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Abstract

Multivariate networks are present in various domains such as biology, or social science. In such networks, the
nodes often have several quantitative attributes, which determine similarity of nodes (e.g., person’s characteristics
in social networks). When interpreting these networks, often both node connectivity and node similarity need to
be analyzed simultaneously. Such analysis can be supported by suitable layouts.

We present and evaluate a layout for graphs with multivariate numeric attributes, which combines graph structure
and node similarity. It extends local dimension reduction techniques (esp. LLE, MEU, or ISOMAP) with graph
connectivity information encoded in techniques’ local neighborhood function. We evaluate these extensions and
available layouts using two conflicting criteria: distance preservation and graph aesthetics. Although the results
vary across data sets, the new approach is able to find a balance of these criteria.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.3]: Viewing Algorithms—
Computer Graphics [1.3.6]: Methodology and Techniques—Graphics data structures and data types

1. Introduction

Multivariate networks are data structures composed of nodes
connected via edges, where nodes have associated multivari-
ate attributes (i.e., multiple variables). Often these attributes
are numeric. For example, in social networks, nodes are per-
sons connected via their friendship relations. The persons
often have multiple attributes (e.g., age, income, number of
children, ...), which determine their similarity (e.g., persons
with similar characteristics). In various analytical scenarios,
both graph structure and node similarity needs to be con-
sidered simultaneously [MAH* 12]. For example, social sci-
entists may wish to examine whether friends are alike (i.e.,
“birds of a feather flock together”™).

The examination of networks is often supported by visu-
alization using a suitable graph layout. A layout capable of
jointly considering node connectivity and nodes with mul-
tivariate quantitative attributes would be advantageous for
analysis of multivariate networks. It should provide suit-
able placement of nodes considering data characteristics and
should support a multi-aspect data analysis [MAH"12].

By now, a wide variety of network layouts has been pre-
sented [DPS02,VLKS*11,HJ07, GFV12]. Broadly speaking,
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Figure 1: Layout types for drawing multivariate graphs.

three categories are relevant to our work: connectivity-based
layouts, attribute-based layouts and mixed approaches (see
Figure 1). Connectivity-based layouts (e.g., [KK89, FR91,
GKO1]) consider only graph structure. They provide pleas-
ing drawings, however disregard node similarity. Dimen-
sion reduction-based methods place similar nodes close to
each other (e.g., MDS [BP09, TPHL12]. However, they of-
ten lead to cluttered displays with long edges and many
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edge crossings. Mixed methods use both node attribute and
node connectivity information. They often require categoric
attributes (e.g., [SA06]). Some layouts use edge weights
(e.g., [KK89]) or layout the graph in two steps initializ-
ing connectivity-based layouts by a preceding dimension re-
duction (e.g., [MAH"12]). To our knowledge, connectivity-
extended local dimension reductions have not been used for
layouts.

We present and evaluate a new mixed layout for draw-
ing graphs with multivariate quantitative attributes. The pro-
posed approach enhances local dimension reduction tech-
niques with node connectivity information. Without loss of
generality, our main idea assumes undirected unweighted
graphs with multiple quantitative attributes as input.

We perform a comprehensive evaluation of various layout
alternatives and compare them with traditional graph lay-
outs (connectivity-based, attribute-based and mixed). We as-
sess both graph aesthetics and similarity representation for
several (smaller) real-world graphs from various application
areas (e.g., social networks, biology, telecommunications).
The results show that the enhanced techniques using a neigh-
borhood function combining graph structure and node sim-
ilarity provide reasonable results. They show a good com-
promise with respect to graph readability and dimension re-
duction quality. The results are comparable to the best mixed
layouts (weighted Kamada Kawai [KK89]). However, the re-
sults vary with respect to the underlying graph structure.

