP/cycle at 3.4 GHz ~ 0.1 TFlops).

The final filtering operations are single or multiple linear
passes over the gathered sample sets. By storing the samples
indexed by count first, we obtain a high memory transfer
utilization due to coalesced reads by all neighboring output
pixel threads in the final filter call.

We demonstrate the performance of the presented ap-
proach on three datasets shown in Figure 2. Since the size
of the convex hull of the projected query shape is depen-
dent on the camera motion in the input data, we choose three
real-world sequences featuring typical camera motions. The
OFFICE dataset is filmed with a mostly rotational camera
motion, whereas the KITCHEN dataset has a mostly trans-
lational left to right sideways motion. The third dataset is
called GLOBE and shows a translational forward motion into
the scene. The OFFICE and KITCHEN dataset consist of 300
input frames, and the GLOBE dataset has 234 frames.

Table 3 shows the overall average per output frame com-
putation times. We give timings for the fully GPU paral-
lelized naive implementation (Algorithm 1), the variant us-
ing the convex hull projection method (Algorithm 2) and the
fully optimized producer-consumer version (Algorithm 3).
All three variants are executed within the same framework
and identical launch configurations. The producer-consumer
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NAIVE CB CB + PC
KITCHEN 1244 1.843 1.213
GLOBE 1244 0.827 0.568
OFFICE 1244 0.535 0.427

Table 3: Running time in seconds with various parts of our
method. NAIVE is the naive, fully parallelized solution, CB
is the solution with convex bounds, and CB+PC is the full
method, including the producer-consumer model.

implementation performs up to 1.5 times faster than the
monolithic kernel version and up to 2913 times faster than
the naive method.

To give an insight into the computation time variation
within and in between sequences, we show the per frame
timings for the individual sequences in Figure 3. We can
see that a rotational movement of the camera, as featured in
the OFFICE dataset, results in faster per frame computation
times, since the projected query volume remains small due
to smaller parallax. On the other hand the translational mo-
tion in the GLOBE and KITCHEN datasets results in higher
per frame runtime. Note that the dip around frame 150 in the
graph of the KITCHEN dataset (blue curve), is a point in the
video where the camera moves slower, resulting in lower per
frame computation time. The KITCHEN sequence exhibits
the most timing variation due to camera motion. Per frame
timings vary around the mean of 1.213 seconds, from 0.55
seconds to 1.78 seconds with a standard deviation of 0.35.

7. Conclusion

We have described in detail a general-purpose framework for
parallel queries of 3D volumes for large amounts of RGB-D
video data. Due to the flexibility of sampling based scene-
space effects, there is a variety of potential future applica-
tions that can leverage the presented methods. By present-
ing the technical details required to achieve reasonable run-
times, we hope to encourage future development in this di-
rection.

As with many GPU based applications, our algorithm
can directly benefit from future hardware advances, partic-
ularly larger onboard memory and wider memory interfaces.
Exploring the capabilities and applications on small scale
graphics units (as can be found in mobile devices) will be
an additional interesting area for further study. We also hope
to extend our work to dynamic scenes in the future. To ac-
complish this the query mechanism of our algorithm would
need to be made aware of scene motion. This can then enable
spatio-temporal queries of all points residing in or passing
through a spatio-temporal neighborhood.
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