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Figure 1: From left to right: Input image, k-means clustering result, result from our clustering-based regularizer and our
clustering-based regularizer incorporated in a sophisticated image segmentation framework.

Abstract

In this paper we present a novel way of combining the process of k-means clustering with image segmentation by
introducing a convex regularizer for segmentation-based optimization problems. Instead of separating the clus-
tering process from the core image segmentation algorithm, this regularizer allows the direct incorporation of
clustering information in many segmentation algorithms. Besides introducing the model of the regularizer, we
present a numerical algorithm to efficiently solve the occurring optimization problem while maintaining complete
compatibility with any other gradient descent based optimization method. As a side-product, this algorithm also
introduces a new way to solve the rather elaborate relaxed k-means clustering problem, which has been estab-
lished as a convex alternative to the non-convex k-means problem.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [IMAGE PROCESSING AND COMPUTER

VISION]: Segmentation—Relaxation

1. Introduction

Clustering can be seen as some kind of segmentation pro-
cess. Many popular clustering algorithms, like k-means clus-
tering [XJ10] or mean-shift [FS10], have been successfully
used for image segmentation tasks. More sophisticated and
highly specialized image segmentation algorithms, however,
rely on much more information of the image than just the
distance of color information with respect to a certain metric
like Euclidean distance. Nevertheless, this clustering infor-
mation can be very useful for the segmentation process. It is
therefore common to use clustering algorithms like k-means
to obtain initial solutions for iterative numerical algorithms
or pre-compute clusters, which serve as reference points
throughout the whole segmentation process [HKB*15]. Un-
fortunately the k-means problem is non-convex, so the solu-
tion obtained by numerical algorithms quite frequently does
not correspond to the global optimum of the k-means prob-
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lem. To avoid this issue convex clustering problems like the
relaxed k-means problem [ABC* 14] or maximum likelihood
models [LGO7] have been investigated with great success.

Building upon the ideas of the convex relaxed k-means
problem we introduce a novel convex regularizer, which fol-
lows a different philosophy than other approaches: Instead
of separating the clustering process from the core segmen-
tation procedure we combine both methods and fuse them
into a single optimization problem. We therefore introduce a
convex regularizer, which can be incorporated in many ex-
isting optimization pipelines. The optimization problem ly-
ing underneath this regularizer is essentially the relaxed k-
means clustering problem, but mathematically modeled in
a profoundly different way. As a side-product it also leads
to a new method for solving the relaxed k-means clustering
problem, which is a non-trivial task (cf. [ABC*14]).
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A common practice to include clustering information in
an optimization process is to pre-compute the clusters and
use a deviation term from those pre-computed cluster cen-
ters. This keeps the cluster centers fixed throughout opti-
mization, which might have a negative influence on the out-
come of the optimization process, especially when a drasti-
cally different choice of cluster centers would lead to a lower
overall objective function value, while barely influencing the
clustering energy term value. Our approach implicitly allows
adjustment of the cluster centers and hence does not have
this disadvantage.

Paper structure: Section 2 gives an overview of the well
known k-means clustering optimization problem and a cor-
responding (not so well known) relaxed counterpart, which
has the property of being convex. Section 3 bridges the gap
between discrete and continuous considerations for the the-
ory of this paper. Continuing this line of thought Section 4
introduces a mathematical model for representing segmenta-
tions in a layer structure and introduces our novel clustering-
based segmentation model afterwards. To solve the problem
we propose a numeric gradient descent scheme, which is
presented in Section 5. Section 6 shows results using our
model and algorithm and Section 7 concludes the paper.

1.1. Contributions
This paper contains the following contributions:

e We show a way of combining the process of image seg-
mentation with clustering algorithms in form of a novel
k-means clustering-based segmentation problem, which
has a magnitude of applications. For example, the pre-
sented approach can be used as a regularizer in several
image segmentation problems.

e We introduce a continuous version of the relaxed k-means
clustering problem.

e We introduce a numerical algorithm to solve our novel
clustering-based regularization problem, which can be in-
corporated in many other optimization frameworks.

e The introduced clustering-based segmentation model and
the corresponding optimization algorithm yield a new way
of solving the relaxed k-means clustering problem.

