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Abstract

We present a framework for the online compression of incrementally acquired point cloud data. For this, we extend
an existing vector quantization-based offline point cloud compression algorithm to handle the challenges that arise
from the envisioned online scenario. In particular, we learn a codebook in advance from training data and replace
a computationally demanding part of the algorithm with a faster alternative. We show that the compression ratios
and reconstruction quality are comparable to the offline version while the speed is sufficiently improved. Further-
more, we investigate how well codebooks that are generated from different amounts of training data generalize to

larger sets of point cloud data.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data com-
paction and compression—I.3.3 [Computer Graphics]: Picture/Image Generation—Digitizing and scanning 1.4.1
[Image processing and computer vision]: Digitizing and Image Capture—Quantization

1. Introduction

Through advances in the field of robotics and in scanner
technology, such as the Kinect, incrementally acquired point
clouds are becoming increasingly important. We consider
the scenario of a robot equipped with a 3D scanning device
like a laser scanner traversing an urban scenario, incremen-
tally building a 3D map of its surroundings. Thus, the robot
continuously acquires point cloud data that is either stored
on the robot itself or transmitted to a base station, leading to
a huge amount of data that has to be stored for future access.
As a consequence, a framework for the compression of point
clouds with the following properties is required:

e Support for incrementally acquired data (from different
scan positions)

e Level of detail (LOD) support for fast visualization and
collision detection

e Fast compression and decompression capability

e Good compression ratios

Since most publications in this field focus on offline com-
pression for static point clouds, to the best of our knowl-
edge there is no algorithm that meets all of these basic re-
quirements of the application scenario in mind. A promising
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approach is described in [SMKO08]. It is based on a decom-
position of the point cloud into clusters of which each is ap-
proximated by a geometric primitive, e.g. a plane. Fine-scale
geometry is encoded as height fields over these primitives,
which are compressed progressively via image pyramids and
vector quantization.

The approach partially fulfills our requirements: it fea-
tures fast decompression with a selected level of detail. The
reported compression ratios are state of the art. The geomet-
ric shape primitive approximation is well-suited for our sce-
nario, which consists primarily of man-made objects. How-
ever, the approach in its original form does not support in-
crementally acquired data. Naively, one could attempt to up-
date the compressed representation by unpacking the data,
adding the newly acquired points and compressing the re-
sult again. This has the disadvantage of leading to an unac-
ceptable workload, as the amount of data to be compressed
steadily increases. Also, since the compression is lossy, the
process of iterated decompression and compression of the
reconstructed point clouds introduces degradation of the
data. An alternative would be to apply the unmodified of-
fline compression algorithm to each incremental point cloud.
However, for the vector quantization a codebook is required,
which would have to be generated for each newly acquired
point cloud. This would be computationally expensive.
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We argue that in many scenarios prior assumptions about
the structure of the data can be made. Thus, we introduce
a codebook learning phase on representative sample data
as a preprocessing step. We identified the original moving
least squares-based height field generation procedure as an-
other speed bottleneck of the algorithm. In order to remedy
the aforementioned shortcomings, we extend the original ap-
proach by:

e Introducing a codebook learning phase as a preprocessing
step

e Speedup of the height field generation algorithm by us-
ing GPU-based Delaunay triangulation and rasterization
instead of moving least squares (MLS)

We evaluate which effect dictionaries generated from
training data of different sizes and our suggested height field
generation have on the compression ratio and reconstruction
quality. Our evaluation indicates that the quality of the re-
constructed results from iterative compression is comparable
to those of the original algorithm executed on the integrated
data.

2. Related work

A large number of offline point cloud compression algo-
rithms have been published. Here, we give a short overview
of the most related publications.

Many algorithms are based on space partitioning using oc-

trees. Botsch et al. [BWKO2] sample the characteristic func-
tion of the surface into an octree. Only the subdivisions of
non-empty cells are stored via byte codes. They achieve data
rates of 2 bits per leaf node. In general, more leaf nodes than
original points have to be stored, resulting in overall higher
bitrates. Gumhold et al. [GKISO5] use a prediction tree
which is arithmetically encoded in a sequential way. Schn-
abel and Klein [SK06] build an octree for the point cloud
whose occupancy is also arithmetically encoded. In order
to reduce entropy, they predict the lower octree levels from
the higher ones by intersecting a least-squares-fitted plane.
A similar idea is presented in [HPKGO06] and [HPKGO8].
Merry et al. [MMGO6] use a spanning tree to represent and
predict the points. As in the other algorithms, this tree is be-
ing compressed.
An approach that is not tree-based is [WGE*04]. They per-
form a multiresolution decomposition of the point cloud, re-
sulting in a spatial hierarchy. On this structure they perform
a three stage coding: First differential coding, then zerotree
coding and finally arithmetic coding.