The paper is structured as follows: Section 2 presents re-
lated work. Section 3 introduces definitions and Section 4
describes our approach. Section 5 presents the set-up and
the evaluation results. Section 6 discusses aspects of our ap-
proach. Section 7 concludes and outlines future work.

2. Related Work

We review relevant graph layout categories: connectivity-
based, dimension reduction-based and mixed layouts. A
broad overview can be found in [VLKS*11,HJ07, GFV12].

2.1. Connectivity-based Approaches
These approaches use solely aesthetic criteria.

Force-based layouts form a basis of many graph lay-
outs due to good aesthetic properties (e.g., Kamada-Kawai
[KK89], Fruchtermann-Reingold [FR91]). They differ in the
definition of the forces. Scalability can be improved, e.g.,
using a GPU implementation, heuristics or multi scale ap-
proaches [GHGHO09,FLM95,GKO01,KCHO02, HJOS5].

Several layouts are inspired by dimension reduction:
The ISOM method [Mey98a] applies an inverted the Self-
Organizing Map algorithm [KohO1]. High Dimensional Em-
bedder (HDE) projects nodes from high-dimensional to two-
dimensional space. For both, the layout quality may suffer
for graphs with specific topologies.

2.2. Dimension Reduction-Based Layouts

Dimension reduction is widely used for visualization of mul-
tivariate data. Many approaches exist [HK06]. For graph
layouts, MDS has been used for various graphs [Coh97,
BP09, KB13, TPHL12] and PCA was proposed for draw-
ing transition system graphs [PvWO0S5]. Although is possi-
ble to layout graphs using other dimension reduction tech-
niques, we are not aware of their usage. All dimension re-
ductions focus on distance preservation and do not regard
graph structure. This includes even DD-HDS [LVGFO07],
which performs dimension reduction with stress minimiza-
tion using force-directed approach. It focuses on multivariate
data without taking graph connectivity into account. Alter-
natively, GraphDice [BCD*10] uses interactive selection of
two variables as layout coordinates. The positioning may not
represent node distances well.

In sum, the layouts resulting from (global) dimension re-
duction represent node distances well, but often lead to clut-
tered displays with edge crossing problems. Moreover, to
our knowledge, mainly “original” (global) dimension reduc-
tion techniques without connectivity information have been
employed for graph drawing. Local embeddings with addi-
tional enhancements, as focused on in this paper, have not
been studied well for graph layouts.

2.3. Mixed Approaches

Mixed approaches try to use both graph structure and graph
attributes for node positioning.

Some connectivity-based layouts can be enhanced with
node similarity information. For example, Kamada-Kawai
and Fruchtermann-Reingold [KK89, FR91] layouts may in-
clude similarity information encoded as edge weights. Al-
ternatively, the layouts can be initialized by node positions
preserving node similarity (e.g. by using a preceding dimen-
sion reduction step) [MAH™* 12]. We evaluate them.

Several graph layouts use semantics of the graph nodes
(i.e., categorical attributes). Nodes in the same category are
placed in the same area and the layout of nodes within the
area is optimized using standard layout algorithms (e.g.,
force-directed). The form and placement of these areas
varies among layouts. For example, Semantic substrates
[SA06] uses horizontal boxes and force-directed layout
within them. Treenetviz and Space-Filling Force Directed
layouts [GZ11,IMMSO09] can be used for hierarchic struc-
ture of attribute categories. These methods are restricted to
categoric node attributes.

Few methods try to directly enhance dimension reduction
with graph connectivity. First, JauntyNets [JKZ13] places
attributes as additional graph nodes on a circle. Original
graph vertices are connected with forces among themselves
and with attributes using additional forces. The idea is sim-
ilar to RadViz [HGP99]. JauntyNets requires edge weights
for graph positioning. Moreover, the final layout depends
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strongly on the ordering of attributes on the circle. Sec-
ond, GeoSOM [WTO08] uses a modified self organizing map
(SOM) with graph weights. The 3D ‘earth’-formed SOM is
drawn with a 2D cartographic projection. Graph edges at the
projections’s border are split, which leads to bad readabil-
ity of graph connections. Moreover, SOM requires careful
setting of several learning parameters.