1.2. Notation and Abbreviations
The following notation will be used in this paper.

|:| : a box marks essential results and definitions

1: feature vector in R" (in image case: intensity)
(G inner product on a Hilbert space
a (1/m,..., l/m)T € R™ (for conversion to grayscale)
[[1p p-norm, ||.|| is 2-norm
R;: i-th segmentation region or cluster
|R;] : volume of region R;
d: distance function
QCR": basic domain
v segmentation variable representing layer structure
V: convex restriction set for the segmentation variable v

number of segments or clusters

2. Discrete Problems

In this section we discuss discrete clustering algorithms that
serve as an inspiration for this work, specifically the well
known discrete k-means clustering problem as well as its re-
laxed form.

2.1. The Discrete k-Means Clustering Problem

One of the most popular clustering algorithms is k-means
clustering [KMN™*02]. For a given set N of datapoints {x; €
R™|i=1,...,N}, the k-means clustering tries to find k cen-
ters ¢; (i = 1,...,k), such that the sum over corresponding
distances d(x;,c;), where each x; (i = 1,...,N) is assigned
to one specificc; (j=1,...,k), is minimal. So k-means clus-
tering is the process of solving the following minimization
problem:
N

{c‘feif"g\jnillrf.“,k} i=1 jegll}fl-qk}d(x”%) M
Note that d can be any sort of distance measure, but for clas-
sic k-means clustering d corresponds to squared Euclidean
distance. Due to the min function occurring in (1) the mini-
mization problem is non-convex. Indeed most k-means clus-
tering algorithms suffer from the fact, that they do not nec-
essarily converge to a global optimum, which might lead to
undesired results (cf. Section 6.1.2). For this and many other
reasons, it is therefore of high interest to find convex relax-
ations of Problem (1), which should yield approximate so-
lutions to the initial problem while maintaining convexity of
the objective function.

2.2. Relaxed Discrete k-Means Clustering Problem

As it turns out Problem (1) can be relaxed into a
convex problem, by introducing an indicator function
z(i,j) (i,j=1,...,N) which is intended to be greater than
zero if the points x; and x; belong to the same cluster and
zero otherwise. Imposing further constraints on the indica-
tor function z(.,.) we obtain the following linear optimiza-
tion problem:

N
argmin Z d(x;,x;) z(i, J)
=1
N
sty z(i,j)=1Vie{l,...,N}
j=1
N (@)
Z z(i,i) = k (k: number of clusters)
i=1

2(i,j) < z(i,i) Vi,j€{l,...,N}

z(i,j) € [0,1] Vi,j € {1,...,N}

For further details see [ABC*14]. The structure of Prob-
lem (2) will become more evident in Section 3, when we
consider its continuous counterpart and an implicit represen-
tation of the optimal solution to this problem.

(© The Eurographics Association 2015.
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3. Towards a Continuous Structure

Instead of clustering discrete points we want to shift our fo-
cus onto continuous problems. So far we have only consid-
ered discrete versions of clustering problems. Our ultimate
goal is to use the relaxed k-means problem in a continuous
setting to obtain a novel regularizer that works well in a con-
tinuous image segmentation setup. We consider a domain
Q C R", which will later on just be a rectangle representing
an image (case n = 2). Nevertheless, all future considera-
tions work for arbitrary space dimension n. Each point x € Q
is assigned a corresponding feature vector I(x) € R™. If this
function 7 : Q@ — R represents a color image, each point x
is assigned a color vector, i.e. ] : R?D>Q — R’

3.1. Continuous Extension of the Relaxed k-Means
Problem

We extend Problem (2) to the continuous case, using the no-
tation mentioned at the beginning of this section, and obtain

arg;nin //d(](x),l(y)) z(x,y) dxdy

el

st | z(x,y)dx=1 Vxc Q CR"

z(x,x)dx = k (k: number of clusters)

O— O—_ ©

Ia]

(x,y) < z(x,x) Vx,y € Q
z(x,y) €[0,1] Vx,y e Q

It can be easily verified, that the optimal solution 2(x,y) to
this problem is

1 .
R mT SYER CQ(i=1,...k
2x,y) = { o Al S

with R; being the i-th cluster and |R;| its corresponding n-
dimensional volume. In the case of Q C R? representing an
image, |R;| corresponds to the image area covered by cluster
i (i=1,...,k). Note that representation (4) does not give an
explicit solution to the problem because it relies on knowl-
edge about the clusters R; (i = 1,...,k).