In contrast to the methods above, Schnabel et al. [SMKO08]
proposed to segment the points by the means of “compati-
ble” primitive shapes rather than a space partition. We sum-
marize their approach in more detail in Section 3.

Recently, similar ideas were explored in [RBFB13,RBFB14]
and [DCV14]. Instead of parameterizing the points on ex-
tracted shapes, these approaches fit oriented local surface

patches by collecting data in the neighborhood of occupied
cells on a regular grid. Instead of vector quantization K-SVD
is used to find an overcomplete codebook and represent the
data as linear combinations of codewords.

Little has been published on the subject of non-static point
cloud compression. One recent example is [KBR*12]. They
focus on streams of point clouds recorded by a static depth
camera such as the Kinect. They represent each frame by
an occupancy octree and then perform an XOR operation on
each of a frame’s octree’s node representations to the respec-
tive ones of the previous frame. The XOR operation leads to
a great entropy reduction if large parts of the point clouds
are static or overlapping, yielding good compression results
via arithmetic encoding. However, in the envisioned appli-
cation, scans taken at different positions with possibly little
overlap have to be integrated, rendering this approach inapt.

3. Our compression framework

As described in section 1, our framework is based on
[SMKO8]. We therefore briefly summarize the original
method and then describe our extensions.

Initially, geometric primitives like planes or spheres are
detected in the input point cloud by the RANSAC algorithm
described in [SWKO7]. Each point of the original cloud is
by this means either associated to a geometric primitive or
discarded. Usually, the number of discarded points is very
low. The point cloud can already be very coarsely approxi-
mated by these primitives. In order to account for fine-scale
geometry, a height field, i.e. a bitmap image containing ele-
vation data, is constructed over each primitive. The bitmap
is filled by intersecting the vector originating in each pixel
and pointing in the primitive’s normal direction with the
moving least squares surface defined by the primitive’s as-
sociated points. In order to account for holes in the original
data, an additional occupancy bitmap is constructed. This
bitmap contains a 1 for an occupied height field pixel and a
0 for holes. Each height field is represented as a Laplacian
pyramid [AB81]. Such a pyramid consists of a predefined
number N + 1 of images and is obtained by first construct-
ing a Gaussian pyramid. The Gaussian pyramid’s lowermost
level gg is the original height field. Level g;; is obtained
from level g; by convolving it with a Gaussian and down-
sampling. The Laplacian pyramid consist of the difference
images of the Gaussian pyramid’s levels. That is, level L; of
the Laplacian pyramid is g; — ug;;1, where u is an upsam-
pling operation and Ly = gy. This pyramid representation
allows for level of detail reconstruction: if all levels of the
Laplacian pyramid are combined, the original height field
would be reconstructed. If only the coarsest or a subset of
the levels is used, a downsampled version is obtained. Schn-
abel et al. [SMKOS] replaced the Gaussian by the CDF%
wavelet [CDF92], due to its advantages concerning a GPU
implementation. Finally, each level of all the Laplacian pyra-
mids is vector-quantized. For this, all images are split into
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equally-sized tiles of a size of e.g. 16 x 16 pixels. For these
tiles, a dictionary with representative images is built using
Lloyd’s algorithm. Compression is performed by replacing
the original image tiles with dictionary entry indices. Since
all image tiles are known to the offline algorithm, a nearly
optimal codebook can be generated.

To understand the consequences of our additions, it is im-
portant to note that the original offline algorithm performs
a lossy compression. Points that are not assigned to a prim-
itive during RANSAC shape detection are considered to be
outliers and are discarded in all consecutive steps. Moreover,
the representation of the points in a height field over the sur-
face requires a re-parameterization from the likely irregular
distribution of points into a regular image grid. The height
field’s resolution is chosen in such a way that it approxi-
mately matches the point cloud’s resolution. Ideally, there
should be only one point projected into each height field’s
pixel to avoid data loss. On the other hand, there should not
be too many “empty” pixels, as this would lead to an inferior
compression ratio. Nonetheless, after this step positions can-
not be restored exactly any more. Finally, the compression of
the image pyramid via vector quantization is a lossy method
as well. Tiles of the images are represented by a common
substitute from a smaller codebook. Here, the reconstruction
quality depends on the choice of that codebook. Also note
that the codebook generation step has to be performed on
each dataset anew.

