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Abstract

We present a GPU-based approach to visualize samples of normally distributed uncertain, three-dimensional
scalar data. Our approach uses a mathematically sound interpolation scheme, i.e., Gaussian process regression.
The focus of this work is to demonstrate, that GP-regression can be used for interpolation in practice, despite
the high computational costs. The potential of our method is demonstrated by an interactive volume rendering of
three-dimensional data, where the gradient estimation is directly computed by the field function without the need
of additional sample points of the underlying data. We illustrate our method using three-dimensional data sets of

the medical research domain.

Categories and Subject Descriptors (according to ACM CCS):

Mathematics of Computing [G.1.0]: General—Error analysis Mathematics of Computing [G.1.1]: Interpolation—
Interpolation formulas Computer Graphics [I.3.3]: Picture/Image Generation—Display algorithms

1. Introduction

In the field of scientific data visualization, data are typically
given at a set of sample points on a two- or three-dimensional
domain. Interpolation is used to compute values for each ar-
bitrary point within the domain. Often, linear interpolation
is used without further consideration of the effect on the re-
sulting continuous data. While this approach is often fea-
sible for densely sampled data, it might be misleading for
other samplings. In the case of uncertain data that is Gaus-
sian distributed, linear interpolation does not incorporate the
uncertainty and, thus, yields misleading or even wrong re-
sults. In prior work [SKS12] we presented an interpolation
scheme based on Gaussian process regression to approach
the aforementioned problems.

However, the computation of this interpolation is very de-
manding and therefore the practical relevance is very lim-
ited. In this paper, we address this problem and show that it
is possible to perform Gaussian process regression in reason-
able time by combining different acceleration techniques.
As a case study, we perform interactive volume rendering
of medical scalar datasets, where we visualize the interpo-
lated mean of the scalar field as well as the behavior of the
interpolated variance. We implemented the volume renderer
in OpenCL.
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Moreover, we introduce explicit interpolation formulas
for Gaussian process regression. These formulas are simi-
lar to standard interpolation schemes utilizing basis func-
tions. This explicit representation allows us to compute exact
derivatives of the uncertain field based on the same sample
points. This can be done by differentiating the basis func-
tions of the interpolation scheme instead of the field itself.
We will use the derivatives to shade the volume rendering.

2. Related Work

When creating visualizations of scalar data, we should be
aware of the fact that uncertainty can reside in the data value
or in the position of the data point or in both [PWL96].

To deal with uncertainty, Pothkow et al. [PHI1] pre-
sented an uncertain counterpart for isocontours [LC87].
Therefore, they calculate the so called level-crossing prob-
ability (LCP). In a given interval, the probability is com-
puted that a certain threshold is crossed within. There-
fore, they interpolated the expected values and the roots
of the central moments to interpolate the probability den-
sity function. In [SKS12] we proposed the method of Krig-
ing to interpolate the mean and the variance in an uncer-
tain Gaussian field. They also applied their method to com-
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pute LCP. [AE13] analyzed the effects of uncertainty to lin-
ear interpolation and isosurface extraction. The extension
of [PH11] to correlated data was done in [PWH11]. To re-
duce the heavy computation time (mainly caused by Monte
Carlo Sampling), two methods called maximum edge cross-
ing probability and linked-pairs to approximate the level-
crossing probabilities were introduced in [PPH13]. To over-
come the restrictions of predefined probability distributions
[PH13] introduced nonparametric models (empirical distri-
butions, histograms, and kernel density estimators) to com-
pute the probability of features in an uncertain field. Based
on [PH11], Pfaffelmoser et al. [PRW11] developed an algo-
rithm to compute the so called isosurface first crossing prob-
ability. It is an algorithm that incrementally uses a front-to-
back volume ray casting to visualize that probability. The
rendering is enriched by additionally depicting surfaces of
the stochastic distance function (SDF-surfaces). Additional
work to compute the gradient of the probability density func-
tion of uncertain 3D scalar fields was done in [PMW12].
Kniss et al. [KVUS*05] try to perform classification of med-
ical volume data under uncertainty. They base their transfer
function on what they call the decision boundary distance
that is computed for every class, which is a maximal log-
odds ratio of all the other classes. Roughly speaking, it is a
measurement of the risk of being wrong to assume that the
current class is the correct one.