4. From Clustering to Segmentation

Clustering can be considered as some kind of segmentation,
where each cluster of datapoints represents one segment. To
include the clustering process in a continuous image seg-
mentation framework additional work has to be done. So
far we have considered discrete clustering problems in Sec-
tion 2. As we want to maintain convexity in all our consider-
ations, the relaxed Problem (2) seems to be a good starting
point. In Section 3 we extended the relaxed discrete Prob-
lem (2) to a continuous domain Q C R". Unfortunately, the

(© The Eurographics Association 2015.

Figure 2: Layer Structure Example: This figure shows an example
of 4 layers vy, ...,v3 € V. White color corresponds to the value 1,
black to the value 0. The red regions are the individual segments R;
(i=1,...,3) given by the layer structure and are characterized by
Vi=vi1—vi=1

representation of clusters via the function z(x,y) in the con-
tinuous relaxed k-means Problem (3) is not well suited for
a segmentation environment. The reason for this is its im-
plicit representation of individual clusters. So, the final and
most elaborate step we need to take is to find a mathemat-
ical foundation that is compatible with image segmentation
and is based on an explicit representation of the individual
regions R; involved in the segmentation process.

4.1. Layer Structure

To represent multiple regions mathematically we use a con-
catenation of binary functions, each one splitting the im-
age area into one more segment. This is a convenient way
for handling segmentation information and has a variety of
benefits. The representation follows the ideas presented in
[CPKC11] and [HKB*15], which are based on [PCBCO09].
The set of binary variables is defined by:

Vi={v=(v0s.v) : Q= {0, 1}

©)
1>vi(x) > > (x) >0,x€Q}

with vp(.) = 1 and vi(.) = 0. Each region R; is being repre-

sented by the difference ¥; :=v,_1 —v; (i=1,...,k):
Ri={xeQ:vi_1(x)—vilx)=1} (i=1,...,k) (6)
N———
\7,'()()2:

Figure 2 shows an example of a specific segmentation into
different regions via some variable v € V.

As we are interested in a convex model we have to allow
the variables v; (i = 1,...,k) to take values in the range
[0,1] instead of just assuming binary values. This yields the
following convex restriction set:

V= {v:(vo,...,vk) Q- [O,l]kﬂ‘

@)
1>vi(x) > >wy(x) >0,xeQ}
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Note that due to the definition of V we have
k

k
Zﬁ,’zzv,‘_l 7\/,':\/07\1/(:1
i=1 i

=1

4.2. The Novel Clustering-based Regularizer

Combining the layer structure v; (i = 1,...,k) and the basic
ideas behind the relaxed k-means Problem (3), we obtain
the following optimization problem

Clustering-based Segmentation Problem

=¥5 ()5 ()
argmin [ [ d(109.10)) w(o) (0.70)) dxay  ®)
QQ

vev

st fwx)vi(x)dx=1 (i=1,...,k) (cl)

P

w(x) (a,I(x)) v;(x)dx S/w(x) (a,I(x)) i1 (x)dx

Q

el

(c2)

w(x) €[0,1] Vxe Q (c3)

with a := (1/m,...,1/m)T € R™ such that (a,I(x)) is a
"grayscale" value. As mentioned before, d can be any kind
of distance measure. For our purpose we only consider
functions of the form d(I(x),I(y)) = w(|[I(x) —IM)|]).
with  being strictly monotonically increasing on R™ and
hence d(.,.) being minimal for /(x) = I(y) (which is a very
important property for our model). Reasonable choices for
d are squared Euclidean distance or negative Parzen density
(cf. Section 6).

If we compare this problem with Problem (3), we see
that z(x,y) corresponds to w(x) (¥#(x), ¥(y)) and that the con-
straints have taken a different form. The constraints (c1) and
(c3) are motivated by Theorem 1. The only reason for the
existence of (c2) is that the layer structure introduced in Sec-
tion 4.1 needs a specific order of ¥; (i =1,...,k) to guarantee
a unique optimum ¥ to Problem (8). Without (c2), regions R;
and R; (i,j € {1,...,k}) could be interchanged without in-
fluencing the objective function value and the result would
still fulfill all the other constraints.