3. Definitions

A graph (i.e., network) G = (V,E) is composed of a set of
vertices (nodes) V and a set of edges (i.e., links) E C [Vz}
that connect pairs of adjacent vertices e = (v;,v;) [Die05].
A path of length s in G is a sequence of connected nodes
pathg(v1,vs) =vi,vo,...,vs Where v; € V & (vi,viy1) €EE.

In a multivariate graph, several attributes (i.e., variables)
are associated with vertices: v; — (a;1,...,a; ), where [ is the
dimensionality. Node similarity in attribute space dA(v,-7 vj)
is defined as the Euclidean distance of their attribute vectors

d*(vi,vj) =/ Tk {(an —aj)?}.

4. Approach

In this paper, we present and evaluate a layout algorithm for
graphs with multivariate numeric attributes. Our aim is to
produce a layout which reveals both node similarities (data
attribute structure) and graph connectivity. The node simi-
larity is defined as the Euclidean distance of attributes (see
Sec. 3). Without loss of generality, we assume undirected
unweighted graphs with multiple numeric attributes.

The main idea of our approach is the enhancement of di-
mension reduction techniques with graph connectivity in-
formation. We decided to use dimension reduction tech-
niques, which use local neighborhood, as they are better ca-
pable of finding structures in high dimensional space then
global methods (e.g. MDS [CC10]). Moreover, they use lo-
cal point neighborhood information for dimension reduc-
tion [Law11], which allows them to capture data topology
in unstructured multivariate data (e.g., manifolds). We alter
this function to capture additional graph structural informa-
tion as needed in our case.

Our approach extends the neighborhood function so that it
captures graph structure. We modify the neighborhood def-
initions N in the relevant parts of the algorithms. In this pa-
per, we focus on three techniques: LLE [RS00], ISOMAP
[TDSLO0] and MEU [Law11]. Original implementations use
as neighborhood n-nearest neighbors (nNN) in the attribute
space N (see Fig. 2a). For graph layouts, we modify this
function with graph-connectivity information. For example,
we change the neighborhood N; of vertex v; in LLE layout
(see Eq. 1). Other algorithms are changed analogously. Note,
our approach could be applied also for other dimension re-
ductions using local neighborhoods.
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We developed and evaluated several neighborhood func-
tions (see Fig. 2b-d).

1. Adjacency: Neighborhood N (v;) includes all nodes di-
rectly connected to the node v; (see Fig. 2b).

2. Graph Path: Neighborhood N*(v;) includes all nodes
connected v; via a path up to length 2 (see Fig. 2c).

3. Combination of attribute and graph neighborhood: This
neighborhood set Nc(vi) contains the union of the set
of n-nearest neighbors in the attribute space and the set
of adjacent vertices to the vertex v; (see Fig. 2d). This
method combines the information on graph structure and
attribute space structure, within local dimension reduc-
tion. We expect it to work best for our use case.

(a) Original nNN-based (b) Graph Adjacency

(c) Graph Path (d) Combined attribute & graph

Figure 2: Different neighborhood heuristics. The red col-
ored vertices are considered neighbors to the blue vertex. a)
Original nNN neighborhood in attribute space (NA, n=2)
b) Adjacent vertices in the graph NC. ¢ Graph path: Ver-
tices within a path length of 2: N2 d) Combined: Union of
attribute- and graph-based neighbors N€

5. Evaluation

We evaluate our approach on a set of real world graphs
with multivariate quantitative attributes. We assess the vari-
ous neighborhood functions and sizes of our proposed layout
and compare the results to selected state-of-the-art layouts.
The evaluation relies on several quality criteria composed of
graph aesthetics and dimension reduction measures.

