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Abstract
We introduce a stochastic algorithm for pairwise affine registration of partially overlapping 3D point clouds with
unknown point correspondences. The algorithm recovers the globally optimal scale, rotation, and translation
alignment parameters and is applicable in a variety of difficult settings, including very sparse, noisy, and outlier-
ridden datasets that do not permit the computation of local descriptors. The technique is based on a stochastic
approach for the global optimization of an alignment error function robust to noise and resistant to outliers. At
each optimization step, it alternates between stochastically visiting a generalized BSP-tree representation of the
current solution landscape to select a promising transformation, finding point-to-point correspondences using a
GPU-accelerated technique, and incorporating new error values in the BSP tree. In contrast to previous work,
instead of simply constructing the tree by guided random sampling, we exploit the problem structure through a
low-cost local minimization process based on analytically solving absolute orientation problems using the current
correspondences. We demonstrate the quality and performance of our method on a variety of large point sets with
different scales, resolutions, and noise characteristics.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Geometric algorithms, languages, and systems

1. Introduction

Pairwise 3D point set registration is a fundamental compu-
tational geometry problem. It consists of finding the spa-
tial transformation T that aligns two point sets. The prob-
lem is heavily studied and many solutions, tuned to partic-
ular situations, have been proposed (see Section 2). In this
work, we look at the affine registration problem in which
the transformation T has the form T (q) = sRq+ t, where s
is a scaling factor, R a rotation matrix, and t a translation
vector. Rigid registration, where s = 1, is a subset of this
problem. While very efficient (and sometimes optimal) rigid
and affine solutions exist for particular simplified settings
(e.g., [MB03, LH07]), the problem is much more complex
when the two datasets are very sparse, noisy, and with un-
known correspondences and amount of overlap. This situa-
tion arises, for instance, in cross-modality mapping (e.g, as
a sub-problem of 2D-3D registration, when mapping sparse
point clouds derived from structure-from-motion to denser
clouds from range sensors [PGC11b, CDG∗13]). This set-
ting, for instance, makes finding reliable correspondences
hard and does not permit using local descriptors for guiding

the matching process. For this reason, approximate meth-
ods based on randomized heuristics currently offer the best
performance [AMCO08, PB11].

Our approach. The technique is based on a stochastic ap-
proach for the global optimization of an alignment error
function robust to noise and resistant to outliers. This er-
ror function is based on assigning a small number K of model
correspondences to each of the data points, and on using the
Lm norm (with m ≤ 1) to evaluate the alignment error of
each of the correspondences. At each optimization step, the
method alternates between stochastically visiting a general-
ized BSP-tree representation of the current solution landscape
to select a promising transformation, finding point-to-point
correspondences using a GPU-accelerated technique, and in-
corporating new error values in the BSP tree. In contrast to
previous work, instead of simply constructing the tree by
guided random sampling, we exploit the problem structure
through a low-cost local minimization process based on an-
alytically solving absolute orientation problems using the
current correspondences.

c© The Eurographics Association 2014.

DOI: 10.2312/vmv.20141282

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20141282


P

Q

Input OutputStochastic Optimization

Parametrization of transformation space
1

3
0

2

4

5

Local Min

Local Min

Global Min

0 1 0 1

12

0 3

3

1st step

3rd step 4th step

5th step 6th step

32

1

f(3) < ... < f(0)

0 3

3

34

1

42
f(4) < f(2)

5
5 0

Stochastic optimization based on BSP representation of transformation space

Robust metric for evaluation of transformations

Local refinement using fuzzy correspondences and IRLS

✏(P, Tx(Q)) =

NX

i=0

KX

k=1

k pi � q0ik km

Tx̂(Q)
(�,  , ✓, tx, ty, tz, s) = x

P [ Tx̂(Q)

Figure 1: Our global registration pipeline: Given as input two (unregistered) point clouds P and Q, we use a stochastic global
optimization approach to find a transformation Tx̂ that aligns Q to P.

Contribution. Our approach combines and extends state-of-
the-art results in a general registration technique that does
not require descriptors and can handle difficult cases, includ-
ing affine registration of sparse noisy point clouds coming
from multimodal acquisitions. Our method improves over
recent work on stochastic optimization [PB11] in several
ways: first of all, we extend the approach to affine registra-
tion; secondly, we robustify it using sparsity-inducing norms
and one-to-many correspondences; finally, we improve the
efficiency of the BSP exploration through guided splits and
by exploiting domain knowledge to find local good solutions
according to the robust error masure. We demonstrate the
quality and performance of our method on a variety of large
real-world point sets with different scales, resolutions, and
noise characteristics.