In general, there are many ways to model a clustering-
based segmentation problem with similar properties to Prob-
lem (8), most of all by changing the definition of z(x,y). Our
particular modeling of z(x,y) has been inspired by the fol-
lowing considerations:

At the optimal point of Problem (8) we want to achieve

1 x€eR;
Vi(x) = i=1,...,k

i) {0 otherwise (i )
which leads to

(¥(x),%(y)) = {

1 x,yeR; (i=1,...,k)
0 otherwise

As we do know the general form of the optimal solution to
the relaxed k-means problem (cf. (4)), we introduce an ad-
ditional weighting function w, which is intended to take the
value w(x) = 1/|R;| for x € R; at the optimal solution 2(x, y).

In addition to that, our definition has the following important
property, which states that Problem (8) is in accordance
with the relaxed k-means Problem (3).

Theorem 1. Let z(x,y) := w(x) (¥(x),%(y)). Then each op-
timal solution (9,W) to Problem (8) fulfills

/Z(x,x)dx:/.w(x)dx:k
Q Q
) < z(x,x) Vx,y € Q

)€ [0,1] Vx,y e Q

(C)]

z(x,y
z2(x,y
Proof. Due tov € V we have ):f:l v; = 1. So the first asser-
tion follows from

/z(x,x)dx:/w(x)dx (“)/w(x)zk‘iﬁidxk (10)
5 i=

Q Q

The second one is fulfilled if (¥(x),7(y)) < [|[¥(x)||*>. This
is in general not the case but it can be shown that each
optimal solution ¥ will exhibit the property of ¥; € {0,1}
(i =1,...,k), which in return means that the inequality is
fulfilled for optimal solutions, which is all we need.

The third assertion follows from
>0 >0

2(x,y) = w(x) (7(x),7(y)) > 0
an

20,9) = W) (7). 70)) <. (500, 50) < I - 190
< 9@ Il =1

where the fact that 0 < 7;(x) <1 (i=1,...,k) duetove V
plays a major role. O

Essentially Theorem 1 expresses that each optimal so-
lution to our clustering-based regularization Problem (8)
(which of course fulfills constraints (c1), (c2), (c3)) automat-
ically fulfills all the constraints imposed by the continuous
relaxed k-means clustering Problem (3).

Note that Problem (8) is not convex in the variable v, but it
is convex in z. Our algorithm for solving the problem, which
is presented in Section 5, is essentially looking for an opti-
mal solution Z by solving the problem in v and w.

5. Solving the Problem

To solve Problem (8), representing the model for our novel
regularizer, we propose a projected gradient descent method,
which alternates between taking a gradient descent step in
the primal variable v, projecting the result on the restriction

(© The Eurographics Association 2015.
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set V and adjusting the weighting function w in order to ful-
fill the constraints.

5.1. Finding an Initial Solution

The first step is to find an initial solution 0 € V. This can be
done in a various number of ways, as long as the initial solu-
tion lies in the set V and fulfills the ordering constraint (c2).
We propose the following simple algorithm (Algorithm 1),
which builds its clusters based on the ordering of grayscale
values.

Algorithm 1 Computing the initial solution W0
1: procedure COMPUTEINITIALSOLUTION(image)

2: choose ¢; (i=1,...,k) with0 < ¢ <--- <& <1
3: set region R, := {x € Q : |(a,I(x)) — & <
[a,I(x))—¢;| (j=1,....0)} (i=1,...,k)

> in order to fulfill (c2), cf. Section 4.2

1 x€ER;
4: set V;(x) := i=1,...,k
i) {O otherwise ( )
500 setvii=1-Y',7;(i=0,....k)
> so v € V according to def. (7)
6: return v = (vo,..., V)
7: end procedure

5.2. Computing the Gradient

Let us first define f(v,w) as the objective function of Prob-
lem (8), i.e.