In this paper, we perform volume rendering on the GPU.
In [KWO03], acceleration methods like early ray termina-
tion and empty space skipping are employed. To combine
the uncertainty of the data values information into volume
rendering, Djurcilov et al. [DKLPO1] proposed two meth-
ods. In the first method, the uncertainty is incorporated di-
rectly into the volume rendering equation, i.e. the transfer
function. The other method is to do a post processing on
the resulting image, for example by mapping a noise tex-
ture on locations with uncertainty. This also the method of
choice, we will use in this paper. The texture mapping ap-
proach was also used in [RLBS03] to combine isosurface
rendering with uncertainty information. In another approach,
they used color based on hue, saturation and brightness and
give the user the opportunity to map the uncertainty to the
given quantities. In the field of Geo-Information science,
the technique to display uncertainty using particular color
models is used for example in [Hen03]. In [RJ99] volume
rendering was used to depict the positional uncertainty of
molecules. The key aspect was to blur the molecule posi-
tion. This concept of blurring was also used in [GR04]. Here
the authors used point primitives to disguise the "real" po-
sition of a surface. Instead of using blurring or fat surfaces
(implemented as multiple iso surfaces or volume rendering),
Zehner et al. [ZWK10] chose to add extra geometry to iso-
surface rendering to depict positional uncertainty. A differ-
ent approach to display uncertainty in volume rendering was
done by Lundstrom et al. [LLPYO07]. They used animation of
medical volume data to show a range of images created with

different transfer functions used for classification of differ-
ent types of tissue.

3. Foundation

In this section, we want to to employ an interpolation scheme
based on weighted sums of basis functions for the interpo-
lation of Gaussian distributed variables. In most cases, we
state the formulas without proof. If the reader is interested
in the derivation of some of the statements, we refer to the
appendix sections A and B.

In general, interpolation defines values at arbitrary points
in a given domain using a set of sampled data values. While
there are many approaches for deterministic data, random
variables cannot be interpolated using standard techniques,
see [Bur96]. If these samples are Gaussian-distributed ran-
dom variables, it is suitable to use the concept of Gaussian
processes. Interpolating random variables in a Gaussian pro-
cess is also known as Kriging [Kri51] or Gaussian process
regression [RW06].

A Gaussian process f given on a domain § defines a Gaus-
sian distributed random variable at any position s € S. It is
defined by a mean function at every position s and a co-
variance function between any two positions s and s, e.g.,
see [AT11]:

piS—=R - u(s) =E[f(s)],
k:SxS—R - K(s,s') = E(F(s) — m(s) (F() — u(s))]
¢!
where the mean function is assumed to be constant. This de-

fines a random variable X (s) at position s with mean f(s)
and variance 62 (s) = k(s,s).

Basically, using the Kriging approach, one assumes the
prior distribution for any unobserved position in the domain
and adapts it according to the covariance function and the
given samples. Hence, the prior distribution is turned into a
posterior distribution. The posterior distribution can be in-
terpreted as the resulting variable conditional to the observa-
tions. In contrast, the prior distribution is an assumption of
the actual value at the unobserved locations in our domain.
Typically, it is chosen as constant over the whole domain.
If we do not have any information about a prior distribution
for the domain, we can specify the prior mean using the em-
pirical mean of the domain. The prior variance can be inter-
preted as the variance of the data acquisition method that we
used to gather the existing measurements, i.e. the scalar field.
If there is no specific information on the prior variance, we
can estimate it from the given data. The maximum variance
in the data set is an obvious choice for the prior variance, be-
cause the variance of the data acquisition method is at least
as big as the maximum variance residing in the data set.