Advantages and limitations. By incorporating domain
knowledge into a stochastic global optimizer, we obtain a
robust method that gracefully combines global domain ex-
ploration with local optimization. Sparsity inducing norms
and fuzzy correspondence assignments make the method
more robust without requiring data-dependent tuning to prune
or down-weigh low quality correspondences. The proposed
method also has a few limitations. As for other stochastic
methods, long running times are sometimes required to reach
the global optimum. Typical difficult cases for the method,
shared with all other related methods working directly on
points, occur when the objects exhibit strong slippage, lead-
ing to flat error landscapes. As the method is specifically
aimed at difficult registration cases not handled by current
solutions, other methods based on descriptors are typically
more efficient when matched objects are dense and clean.

2. Related work
The problem of point set registration has been widely studied
and a full review is out of the scope of this paper. We will
restrict our analysis to methods for registering point sets us-
ing rigid or affine transformations (rigid plus scaling factor),
which are close to our technique. Readers are referred to the
work by Tam et al. [TCL∗13] for a more complete survey.

Our work is aimed at finding the alignment between two point
clouds when a starting guess for the transformation is not
given and without any knowledge about the mapping of the
points. Classic pose estimation techniques use the generalized
Hough transform [HB94], geometric hashing [WR97] and
pose clustering [Sto87] voting schemes to find the optimal
alignment (at least in the rigid case), but are limited to very
small (and noise-free) or subsampled point clouds because
of their computational complexity and memory footprint,
while the Iterative Closest Point (ICP) algorithm [GP02] is
the gold standard for local alignment tasks, i.e., when a rough
alignment already exists. Recently, Bouaziz et al. [BTP13]
proposed a new formulation of the ICP algorithm exploiting
sparsity-inducing norms, which showed to be effective for
rigid registration when dealing with outliers and partial over-
lap. We also considered Lm sparsity-inducing norms, but we
enforced our distance metric by considering fuzzy assignment
involving one-to-many mapping between the points. More
complicated approaches for point cloud registration rely on
local geometric descriptors, such as spin images [JH99] or
integral volume descriptors [GMGP05], which are detected
in both clouds and then matched. However, these methods
suffer when datasets are infested by a large number of out-
liers or in the presence of strong asymmetry between the
point clouds to be registered. To solve the issue of outliers,
the 4PCS method [AMCO08] achieves robustness by com-
bining a non-local descriptor (four coplanar points) with a
generate-and-test RANSAC scheme. Recently, Mellado and
colleagues [MMA14] improved the efficiency of the method,
lowering its time complexity from quadratic to linear. Corsini
et al. [CDG∗13] extended 4PCS to estimate different scales
between the point clouds to align. This approach, however,
requires a partitioning into planar regions of the two point
clouds, which is achieved through variational shape approxi-
mation [CSAD04], and could fail if one of the point clouds is
sparse. To overcome this problem, the sparse input cloud is
oversampled to a density comparable to the model point cloud.
Another kind of registration methods employ robust statis-
tics, such as general maximum likelihood estimation [GP02],
kernel correlation [TK04] or mixture of gaussians [JV05]. In-
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stead of using one-to-one correspondences, these approaches
work with multiple, weighted correspondences. Although
this significantly widens the basin of convergence, the com-
putational cost limits the applicability to very small point
clouds (hundreds of samples) [TARK10]. As an alternative to
combinatorial optimization based on feature matching, some
methods in the last decade tried to solve the pose estimation
problem by minimizing a cost function with a global opti-
mizer. For small datasets, rigid alignment algorithms based on
deterministic branch-and-bound techniques [MB03, OKO09]
or Lipschitz global optimization [LH07] have been proposed.
Papazov and Burschka [PB11] recently introduced a stochas-
tic global optimization approach for robust rigid point set
registration, based on Bilbro and Snyder’s tree annealing
algorithm [BS91]. It is a stochastic sampling method that
uses a generalized BSP tree and allows to minimize non-
linear scalar fields over complex shaped search spaces like
the space of rotations. As a result, the method is robust and
outlier-resistant. More recently, Pintus and Gobbetti [PG14]
extended this approach to handle affine registration in the
context of 2D-3D registration, employing metrics based on
robust statistics [HR09]. In our work, we extend the stochas-
tic approach to similarity transforms and combine it with a
more domain-specific method that locally solves absolute
orientation problems. Outliers are handled by employing a
robust and adaptive pruning strategy and by using Iteratively
Re-weighted Least Squares (IRLS) to solve absolute orienta-
tion tasks. This approach is feasible by harnessing the power
of GPUs to rapidly compute correspondences between the
two point clouds [Cay10]. Our error metric also benefits from
sparsity-inducing norms and fuzzy assignments, which robus-
tify the method without requiring data-dependent tuning to
prune or downweigh low quality correspondences.