Flnw) = / / d(I(x),1
QQ

The gradient vector can be obtained by differentiating with
respect to v; (i = 0,...,k). Due to the structure of the ob-
jective function f(v,w) we only need to know the following
differential

w(x) (7(x), 7(y)) dxdy (12)

d
v (7(x),9()) (13)
which can be obtained by taking the directional derivative in
the direction i’ := (0,...,0,k;,0,...,0)T (i=1,...,k). This
directional derivative follows from the fact that only ¥; and
vi+1 depend on v;, hence

o T, 70)) () =

s (s

t=0
1 Gt B O D RN
((o0) 4 (i) -

(i1 () = () )i (x) + (i1 (x) — 95 () )i (v)

(© The Eurographics Association 2015.

We then obtain the gradient of the objective function f with
respect to v via considering

df(v—Hh w)‘ (D

w(x) (Fig 1 (v) = i (7)) (x) +

15)

a1 (W) +w(¥) (Fig1 () = 9i(y)) dy hi(x) dx

i
LS
QQ
[ [ 460.169) wie) (s (9 =0 ity) iy =
QQ
//
QQ

where the last equality follows from Fubini’s theorem and
the symmetry of the metric d(.,.).

So overall we have

divlf(‘@ )

16)
[ U016 () +w) (Fi1 () = 5 3)
Q

with Dy f(v,w)(h) = (Dvf(v,w),h), where {(.,.) de-
notes the scalar product in Lp(Q) and Dyf(v,w) =
(e £,

the objective function f is done via Algorithm 2.

’divk fly, w)> So computing the gradient of

Algorithm 2 Computing the gradient of the objective func-
tion f

1: procedure COMPUTEGRADIENT(v, w)
set divof(v w) = d‘{} fvyw)=0 > by def. of set V
3 fori:l7..4k—1d0
4 set d%if(v, w) according to (16) for all x € Q
5: end for
6
7

return D, f(v,w) = (%()f(v,w),...,d#‘f,kf(v,w))

: end procedure

5.3. Projection Scheme

One of the major constraints in Problem (8) that might easily

be overlooked is that v € V, with the restriction set V being

defined in (7). Given a function v, projecting onto V is the

same as projecting each vector v(x) (x € Q) onto the set
k+1

Yk—1,0) € R

> yi-1 >0}

X) = {y:(l,yl,...

a7
L2y 2

Obtaining the projection § = (1,3,...,5x_1,0) of a vector
y=(L,y1,---,yk—1,0) € R onto V(x) is no trivial task.
An efficient algorithm for doing that has been introduced
in [CCP12, App. B] and is represented by Algorithm 3.
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Algorithm 3 Projection on restriction set V

1: procedure PROJECTONTOV (y)

2: set §; := y; and define k clusters Z; := {i}
(i=1,....k—1)

3: identify index i € {1,...,k— 2} with §; < J; 4, if
there is no such index jump to 5

4: set clusters Z; := Z; UZ;y Vj € Z; UZiyq, set
Jit1:=Ji:=Yjez (¥;) /|Zi and go back to 3

5: set §; := max(min(y;, 1),0) > clipping to [0, 1]

6: return y

7: end procedure

5.4. Update Scheme for the Weighting Function

The weighting function w has to be chosen such that the
constraints of Problem (8) are fulfilled. So the challenge
is to find w, which at least approximately satisfies the
restrictions (cl), (c2), (c3) of Problem (8) given a vector
v = (vp,...,vx) € V. As we do know how the optimal
solution £(x,y) = w(x) (¥(x),%(y)) looks like we intend
to set w(x) := 1/|R;| for x € R; (i = 1,...,k), where R;
is given by the current state of v. This corresponds to setting:

i=1 max (/Qﬁi(y)dy,?-) (18)

for some small value € > 0 and the max expression only
compensating for the case of [, ¥i(y)dy = 0, which cor-
responds to v; = 0. This formulation fulfills the constraint
(c1) in the case of binary v; € {0,1} (i =1,...,k) and
approximates the equality in the general case of ¥; € [0, 1]
(i = 1,...,k). Besides approximating (cl) very well, w
defined by (18) has the property

/ dx*ngv’x 5=k (19)

Q

which is another indicator of (18) being a reasonable choice
for updating w. So we arrive at Algorithm 4.