Previously we remarked in [SKS12] that, choosing the co-
variance function is equal to choose an interpolation scheme,
since the covariance function models the spatial interdepen-
dence of the random variables. Throughout this paper, we
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use the squared exponential covariance function. Of course,
our method also applies to other covariance functions. The
squared exponential is given by

1
k(s,s') = Ggexp(fﬁ\sfsqz), (G[%,l >0). (2

The parameters G[% (the aforementioned prior variance)
and / (length scale) are hyperparameters. Gaussian pro-
cesses, as well as the optimization of the hyperparameters,
are discussed in detail in [RWO06].

Let S be sampled with N Gaussian distributed variables at
positions s;, i = 1,...,N, with X (s;) = X; ~ A (,u,-,(rl-z) and
the covariance function k(s,s"). Then one can calculate the
covariances between those sample points and generate the
covariance matrix

k(sl,sl)—i-clz k(s1,sN)
K= , (3
k(SN,S]) k(SN,SN)+Gr%

The posterior distribution at position s is then defined as
X(s) ot (KK iy K(s9) k)T 1R(s) ) )

with [i; being the vector of the means of the sampled X; and
k(s) = (k(s,s1),...,k(s,sy))T . It can be shown that the vari-
ance of the posterior distribution is minimized, when inter-
polating X (s) in that way.

Our goal is now to turn Eq. 4 into a form that is more
similar to an interpolation approach. In detail, we want to
write X (s) as a sum of basis functions ¢;(s) multiplied with
the given uncertain samples X;. Additionally to the given
distributions X;, we denote the prior distribution with Xy ~
(0, G,%). By defining the basis functions

-1, ifi=0
9i(s) = { Zyzl(K_l);jk(sj,s), otherwise 3)
we can write the interpolation of X () as
N
X(s) = Y Xi6i(s). ©)
i=0
with
N
X(s) ~ A () = X 0rl)as,
i=1 )

2 _ _ - . .
02(s) = k(s.5) — Y. o (s)k(s,,s)).

Using Eq. 6, we can calculate the derivative of the moments
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of X (s) by differentiating the basis functions:

sui) - (& o)
O] _E(Z 0] X’)’

i=1

80%(s) _ y g (9i(s) g
55 71:211':1 (5S<,,> 9;(s)Cov(X;,X;) ®)
+ i(s) (?;((j?C()\/(X[,XJ-))7

see Section A.

Here, s") (n = 1,2,3) denotes the n-th dimension of po-
sition vector s. We want to use the derivative of the interpo-
lated variable, to enable lighting in direct volume rendering
of the scalar field. Using the squared exponential, the deriva-
tive is

S0i(s No—1 7 n _ .
5"2((")) = ¥ S5 25" =25 k(s s ) (K i > 0. 9)
j=1

The goal of this section was to show, that the interpola-
tion of uncertain Gaussian distributed variables can be done
as high dimensional linear interpolation and that differenti-
ating the basis functions of that interpolation enables us to
differentiate the interpolated Gaussian variable.

4. Method
4.1. Cell-Based Computation

The reason why Gaussian process regression performs
poorly on many datasets, is the storage and the inversion of
the covariance matrix. The first step, to reduce the computa-
tional requirements, is the use of many small Gaussian pro-
cesses (and thus covariance matrices) instead of one large
process. For regular sampled datasets, it is feasible to create
a small Gaussian process for each grid cell composed of the
data points lying in a 3/ 4 d radius of the barycenter of the
cell. Where [ is the length scale of the covariance function
and d is the diameter of the cell. This approach is described
in more detail in [SKS12]. The result is, that we have to in-
vert one relatively small covariance matrix for every cell in-
stead of one large matrix, which can also be done in parallel
for another speed up. From now on, we use the quantity M
to describe the (average) size of the cell caches for the rest
of the paper. This quantity is not to be confused with the ac-
tual number of data points in our data set, which in general
is much higher.