3. Method
Problem definition. Given two point clouds, referred as data
point cloud Q and model point cloud P, the alignment of the
first with the latter requires the solution of a global optimiza-
tion problem, consisting of determining the optimal affine
transformation T of the form T (q) = sRq+ t for a scaling
factor s, a rotation matrix R and a translation vector t, such
that the point set T (Q) = {T (q1), ...,T (qN)} is best aligned
with P according to some error criterion. By parameterizing
the transformation T with a parameter vector x, and defining
an error function ε(x) which determines the distance between
P and Tx(Q) , the optimal registration is given by minimizing
ε(x) over x. We find the solution of the optimization problem
through a problem-aware stochastic search of the parameter
space (see Figure 1).

Parametrization. Our parameter vector x has 7 parameters:
1 scalar for the scaling factor s, 3 for the translation vec-
tor, t, and 3 for the three angles (φ,ψ,θ) ∈ [0,2π)× [0,π]×
[0,π] necessary to define a redundant-free rotation space
parametrization based on the axis-angle representation of

SO(3) (i.e., φ and ψ for the spherical coordinate representa-
tion of the rotation axis, and θ for the rotation amount around
this axis). This rotation parametrization leads to simple tech-
niques for achieving uniform sampling and equal volume
bisection of the parameter space, and has already been used
in other stochastic optimizers in the rotation space. For further
details about space parametrization, search space structure
and advantages in using this representation, see Section 4.1
in Papazov and Burschka [PB11] for a use closely related to
our proposed method, and see Kanatani’s book [Kan90] for
a generic treatment of the topic. Our approach extends these
methods by just adding the scale dimension.

Parameter range estimation. Given the point clouds P and
Q, it is trivial to determine the bounds for translation and
rotation parameters that ensure that at least a minimal overlap
between the point clouds exists. Setting bounds for scaling,
however, requires some knowledge, e.g., to avoid the trivial
solution of a null scaling factor and to restrict the search
range. We cannot assume that the two point sets have perfect
overlap, since the data point cloud could contain many points
belonging to the model, but also a possibly large number of
outliers from the surroundings. These points lead to potential
problems in the estimation of the feasible scale range for
the stochastic global optimization routine. Thus, in order
to automatically determine a good scaling range, we use a
heuristic to extract from the moving point cloud a subset of
the object of interest. Similarly to other generic registration
methods [AMCO08], we determine this information using
bounds on the amount of overlap, namely we set as default
limits for scaling 0.1-10 times the ratio between the bounding
spheres of the point clouds.

Robust distance. The global optimization problem consists
of minimizing an error function representing the distance
between the model point cloud P and the transformed data
point cloud Tx(Q). Since normally no a-priori information
about the point sets is available, typical distance functions
are not able to produce correct alignment of point clouds
affected by noise or outliers. Hence, a way to reduce the
effect of outliers is to consider robust regression methods,
employing distance functions ρ(x) which reduce the effect of
outliers and noise by reducing the sample contribution to the
error when the distance increases [HR09]. Using a generic
robust kernel function ρ(x,y), according to the current affine
transformation Tx, a generic error function takes the following
form:

ε(P,Tx(Q)) =
N

∑
i=1

ρ(pi,Tx(Q)). (1)