5.1. Evaluation Datasets

We evaluate our approach using several real-world graphs
with varying structure, attribute dimensionality and applica-
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tion domain. We focused on real world graphs, as they repre-
sent real problems. The graphs are described below and their
properties are shown in Table 1.

Name #Nodes #Edges #Attributes Avg. Deg.
Regulation 12 26 2500 4.25
Households 29 51 6 3.52
Documents 100 162 5 3.24
Phone Calls 400 916 5 4.58
Amazon 121 186 5 3.07
Patents 98 182 9 3.71

Table 1: Summary data statistics

Regulation: Graph of reactants with their regulating in-
teractions. The attributes are the concentrations substances
over time. Provided by Prof. Drossel at TU Darmstadt.
Households: Commonalities among family situations in
neighboring geographic regions. European countries with
common sea or land borders are connected by edges. The at-
tributes are statistical indicators by OECD Family Database.
Documents: Relationships between publications. Attributes
are weights of the document’s keywords. Source: PubMed.
Phone Calls: Phone calls between persons. Attributes are
daily phone call durations at 10 successive days. VAST
Challenge 2008 data.

Amazon: Products and their co-purchasing. The attributes
are numeric product characteristics. Source: SNAP.
Patents:  Citations between US Patents. Attributes are
patents characteristics. Source: SNAP.

In our evaluation, we concentrated on rather smaller
graphs (with hundreds of nodes). This choice was motivated
by the common graph exploration path, which often starts
with a small subset of a graph being interactively expanded
on demand [VHP(09]. Moreover, smaller graphs can be visu-
ally examined in more detail then larger graphs.

5.2. Evaluation Layouts

We use all variants of the new proposed layout and compare
them with a set of representative layouts from the relevant
graph layout categories presented in Section 2.

o Connectivity-based layouts: We chose 2 types of lay-
outs: force-directed Kamada-Kawai [KK89] and ISOM
[Mey98b]. ISOM is based on inverted dim. reduction. We
use JUNG [OMFS*05].

e Dimension reduction-based Layouts: We selected the
most prominent dimension reduction layout: MDS
[CC10] in the classical scaling version. Note we tested
also MDS with stress reduction. It lead to very similar re-
sults. For the sake of space, we focus only on one version.
We used MDSJ [Alg09] package as implementation.

e Mixed layouts We use enhanced force-based layouts
with both edge weights representing the similarity and
with MDS-based initialization. We chose Kamada-Kawai
[KK89] layout extensions as representatives of enhanced

force-based layouts. We use a self-amended JUNG
[OMFS*05] implementation.

e New approach: We test extensions of three representa-

tive local embedding methods: ISOMAP [TDSLO00], LLE
[RSO0] and MEU [Law11]. We use the original imple-
mentations provided in the MEU toolkit.
All local dimension reduction algorithms were run on all
four neighborhood structures: original, adjacency, graph
path and combined (see Section 4). For original and
combined versions, we used 5 nearest neighbors: 5 ~
avg(deg) + 2. This choice assures a balance of graph-
and attribute-based neighborhood. Section 5.5 analyzes
the impact of this choice.

All layouts with random initial node placement were run
10 times in order to minimize the influence of randomiza-
tion. Iterative approaches were run with 100 iterations. We
present the mean of the calculated evaluation metrics.

5.3. Evaluation Criteria

We use two types of evaluation criteria: graph aesthetics and
similarity representation. These criteria are derived from the
need of a graph layout to facilitate the simultaneous exami-
nation of both graph structure and node similarity.

Graph aesthetics: We use the common graph aesthetic
criteria used for evaluating graph layouts: number of edge
crossings and even edge length [PCJ96, Pur02, BBD09].