4.2. Caching

Caching the much smaller inverted covariance matrices for
each cell gives a major speedup compared to the naive ap-
proach. Nevertheless, we still have to perform O(M?) com-
putations to calculate either the mean or the variance. But
having employed the concept of cell caches, we can further
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reduce complexity for the visualization of the mean. By in-
serting Eq. 5 into Eq. 7, we get

Z Z 1] [.L, k(sj,s) (10)

The inner sum in Eq. 10 only depends on the data itself and
therefore can be precomputed. So for each cell, we store the
M sums and are able to interpolate the mean at any posi-
tion by performing O(M) computations. This cache has to
be computed only once for every data set and can be reused
whenever it is needed.

Unfortunately, a similar approach is not possible in order
to cache the calculation of the variance. To store such a vari-
ance cache, we would need O(NM?) memory, which is not
suitable. However, [BFRD13] propose an estimation scheme
using a special diagonal matrix D instead of K, which gives
an upper bound for the resulting variance. D is calculated as

M
(D)jj =Y (K)ij (an

We can store the M diagonal entries of D and calculate the
predictive variance as

(12)

This prediction is useful to investigate the behavior of the
variance because the authors show that the change of the ex-
act variance is similar to the change of the predictive vari-
ance.

4.3. Empty Space Skipping

Another very efficient way to reduce the computation time
is to use some kind of empty space skipping. If the values
at all positions that define a local Gaussian process fall be-
low a certain threshold with a certain probability, we do not
need to compute the inverted covariance matrix, if those val-
ues can be considered as noise. Similarly, we do not need to
evaluate the interpolated Gaussian variable when performing
the volume rendering. This gives a huge speedup especially
in the precomputation step.

4.4. Optimize Memory Consumption

To analyze the memory consumption, we first have to evalu-
ate some implementation details.

When the precomputation steps are performed, we have
stored a value for the mean cache and a value for variance
cache for every grid point in the local processes, i.e. for every
grid cell. Since a grid point usually is part of multiple local
processes, we also store multiple cache values for every grid
point. This data is stored in two arrays (one for the mean
cache and one for the variance cache) and is sent to the GPU.

Furthermore, to evaluate the covariance function, we need
to send the position of every grid point to the GPU, which
is also stored in an array. To avoid the multiple storage of
the same position for several local processes, we send an
index array to the GPU which holds indices of the position
array. This way, we have to store every position only once on
the GPU. To match the entries in the mean cache array, the
variance cache array and the index array to the entries of the
local process, we also create an array which holds an offset
into these three arrays for every cell, i.e. local process.

Now we are able to evaluate the following formulas on
the GPU for every sample point of the raycasting at position
s in cell ¢ in order to compute the mean, variance and the
derivative of the mean:

cellOffset[c]+M
pe)= Y kG,
Jj=cellOffset[c]

sLil)elil,

cellOffset[c]+M 1\2
Gz(s)zoﬁf M’ (13)
j=cellOffsetf] /]

] cellOffset[c]+M .
L) Y ksl ()

2
Sstn) j=cellOffset|c]

with

Ks.sli) = Gewp(— s ls—p IR (14)

where 7 is the array of the mean cache, p is the array of
positions, x is the array of position indices and v is the array
of the variance cache. The prior variance 61% as well as the
length scale / are sent to the GPU. The sample position s
is already given by the raycasting. We see, that the memory
consumption on the GPU mainly depends on the arrays for
the mean cache, the variance cache and the indices. Each of

them uses memory of amount O(NM).