Previous stochastic methods [PB11] considered various kind
of robust estimators, giving good results for rigid registration,
but depending on constants that are difficult to tune, and give
different alignment quality according to the characteristics
of point clouds considered. For example, Tukey bisquare
and Huber estimators [HR09] are normally tuned according
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to the standard deviation of errors, and they generally offer
protection against uniform noise, but not against outliers or
non-uniform noise.
Recently, Bouaziz et al. [BTP13] studied the characteristics of
Lm norms in the context of generalized ICP, and they showed
that choosing m < 1 significantly improves the resilience
of the distance function to large amount of outliers, and to
different kind of noise.
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Figure 2: Fuzzy correspondences for error metric: instead
of mapping each point pi of the model P to a single point of
Tx(Q) (left), we assign it to its k nearest neighbors in Tx(Q)
(right, with k = 4). To make our error metric more robust, we
weight point-to-point distances using the function |x|0.4 (gray
curve in the inset), which gives outliers a smaller weights as
compared to the more traditional x2 (red curve) and |x| (blue
curve) penalty functions.

To improve the robustness of the error metric, we employ
fuzzy assignments between the point clouds: instead of one-
to-one correspondences between data samples and model
samples, we considered one-to-many mappings (see Figure 2).
Specifically, each point in the model cloud is associated to the
K nearest neighbors in the data cloud. Thus, the error metric
does not use point-to-point or point-to-plane distances, but
more robust fuzzy point-to-region distances, and our error
function takes the following form:

ε(P,Tx(Q)) =
N

∑
i=0

ρ(pi,Tx(Q)) =
N

∑
i=0

(
K

∑
k=1
‖ pi−q′ik ‖

m) (2)

where {q′i1 = Tx(qi1), ....,q
′
iK = Tx(qiK)} are the K nearest

points of the data sample pi. In our implementation, we con-
sidered m = 0.4 as exponent for the distance function, as
suggested in [BTP13].

Stochastic optimization process. The optimal affine trans-
form T is found with a method that effectively combines
a stochastic exploration of the multidimensional parameter
space with a local improvement scheme. Similarly to the
purely stochastic method of Papazov and Burschka [PB11],
we use a generalized BSP to represent our 7-dimensional
search space and exploit it to adaptively add more detail to
promising regions in the search space. For each step of the
global optimization process, a node is added to the tree by
splitting the parameter space in portions having the same
volume (see Papazov and Burschka [PB11] for a motivation
of this approach). Each node of the binary space partition

tree contains the number of times it has been visited, the pa-
rameter bounds, the best parameter value and the value of the
cost function evaluated in the subtree rooted at that node. At
the end of the optimization procedure, the parameter values
associated to the root are taken as solution. A branch-and-
bound scheme is used to traverse the tree; a temperature with
cubical decay (t = τ(1− i

iM )3, with i the current iteration, iM
the maximum iteration count, and τ the initial temperature)
is used to drive the probability pl to choose the child associ-
ated with the lower function value. At the beginning of the
optimization both branches have the same probability to be
explored (pl = 0.5), while at the end of the optimization the
traversal is driven towards the branches with lower values
(pl = 1.0). Furthermore, in order to uniformly explore the
parameter space and to reduce the chance of being trapped
in local minima, the probability is weighted with the number
of times in which branches have been traversed. Specifically,
indicated with cl and ch the number of times the children as-
sociated with the lower and higher function value have been
traversed, the probability pl is computed as follows:

pl =
1+ t ch

cl+ch

1+ t
. (3)

Moreover, a significant improvement in the cooling sched-
ule is obtained by decomposing the main loop in different
optimization loops. As the optimization level progresses, the
number of iterations grows exponentially with base 2, while
keeping trace of the previous optimization history by main-
taining the tree status.

Local refinement through iteratively reweighted least
squares. Our procedure, similarly to other alignment proce-
dures, alternates between finding correspondences given a
parameter value, evaluating the error using those correspon-
dences, and using the result to move to other more promis-
ing parameter values. Since the most costly step is finding
correspondences, we accelerate it through an approximate
GPU-accelerated method [Cay10], and exploit them not just
for error evaluation but also for error minimization. Given
the correspondences, we obtain the minimum of ε using an
iteratively reweighted least-squares (IRLS) [HW77] modifi-
cation of Horn’s method for solving the absolute orientation
with Euclidean distances [Hor87], which consists in finding
the optimal relationship, in a least-squares sense, between
two coordinate systems using pairs of measurements of the
coordinates of a number of points in both systems. In our
case this is achieved by calculating weights wi = ε

′(ri)/ri,
where ri is the current residual and ε

′(d) is the derivative of
ε(d) (see Equation 2), by solving the weighted least squares
problem

x = argmin
x

N

∑
i=0

K

∑
k=1

(wk ‖ pi−q′ik ‖
2). (4)

using the analytical absolute orientation method of Horn, and
by re-solving again until convergence. Since this process is
included in a higher level global optimization method, we
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just iterate for a fixed number of times (four in this paper) to
find the (approximately) optimal solution in terms of robust
distance given the current currespondences. This solution is
then incorporated in the current error landscape by inserting it
in the BSP, appropriately modifying its structure as explained
below.