Algorithm 4 Updating weighting function w
1: procedure UPDATEWEIGHTS(V)
2: set w(x) according to (18) for all x € Q
3: return w
4: end procedure

Note that another reasonable choice for updating w would be
to use a gradient descent scheme for solving a least squares
problem for enforcing (cl). In practice this turned out to
work fine, but has no benefits compared to the simpler ap-
proach represented by Algorithm 4.

5.5. Overall Numeric Algorithm

Putting all the previously mentioned steps together we arrive
at the final version of our iterative algorithm:

e Taking an initial solution V0 for the optimization variable
v, which corresponds to the layer structure representing
the current segmentation. This can be done according to
Section 5.1.

e Updating the weighting function w according to Sec-
tion 5.4.

e Taking the gradient from Section 5.2 to update the opti-
mization variable v.

e Projecting the obtained solution on the restriction set V
according to Section 5.3.

Algorithm 5 Solving the Clustering-based Segmentation
Problem
1: 0= COMPUTEINITIALSOLUTION(image) ©> fulfill (c2)
2: procedure CBSEGMENTATION(image, vo)
> image: feature vectors (x), V0: initial segmentation

3. while [V — /|| > edo
4: w = UPDATEWEIGHTS() > Section 5.4
5: Vit =y — 1. COMPUTEGRADIENT(V,W)
> gradient descent step, Section 5.2

6: Vi1 = proJECTONTOV ()

> projection on restriction set V, Section 5.3
7. VI — vl+1
8: end while
9: return v/

10: end procedure

Note that this algorithm can be combined with any opti-
mization framework that uses some sort of gradient descent
method and a layer structure similar to the one presented in
Section 4.1.

6. Results

In this section we evaluate our regularizer in various test sce-
narios. We first show that our optimization approach from
Section 5 works as a standalone algorithm, which means that
it successfully solves the relaxed k-means Problem (3) and
Problem (8). We then show a comparison to standard clus-
tering algorithms and finally show results of our approach
incorporated in an elaborate image segmentation framework
based on [HKB*15].

We present all segmentation (clustering) results as
grayscale images, each gray-level corresponding to one dis-
tinct segment.

In Section 4 we briefly talked about possible choices for
the distance function d. If not stated explicitly otherwise, we
choose negative Parzen density (inspired by mean-shift like
clustering as in [FS10]), i.e.

A(I(x),1(y)) i= — —— e~ MO=IO)IP/2) 5

2mo2

(© The Eurographics Association 2015.
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where we set o = 1/10. This rather extreme choice yields
faster convergence and more plausible results than using
squared Euclidean distance.

6.1. Evaluating the Regularizer

We apply our Algorithm 5 to different input images in order
to compute clusters with respect to their RGB color informa-
tion. All the results shown in Figure 3(c,d) are solutions to
our clustering-based segmentation Problem (8). It can be ob-
served, that our algorithm yields a convenient cluster struc-
ture with results comparable to k-means clustering.

6.1.1. Choosing Different Distance Functions

We compare the results of our algorithm using different
distance functions d(.,.): Negative Parzen density (20) and
squared Euclidean distance. Both distance functions fulfill
our basic requirement stated in Section 4.2, which is that
d(I(x),I(y)) = w(|lI(x) —I(y)]|), with some function y be-
ing strictly monotonically increasing on R™. The results in
Figure 3(c,d) show that the distance function has some in-
fluence on the clustering process. While computing about
hundred test cases we discovered that most of the time the
final clustering result differs only slightly for different dis-
tance functions, but the rate of convergence of our iterative
Algorithm 5 might be influenced considerably.

6.1.2. Comparison to k-Means Clustering

Our clustering-based segmentation Algorithm 5 solves a
convex problem, so we are guaranteed a globally optimal so-
lution. Figure 3(f,g) shows a side by side comparison of our
results with results from traditional k-means clustering com-
puted in Mathematica [Res15]. As mentioned previously, k-
means clustering algorithms might not yield a globally op-
timal solution. To investigate this behavior we ran Mathe-
matica’s k-means implementation 200 times for each image,
each time using a different random initial solution. For each
of those images the algorithm found a globally optimal so-
lution in approximately 50% of all test cases. The rest of the
results belonged to undesirable local optima, which deviated
strongly from the desired global optima (Figure 3(f)).