By using the fact, that we operate on a regular grid, we
can compute the position for every grid point of a local pro-
cess. This makes the storage of the positions and therefore
the indices obsolete. We simply store an array containing
point offsets. The illustration in Fig. 1 shows, how the point
offsets are calculated on a 2D grid. The 1% point of the cell
in the center of the local process gets the offset (0,0,0). All
other points get an offset corresponding to their position rel-
ative to the base point. This array can be reused for every
local process since all local processes have the same length
scale. In order to compute Eq. 13, we have to determine in
which cell the position s lies. The next step is to calculate
the global index of the base point of that cell (i.e. at which
place in the ordered array of the grid positions lies the base
point). The global index of the position we need (s[/]), is
base_point_index + index_offset. Eventually, we can calcu-
late the position using the computed index and the field di-
mensions. The formulas for this calculation are presented in
detail in appendix section C.

We further reduced memory consumption by using a
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Figure 1: lllustration of the numbering scheme for the in-
dex offsets inside a local process. The blue grid cell is where
the local process is defined. The influence radius of the local
process is depicted by the orange circle. The green dot rep-
resents the base point. The indices for the grey grid points
were omitted in order not to clutter the illustration. The 3D
case is handled accordingly with index (0,0,0) for the base
point.

(b)

Figure 2: 2(a): Isosurface of low sampled sphere function.
2(b): Volume Rendering of 2(a). Additionally, the variance
is depicted as noise.

16 bit index to store each the mean cache and the variance
cache. Therefore, we quantize the values for the caches and
use the index to calculate the cache value. This is in general
more accurate than using the half float data type which also
needs 16 bit. We pack the two 16 bit values for each cache
entry into a 32bit number. This reduces the global mem-
ory access on the GPU when fetching the entries from GPU
memory.

All in all, we managed to reduce the memory footprint by
a factor greater three. For example, the memory usage for the
aneurysm dataset in Sec. 5 drops from 1590 MB to 490 MB.

5. Results
5.1. Synthetic Dataset

The first dataset we show, is the volume rendering of a
sphere function f(s) = /s s s 4 52)52) sam-
pled on a 3x3x 3 regular grid centered on position (0,0, O)T.

© The Eurographics Association 2015.

(d)

Figure 3: Shaded volume rendering of the mean of the MRI
dataset (Fig. 3(a)). The normals for the lighting were calcu-
lated on the GPU using the derivative of the basis functions.
In Fig. 3(b), we depicted the interpolated variance approxi-
mation on the rendered surfaces using noise.

We used a constant variance of 5 to model the uncertainty. To
demonstrate the reconstruction properties and the smooth-
ness of the derivatives, we did a volume rendering of the
isosurface given in Fig. 2(a).

Fig. 2 shows the result of the volume rendering. As co-
variance function, we used the squared exponential with a
length scale of 91% of the cell length. The prior variance was
computed as the maximum variance in the dataset, i.e. 5. We
interpolated the scalar values as the means of the sampled
Gaussian distribution and calculated the gradient of those
means to enable pixel precise Phong shading using Phong
lighting on the volume rendering. Fig. 2(b) shows the result
of the interpolation. Dithered noise (see [PWL96]) was used
to visualize the behavior of the variance. This reveals, that
the variance (and hence the uncertainty) in the interpolated
image is low at the grid points and high within the grid cells,
see [SKS12].

5.2. Medical Datasets

We will visualize a brain MRI dataset (T2-weighted images).
The dataset consists of seven consecutively recorded images
of the same person. We extracted the empirical mean and
the empirical variance out of that image sequence. The data
is given on a regular 160x200x 160 grid with a spatial reso-
lution of 1 mm. The chosen covariance function has a length
scale of 0.7mm and the prior distribution is calculated as
in Section 5.1. To generate the image in Fig. 3(a), we incor-
porated lighting into the volume rendering by calculating the
derivative of the mean directly on the GPU. We also incorpo-
rated the variance approximation into the volume rendering
of the interpolated mean (Fig. 3(b)). The sources of the vari-
ances are mainly motion artifacts, especially in places that
fade into water-filled areas.