Algorithm details. Specifically, the main steps of the
stochastic optimization process are the following (see Al-
gorithm 1):
1. Initialize the root of the BSP tree with the entire param-

eter space (low,high) as bounds. Generate a uniformly
sampled parameter value x as position. Find correspon-
dences at x between point clouds using a GPU-accelerated
method [Cay10]. Evaluate the cost function value accord-
ing Equation (2), and store its value as current best. Define
the maximum number of iterations iM (we use τ = 1000
as initial temperature).

2. Select a “promising” leaf according to the probabilistic
scheme in Equation (3). The leaf is identified by taking
left/right decision at each node.

3. Bisect the selected leaf and create new children, reas-
signing the old values to the child that contains the old
sampling location; in contrast to previous work, we split
nodes at longest edge rather than randomly choosing split
planes. Bisection is performed so as to split the parameter
space in portions of equal volumes [PB11].

4. Generate a new random sampling point x in the leaf that
does not contain the old sampled value. Find correspon-
dences at x, evaluate the cost function value, and store its
value as current best in the new node interval. Propagate
bottom up the new parameter and function values so that
each parent contains the best parameter and function value
in both children.

5. Exploit the computed correspondences by finding a new
parameter location x and function value ε(x) through
the solution of the absolute orientation problem in Equa-
tion (4).

6. Locate the leaf node containing the newly created position
x through a top-down visit. Bisect the parameter interval
in the leaf node into equal parts; if the new parameter
value x and the one currently in the leaf are in different
halves, create two children, one with x, the other with the
previous position; otherwise, if x improves the error value
in the leaf, replace the values currently in the leaf node
with the new ones. Finally, propagate bottom up.

7. Increment iteration count iM by doubling the budget and
repeat from step 2, otherwise terminate the algorithm if
overlap between point sets is above a given threshold.

4. Results
We implemented our SOAR algorithm in C++ and tested it on
a Linux system equipped with a 12 Intel Core i7-3930K 3.2
CPU Processor, 32GB RAM and a NVidia GeForce GTX 560.

Algorithm 1 Given two point sets P, Q in arbitrary positions
compute the best affine alignment according to robust dis-
tance between the point sets and using stochastic branch and
bound on a 7-dimensional parameter space in the interval
(low,high)

INPUT: P, Q, (low,high)
OUTPUT: xopt ∈ (low,high)
if !tree then

x← rand(low,high)
compute matches between P and Tx(Q)
f ← ε(x) using equation (2)
tree← node(low,high,x, f )

end if
for level = 1→ L do

iM = 2∗ iM
for i = 1→ iM do

compute pl using equation (3)
find lea f = node(lowlea f ,highlea f ,xlea f , flea f ) (se-
lect child with lower f if rand(0,1)≤ pl)
split in (lowlea f ,mid) and (mid,highlea f )
if xlea f ∈ (lowlea f ,mid) then

childle f t ← node(lowlea f ,mid,xlea f , flea f )
xnew← rand(mid,highlea f )
compute matches between P and Txnew(Q)
fnew← ε(xnew) using equation (2)
childright ← node(mid,highlea f ,xnew, fnew)

else
childright ← node(mid,highlea f ,xlea f , flea f )
xnew← rand(lowlea f ,mid)
compute matches between P and Txnew(Q)
fnew← ε(xnew) using equation (2)
childle f t ← node(lowlea f ,mid,xnew, fnew)

end if
propagate best to the root
for w = 1→W do

try to improve xI , fI by solving problem in eq. (4)
find lea f = node(lowlea f ,highlea f ,xlea f , flea f )
containing xI
split in (lowlea f ,mid) and (mid,highlea f )
if xI ∈ (lowlea f ,mid) & xlea f ∈ (mid,highlea f )
then