6.2. Incorporation into Segmentation Framework

The intention of this section is to briefly show how our reg-
ularizer works in a sophisticated image segmentation envi-
ronment. We choose the framework from [HKB*15], which
is built upon solving the following optimization problem:

VI(x) 2 i
argmin / IV1(x)]| dx +xl/ Hi—VB(X)H aH"
e ) A INE]

~—_——

intensity variation on segments directional deviation

1 k @n
M| Trareiand n-l x/ 1(x)—Ti||d

weighted boundary length image data

(© The Eurographics Association 2015.

input pre-computed clustering with our regularizer

score: 0.776736

score: 0 808499

score: 0.758401 score: 0.757332
Figure 4: Evaluation on BSDS500 Images: The input image from
the BSDS500 dataset [AMFM11] (left), the output of the image seg-
mentation framework presented in [HKB™* 15] with pre-computed k-
means clustering (middle) and the output using the same approach
with incorporated regularizer (right). Below the output images we
denoted the corresponding segmentation covering scores.

with B being the boundary of the image segments, v the
corresponding inner normal vector, H"~! being the (n — 1)-
dimensional Hausdorff measure and f; (i = 1,...,k) corre-
sponding to mean color values on the different image seg-
ments R;.

In order to incorporate our regularizer into this problem,
we replace the "image data" term with our clustering-based
segmentation Problem (8). The corresponding numerical al-
gorithm then has to be adjusted in the gradient descent step
according to Algorithm 5, but this is all that needs to be done.

Figure 3(e) shows segmentation results using this ap-
proach. It can clearly be observed that the additional infor-
mation of weighted boundary length (of the individual seg-
ments) and boundary normal deviation add considerably to
the quality of the segmentation.

To further investigate the output when using the proposed
incorporated regularizer scheme, we apply the algorithm to
a few images of the BSDS500 dataset, which are also pre-
sented in [HKB*15], and compute their segmentation cov-
ering score [AMFM11]. The results can be seen in Fig-
ure 4. Compared to the approach of solving Problem (21)
with pre-computed k-means clustering (for computing mean
color values ; in the image data term), we noticed only slight
differences in the final output and segmentation covering
scores. Subjectively we find the results computed with the
incorporated regularizer slightly more appealing and we no-
ticed a faster rate of convergence when using the proposed
regularizer.

7. Conclusion

In this paper we have presented a general framework for in-
corporating k-means like clustering information into an im-
age segmentation process, while maintaining convexity of
the problem. We introduced a novel model for a clustering-
based regularizer and a corresponding numerical algorithm
to solve the optimization problem lying underneath the
whole process. This algorithm is flexible enough to work
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standard k-means

(e ® ©®

input initial solution our regularizer

our regularizer  full image segment- k-means (local)

k-means (global)

(Parzen density) (squared Euclidean) ation framework

Figure 3: Side by Side Comparison of the Results: From left to right: This figure shows the input image (a), the initial solution based on
closest grayscale distance (cf. Section 5.1) (b), the output of our clustering-based segmentation Algorithm 5 using negative Parzen density
(20) (c), our clustering-based segmentation output with squared Euclidean distance (d), the results using a full-fledged image segmentation
framework [HKB*15] (e), local optima of standard k-means clustering (f) and global optima of standard k-means clustering (g). The first
picture, created by Farbman et. al. [FFLS0S], is separated into 4 segments, the second one into 3 segments and the third one into 4 segments.

with any direction of descent based segmentation frame-
work. Our results show the applicability of our approach in
various scenarios including a sophisticated image segmen-
tation process. In addition to that, we have shown that the
proposed method delivers plausible clustering results on its
own and might be used as a standalone clustering algorithm,
which guarantees convergence towards its global optimum.
Future work includes further investigation of the incorpora-
tion into an image segmentation framework and a fast imple-
mentation of the algorithm for GPU computing (e.g. using
CUDA). The presented algorithm is well suited for paral-
lel computing and may be accelerated by exploiting certain
symmetry properties in the gradient computation step.
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