Similarity Representation: We rely on common distance
preservation (i.e., similarity representation) criteria [BP09,
Coh97,SvLB00]. We look both on global and local similarity
preservation. On a global level, we use Projection Precision
Score (PP) [SVLBOO]. On local level, we analyze how the
distances between vertices in the original (attribute) space
d* are preserved in the projected (i.e., layout) space dt.
Yvi,v; €V dL(v,-,vj-) [0e dA(vi,Vj).

5.4. Evaluation Results

We discuss results for the test graphs. First, we look at edge
crossing and projection precisions on global graph level.
Then, we analyze edge length distribution and node similar-
ity preservation on local (i.e., vertex) level. Owing to space
limitation, we discuss main results. Full set of results also
for other quality criteria is in Annex.

5.4.1. Global Evaluation

We show the results for global criteria: the number of
edge crossings (EC) [Pur02] and Projection Precision (PP)
[SvLBOO] criteria. For space efficiency, we plotted the re-
sults in a scatterplot (see Fig. 4). Each point is a result of
one layout algorithm. Points are color coded according to
layout type (see Fig. 3 bottom). This should ensure an easier
comparability of results across scatterplots. Layouts close to
the axis center (point 0,0) are better. Layouts in top left cor-
ner have good projection precision but high edge crossing.
Layouts in bottom right corner have opposite propoerties.
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Figure 4: Evaluation chart explanation.

Figure 3 shows the results for all evaluated graphs. The
results vary across the graphs. We assume that this variation
is caused by a variability in both graph structure and node
similarity distribution in the graph. Moreover, some layouts
lead to strong overplotting of nodes (esp. original and adja-
cent dimension reduction layouts) which skews the criteria
for the number of edge crossings. Nevertheless, several re-
sults can be observed across graphs.

As expected, MDS layout (violet, MDS) performs very
well for projection precision, it has large edge crossing.
On the other hand, layouts focusing on graph aesthetics:
Kamada-Kawai (grey, KK) and ISOM (dark grey, ISOM)
have good EC but bad PP scores. Mixed layouts show
diverse results. Weighted Kamada-Kawai (pink, KKW)
performs better then MDS-initiated Kamada-Kawai (red,
KKM), however worse then most of our locally based lay-
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to worse results then original and combined layouts. Layouts
using original local dimension reduction techniques (LO, IO,
MO) perform well with regard to dimension reduction (PP),
but have bad edge crossing results, often worse then the
original MDS. Interestingly, the proposed layouts combin-
ing graph and similarity neighborhood (IC, LC, MC) have
better results in EC then MDS with comparable PP quality
for several graphs (e.g., phone calls, patents). For the docu-
ments graph, MG performs very well for both criteria. This
indicates that the new layouts may be able to balance the two
criteria comparably or better then other layouts.

5.4.2. Local Evaluation

On a local level, we evaluate the edge length (EL, i.e., dis-
tance of neighbors in the layout) and similarity representa-
tion (SR) for all vertex pairs.

We calculate and show the distances in attribute space (X-
axis) and in layout space (Y-axis) for all neighbours (EL,
local SR) (all SR) for all vertex pairs (see Fig. 6). Local SR
and EL values are highlighted in red. The form of the red line
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Figure 5: Exemplar results for edge length and similarity
preservation criteria.

shows the quality of the result. Very good EL, but bad SP is
visible as a “horizontal line” (see Fig. 5). Contrary, good SP,
but bad EL, forms an increasing line. Thus, the two criteria
are contradictory. A balance of these two criteria may be a
bended line or a line with smaller slope.

(a) Kamada Kawai (b) MDS stress

(c) ISOMAP adjacent

(e) ISOMAP Combined (f) Weighted Kamada-Kawai

Figure 6: Quality of results for Amazon graph. X-axis: orig-
inal distance, y-axis layout distance. Adjacent vertices (i.e.,
edge lengths) are red points, other vertex pairs are gray.

Due to space limitation, we show representative results
for Amazon dataset focusing on ISOMAP-based layouts
(see Figures 6 and 7). As expected Kamada-Kawai lay-
out has best edge length distribution with horizontally po-
sitioned points, but does not preserve SR. MDS preserves
distances well but has a large variability in edge lengths.