childle f t ← node(lowlea f ,mid,xI , fI)
childright ← node(mid,highlea f ,xlea f , flea f )

else
if xlea f ∈ (lowlea f ,mid) & xI ∈ (mid,highlea f )
then

childle f t ← node(lowlea f ,mid,xlea f , flea f )
childright ← node(mid,highlea f ,xI , fI)

end if
else

if fI < flea f then
lea f ← node(lowlea f ,highlea f ,xI , fI)

end if
end if
propagate best to the root

end for
end for

end for
xopt ← xroot
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Approximate nearest neighbors are computed with the GPU-
accelerated RBC library [Cay10]. Benchmarked KNN speeds
were around 6M point queries per second (with K = 4 for
fuzzy assignment), while error evaluation speed was 66M
points queries per second.

(a) Coati model P (b) Coati data Q (c) Coati merged

(d) ω = 10% (e) ω = 40% (f) ω = 100%

(g) σ = 1.0 (h) σ = 4.0 (i) σ = 10.0

Figure 3: Robustness with respect to outliers and noise: top
row shows the reference model and data point sets for the
Coati model together with the correct alignment, while middle
and bottom rows show examples of alignments obtained with
SOAR algorithm on both point sets degraded with varying
amount of outliers ranging from ω = 10% to ω = 100% with
respect to the original point count, and varying amount of
gaussian noise with variance ranging from σ = 1.0 to σ =
10.0.

Robustness with respect to outliers and noise. We evalu-
ated the performance of our method regarding robustness
with respect to noise and outliers. Specifically, we aligned
two partially overlapping parts (containing 28.1K and 28.2K
samples) of the Coati model (see Figure 3, top row), un-
der varying conditions of noise and outliers added to both
the model and the data set (see Figure 3 middle and bot-
tom row). By adding considerable amounts of outliers, we
also test for different amounts of overlap, in a range from
97% (original scans) to 48% (maximum amount of noise).
We compared our results with the results obtained with the
stochastic global registration method (in the following de-
noted as SGR) described in [PB11], which is currently as-
sumed to be the best performing technique in the class of
rigid stochastic registration methods, namely with respect to
robust RANSAC schemes [AMCO08] and local descriptor

based approaches [LG05]. Since the SGR method is limited
to rigid registration, we kept in our method the scale parame-
ter fixed to s = 1. For the sake of comparison, for each couple
of datasets containing a different amount of outliers and noise
we performed 20 trials with our SOAR method (4 multiple
loops for a max of 15K iterations) and with SGR (one single
loop with 15K iterations) and we recorded rigid transforma-
tion errors with respect to the correct solution. To improve
accuracy, after stochastic optimization SGR was followed by
20 ICP steps. Charts in Figure 4 show the average alignment
position errors together with error bars with respect to the
correct ground truth transformation: SGR is compared to our
method with different number of points used for fuzzy as-
signments (K = 1,K = 4, and K = 8). It is evident that our
SOAR method is robust to outliers and noise and that, with
same number of iterations, rigid alignment performances are
generally better than those of SGR, especially when using
K ≥ 4 samples for fuzzy assignments.
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Figure 4: Statistical comparison of our method vs SGR
with different amount of outliers and noise. Position error
in mm obtained for the registration of Coati (see Figure 3)
with respect to ground truth are reported for SGR [PB11] (in
yellow), and for SOAR with K = 1 (in green), with K = 4 (in
blue), and with K = 8 (in red), showing its behavior in the
presence of outliers (upper chart) and noise (lower chart).

Affine alignment examples. An important use case of our
method is cross-modality mapping. This problem occurs,
for instance, when mapping sparse point clouds derived
from structure-from-motion to denser clouds from range
sensors [PGC11b, CDG∗13] for the purpose of coloring
datasets [PGC11a]. This problem leads to registration of
sparse and noisy clouds at different scales, and cannot be
handled with previous stochastic methods for rigid registra-
tion [AMCO08, PB11, MMA14]. Figure 5 shows successful
alignments on very complex datasets (in red the sparse model
point cloud registered with respect to the data point cloud).
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Figure 5: Multimodal affine alignment examples: in red the data point clouds registered with respect to the model point clouds.
Models come from Digital Heritage acquisition campaigns, and data are acquired with 3D laser scanners, and high resolution
digital cameras.