Another example for the volume rendering of a medical
dataset is shown in Fig. 4. We depicted the pressure of a
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(@ (b)

Figure 4: Volume rendering of the pressure field of an
aneurysm dataset. Fig. 4(a) shows a shaded volume render-
ing of the interpolated mean field. On Fig. 4(b), we addi-
tionally depicted the variance as noise, which can be seen in
more detail in Fig 4(c).

Table 1: Rendering speed of the two presented datasets at a
resolution of 1170x740. The minimum fps was measured at
full screen coverage, whereas the maximum fps were mea-
sured at roughly 30% screen coverage. The precomputation
of the caches took roughly 10 minutes on our test system (In-
tel 17 980 @3.3GHz).

| Geforce Titan
Brain 3.7 fps - 8.4 fps
Aneurysm | 6.3 fps - 16.1 fps

| Geforce GTX 660TI
2.5fps - 7.3 fps
4.2 fps - 12.1 fps

blood flow velocity field in an aneurysm dataset. The un-
certainty in the vector field originates from an ensemble
of simulation results forced by 9 different parameter con-
figurations. We resampled the original field on a regular
180x148x163 grid and performed the interpolation using a
squared exponential covariance function with a length scale
of the width of one grid cell.

5.3. Discussion

The main advantages of Gaussian processes for the inter-
polation of uncertain data are the mathematical sound ba-
sics, the reconstruction properties of low sampled datasets
(see Sec. 5.1), and the variance minimization. In the major-
ity of cases, we get a better approximation for the samples
(in terms of less variance) than the original field provided.
On top of that, it provides a closed analytical form for the
derivative of mean and variance at every position in our do-
main.

However, the practical use of the proposed method heav-
ily depends on the dataset and what the user is really inter-
ested in. This type of uncertainty interpolation is, regardless
of the presented acceleration techniques, computational very
expensive on many 3D datasets. In some cases, it may be suf-
ficient to assume that the scalar field is already sampled at a
rate that we can actually use basic trilinear interpolation of
the samples and the variances without incorporating an er-
ror of unacceptable amount. However, we showed that we
can visualize the interpolated samples with interactive frame
rates using the GPU and a precomputed cache. So we can
study the development of the sample values and the effect of
the variance on them at arbitrary positions inside the data.
Unfortunately, we cannot cache the computation of the vari-
ance in the same way as we can do with the mean. Neverthe-
less, we are able to compute an upper bound for the variance,
which behaves like the variance itself. In most cases this is
sufficient in order to see, at which positions we have a high
or low amount of uncertainty.

6. Conclusion and Future Work

We have shown that the generation of images can be ac-
complished in reasonable time whenever the underlying
data model requires the interpolation of Gaussian distributed
data. Despite the high computational effort to interpolate un-
certainty data using Gaussian process regression, we man-
aged to provide reasonable frame rates using an intelligent
pre-computation step. The volume rendering was enhanced
by a shading step. To compute the necessary gradient, the
employed interpolation scheme is used to directly calculate
derivatives based on the basis functions instead of estimat-
ing numerical derivatives using the field. This analytical ap-
proach avoids typical artifacts in the volume rendering orig-
inating from approaches such as finite differences. In addi-
tion, no further sampling of the field is needed.

As we can conclude from Table 1, the differences regard-
ing the rendering speed between the two GPUs are not sig-
nificant. This is because the global memory access (i.e. the
precomputed cache) is a huge bottleneck. Therefore, the goal
of our future work will be to reduce fetches from global
memory during rendering for example by compressing the
data. This will significantly increase the rendering speed.
Furthermore, since the computation of the cache is highly

© The Eurographics Association 2015.
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parallelizable, we plan to move the cache computation to the
GPU to reduce the precomputation time.