N
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“>’ graph pa Weighted KK
w
Ny 't
Zh
gOOd Kamada-Kawai
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Figure 7: Result graph layouts arranged according to their
quality criteria.

Mixed layouts and the new layouts have a distribution of
EL and SR between the two extrema. Adjacency ISOMAP
performs well for similar vertices, but underestimates dis-
tances for more distant vertices. It however leads to many
extremely short edges (red points close to 0). Both ISOMAP
graph path and weighted Kamada-Kawai show a variable be-
haviour both for edge lengths and global distances. ISOMAP
combined preserves more distances then edge lengths, but is
still better then MDS.

5.5. Influence of Neighborhood Size

We analyze how the choice of the neighborhood size influ-
ences the resulting layout. Only the combined version re-
quires the setting of neighborhood size. Annex shows the
drawings for all graphs, here we show representative results
for the documents dataset.

Figure 8 shows that MEU layout strongly depends on the
neighborhood size, while LLE and ISOMAP are more ro-
bust to size changes. This is explained by the construction
of the combined neighborhood which unifies adjacency and
n-nearest neighborhood so low size is often compensated by
large adjacency neighborhood. We chose average degree +
2 as a rule of thumb, which corresponds to the level when
MEU stabilizes.

6. Discussion

In this section, we discuss several aspects of our approach
and its evaluation.

Graph type: Our approach and the evaluation focused on
unweighted undirected graphs. Applying our algorithm to
weighted graphs needs an extension of the neighborhood
function. This could be done in the distance matrix em-
ployed internally by the algorithms.

Vertex attributes and node similarity: The presented ver-
sion of our algorithm focused on numeric attributed nodes
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(a) MEU 3 neighbors

T
12

D

(e) ISOMAP 3 neighbors

(f) ISOMAP 5 neighbors

Figure 8: Results for combined MEU, LLE and ISOMAP for
3 and 5 neighbors (left and right).

measuring node similarity. Our approach is also usable for
cases when only node similarities are available. They would
be included directly in the distance matrix employed by the
dimension reduction algorithms.

Runtime: The calculation complexity and runtime were
not in the focus of our work. We used available implementa-
tions from various authors and in various languages (MAT-
LAB, Java). Therefore, it is not possible to conduct a com-
parative runtime analysis. We also did not put any effort in
parallelization nor in program optimization. For our datasets,
the runtimes of up to a second allowed for interactive visual-
ization. The implementations could be optimized in future.

Evaluated graphs: We used several real-world datasets for
the evaluation. For a thorough evaluation, it would be ad-
vantageous to use many synthetic datasets with controlled
characteristics combining various graph structures and var-
ious distributions of vertex values (i.e., their node similar-
ity). These datasets are not available. Although the number
of graphs is quite small, large graph variability already indi-
cates the pros and cons of layouts.

(© The Eurographics Association 2014.

We employed graphs with hundreds of nodes, which was
motivated by a common exploration principle: show details,
expand on demand [VHP09].

7. Conclusions and Future Work

We presented and evaluated a layout for multivariate graphs.
It extends local dimension reduction techniques with graph
connectivity notion. An extensive evaluation of the new tech-
nique shows that the our layouts and weighted Kamada
Kawai layouts are able to balance graph aesthetics and simi-
larity preservation. Combined and graph path extensions are
better then orginal and adjacency-extended local dimension
reduction layouts. The results, however, depend on graph
structure and distance distribution.

In the future, we would like to focus on optimization of
our algorithm and its extension to other graph types such
as trees or graphs with multivariate edge attributes. A user
study evaluating the influence of the layouts on analyti-
cal tasks would be advantageous. It could also show which
trade-off the users prefer: distance preservation vs. graph
aesthetics.
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