In all results, we used K = 4 for fuzzy assignments. Specifi-
cally, Figure 5 (A) and Figure 5 (B) show multimodal point
clouds derived from models coming from the multi-view eval-
uation repository by Strecha et al. [SvHVG∗08, SvHVG∗].
The fixed model geometries are acquired with laser scanning
(18Mpoints at 4mm resolution for Herz-Jesu and 13Mpoints
at 3mm resolution for Fountain), while the data point clouds
are derived from 6MP images acquired with digital cameras.
Figure 5 (C) represents the digital model of an archaeological
site (grave from a prehistoric necropolis). It was acquired
using a time-of-flight laser scanner Leica ScanStation2 and
a Nikon D200 camera; it is a challenging dataset since the
geometry exhibits many smooth regions and does not contain
well defined planes or straight lines. Finally, Figure 5 (D)
represents a part of the left nave of a Romanesque Basilica,
acquired using a time-of-flight laser scanner Leica ScanSta-
tion2. The data point clouds were instead derived from a
photographic dataset acquired with a Nikon D200 camera. In
this case, the automatic alignment is complicated by the fact
that the model is non-uniformly sampled and contains a high
percentage of outliers.

Dataset Model Data Scale Error (Overlap(%))
Fountain (Fig. 5 (A)) 13M 58K 11.7 0.219(100)
Herz-Jesu (Fig. 5 (B) ) 18.1M 26.7K 0.85 0.09(100)
Grave (Fig. 5 (C)) 8.4M 120.6K 280.0 10.984(91)
Church (Fig. 5 (D)) 4.8M 63.5K 2093.0 0.201(94)

Table 1: Alignment statistics: we report statistics on success-
ful alignments obtained with our algorithm on various com-
plex datasets exhibiting different scales and density. Datasets
sizes, relative scales, as well as final scale normalized error
values and overlaps are provided.

Table 1 reports some statistics recorded during successful
automatic alignments obtained with our algorithm.
Alignment times ranged from 3m22s to 47m22s for the most
complicated case. Since for most datasets ground truth is not

Figure 6: Performance statistics. On the left, the registra-
tion time for Coati in Figure 3 top is reported as function
of the number of nearest neighbors. On the right, the plot
of normalized error function is reported as function of the
optimization time for the registration of datasets in Figure 5.

available, the quality of the final registration is verified by
visual inspection (see Figure 5) and checked using additional
knowledge about known correspondences (i.e., using the orig-
inal images for the SfM datases). Figure 6 plots the value of
the robust error function as function of the optimization time
for the registration of datasets in Figure 5. As one can see,
most alignments are obtained within few minutes. The depen-
dence of optimization time on the number of correspondences
employed for fuzzy assignment is presented in Figure 6(left).
As one can note, optimization cost increases approximately
linearly with the number of fuzzy correspondences. It should
be noted, however, that this behavior is also dependent on
the particular implementation of the KNN library employed
(RBC [Cay10]).

5. Conclusions
We presented an effective fully automatic method for solving
the affine registration problem, which can also be used for the
simpler rigid surface registration. The technique is based on
a stochastic approach for the global optimization of an error
function based on one-to-many distance metrics which are
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robust to noise and resistant to outliers. The technique iter-
ates between correspondence matching and error evaluation.
In contrast to previous work, instead of simply constructing
the tree by guided random sampling, we exploit the problem
structure through a low-cost local minimization process based
on analytically solving absolute orientation problems using
the current correspondences. Our results demonstrate that the
algorithm is capable to recover the globally optimal scale, ro-
tation, and translation alignment parameters and is applicable
in a variety of difficult settings, including very sparse, noisy,
and outlier-ridden datasets that do not permit the computa-
tion of local descriptors. Current limitations of SOAR method
are related to computational efficiency: as for other stochas-
tic methods, long running times are sometimes required to
reach the global optimum for complex models. To this end,
we plan to exploit more efficient GPU parallel schemes to
speed-up computations. Moreover, typical difficult cases for
the method, shared with all other related methods working
directly on points, occur when the objects exhibit strong slip-
page, leading to flat error landscapes. As future work, we
plan to explore the potential of our approach for the recon-
struction and processing of 3D architectural scenes starting
from 2D images or videos, in order to build a fully automated
3D reconstruction pipeline.
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