Appendix A: Interpolation and Derivative of Gaussian
Variables

The mean of the linear interpolated Gaussian variable

¢o = —1,Xp : prior distribution (15)

N
= ZXi¢i(s)7
i=0

is defined as

(16)
i=1
and the variance of X (s)
Var(X(s)) = o2 (s)
N N
=Y Y 9i(s)9;(s)Cov(X;, X))
i=0j=0
N N 0 N
=2 Y 9i(8)(s)Cov(Xi, X;) + ¥ Y 9i(s)6;(s)Cov(X;, X;)
i=1j=1 i=0 j=1
N 0 0 0
+ Y Y 0i(9)6;(s)Cov(Xi, X;) + Y Y 01(5)6(s)Cov(X;, X))
i=1j=0 i=0j=0
N N N
=Y ) 9i(5)9;(s)Cov(Xi, X)) Z(b, )Cov(Xo,X;)
i=1 j=1
N
— Z (]),‘(S)COV(X,‘,X()) +COV(X0,X0)
i=1
N N
=) Y 4i(5)9;(s)Cov(X:,X;) ZZ(P, YCov(Xo,X;)
i=1j=1
+COV(X0,X0
= Z 0i(5)9;(s)k slaY] 2Z¢l (si,5) +k(s,5).
i,j=1
J -

It can be shown that the derivative of the basis functions
leads to the derivative of the variance and the mean of X (s).
We denote the derivative of ¢;(s) with ¢/(s). The derivative
of the mean with respect to s is straight forward:

uis)  ENowmidi(s) & gils)
FOR RO M ¥y
y (18)
_ Gi(s) [ 9ils)
- I:ZI»U'I 5S(”) =E l; 5S(”) Xl> )

(s)

because -5 = 0.
RO

© The Eurographics Association 2015.

Furthermore, the derivative of the variance with respect to
position s is given as

8Var(YN. gx,-q)i(s(n)))

- i/ﬁl 80 grs1cov:7) +1(5) 2 contxi x;)
Zi g’s ((2 Cov(X;,Xo)

= i ﬁ gls((?) 9, (s)Cov(X;, Xj) + 9i(s )¢ E 3COV(X,7X ),

I
—
I
-

J
19)

¢ < ) =0and COV(XHXO)

0,i> 0.

Appendix B: Basis Functions

The basis functions are chosen in a way that the interpolated
variance is minimized. Therefore, we have to take the deriva-
tive of the variance with respect to the basis functions and set
it to zero.

Z%
@Zq)]

This equation induces a linear system given whose solutions
are the basis functions in Eq.5. If we insert the minimization
criterion ZN 1 95 (8)k(s;,s5;) = k(s;,s) into the equation for
the variance (Eq. 17), we get

(si;8j) —k(si,5) =0, Vi=1...N

(20)
Vi=1...N

SHSj k(Si,S),

M=

02(s) = k(s,s) —

i (s)k(si,9) 21)

1

as interpolated minimized variance.

Appendix C: Calculating Positions using Index Offsets

To compute the formulas (see Eq. 13) on the GPU, we need
the position s[j] corresponding to the j value of the cell’s
local process. Given the bounding box bb of the grid, the
cell dimensions dim, the extents ex of the grid in every di-
mension and the ray sample position s, we can determine the
cell index by

celllD = { df;? E‘O}JJF(”[O]_I)L;?FI]J

+ (ex[0] — 1) (ex(1] — 1) {df:,?[zz]J’

where p0 is the point (s — bb.min). The index of the cell’s
base point is

(22)

cellID celllD
ex[0] — 1)J + {(ex[O] “)(ex[1] - 1)J ex[1].
(23)

ip = celllD+ { (
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The index of the base point in every direction is

5:{21%%%ﬂﬂJ 4)

ix = ip — izex[0]ex[1] — iyex[0].

Using these three indices, we can compute the indices of sj
in every direction:

Sjz=1iz+ Offset[j]z
siy = iy +of fset|jly 25)
Sjx = ix +0ffset[j}m

where of fset[j] is the jth entry (corresponding to s;) in the
offset array, which was computed in Sec. 4.4. Finally, the
position of sj can be computed as

sj = bb.min+ (s jxdim[0],s jydim[1],sj.dim[2]).  (26)
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