We argue that in certain applications, such as the envi-
sioned urban exploration scenario, a reasonable codebook
can be learned from selected training data. Our evaluation in
Section 4 indicates that this is the case. Therefore, we im-
plement an offline learning phase. On a given training point
cloud, we detect shapes and create height fields for these
shapes. Similar to Schnabel et al. we then use Lloyd’s al-
gorithm to obtain a vector quantization for this data satisfy-
ing a given maximum root mean square error (RMSE). The
resulting codewords form the precomputed codebook. This
training point cloud is usually chosen as a subset of the orig-
inal point cloud, in a real-world application, this would be
the first few initial scans. During online compression, shape
detection and height field generation are performed on the
incrementally acquired data. These height fields are vector
quantized by expressing them using the precomputed code-
words with minimal L? distance. An overview of the method
is given in figure 1.

The shape fitting and the assignment of codewords can be
performed reasonably fast. However, we found the moving
least squares (MLS) interpolation used for the height field
generation to be a bottleneck. We instead propose to com-
pute the 2D Delaunay triangulation (DT) of the points pro-
jected into the parameterization domain of the shape. The
points’ x and y-coordinates are in the domain’s coordinate
system, while the z-coordinate can be considered the height
value. We identify the 3D points with their projected 2D
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Figure 1: Overview of the most important steps of the com-
pression framework.

counterparts. and subsequently assign the z-coordinates as
color values to the 2D points. We employ the fast GPU al-
gorithm by Rong et al. [RTC*08] to compute the Delaunay
triangulation of the 2D points. Using the triangulation, lin-
early interpolated height values can efficiently be rasterized
via OpenGL into the height field image as the points’ colors
are the original height values. Using GPU off-screen ren-
dering, each height field pixel is assigned a color, equaling
the interpolated height value. In our case, the linear inter-
polation over the triangles provides similar quality to MLS,
because the resolution of the height fields has been chosen to
have roughly one point per pixel. If more than one point of
the original would fall into one height field pixel, the Delau-
nay triangulation would produce several triangles “belong-
ing” to this pixel. In this case it would on of the triangle
is selected quasi randomly for the rasterization, i.e. for the
height value calculation. This can lead to a result differing
severely from the result an MLS interpolation would deliver.
In our case though, the number of triangles per pixel is usu-
ally very small, leading to a result similar to that of the MLS
method.

4. Evaluation

For our evaluation, we use the commonly employed quan-
tities bits per point (BPP), root mean square error (RMSE)
and peak signal to noise ratio (PSNR). The BPP are the com-
pressed file size divided by the number of points. The PSNR
is defined as: PSNR = 20log;, (%), where d is the diagonal
of the point cloud’s bounding box and r is the RMSE.

All experiments were carried out using a machine with
two Intel Xeon E5645 CPUs (at 2.4GHz) and a NVIDIA
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Dataset | method time BPP | PSNR
David MLS 455s 1.97 | 83.2dB
DT 177s 1.79 | 82.9dB

Bremen MLS 2488s | 2.71 | 81.3dB
DT 153s | 2.59 | 82.6dB

Table 1: Compression results obtained from MLS and DT
based height field resampling.

GeForce GTX 570 GPU. While parts of the compression
are well suited for parallel execution, others were performed
on a single CPU core. The reported timings are wall-clock
times.

We first evaluated our method on the David point cloud
from the Digital Michelangelo project, since it is widely-
used for comparisons in the literature. Using the unmodified
algorithm described in [SMKO08] we were able to reproduce
the reported compression rate of 1.97 BPP for a peak sig-
nal to noise ratio (PSNR) of 83.5 on the David point cloud.
We evaluated the iterative compression on the David point
cloud by subdividing it into 56 subsets. We found that for
this point cloud the choice of the subset for dictionary learn-
ing had an impact on the compression results: when using
a subset extracted from the statue’s pedestal, we achieved a
PSNR of 83.1757 at a bitrate of 2.94BPP. When using a sub-
set of the head for dictionary learning, we achieved a bitrate
of 2.26BPP at a PSNR of 83.2514.

To assess the performance of the approach on scans from
urban environments, we tested it on the Bremen point cloud
by Dorit Borrmann and Andreas Niichter, consisting of ter-
restrial laser scans taken in the city center — see Figure 2.
We used the first 27 scans of the dataset, which comprise
full 360° views taken from three different scanner positions.
We observed that on this data, the achieved compression
ratios for a similar PSNR were slightly lower than for the
David point cloud (see Table 1). This can be explained by
the nature of the dataset. Compared to the David, the Bremen
point clouds possess some more challenging properties. The
sampling density in a single scan varies considerably, de-
pending on distance and angle of the scanned surface. This
is especially true for the ground, which is sampled extremely
sparsely outside the direct vicinity of the scanner. Addition-
ally, many of the scanned surfaces contain significant holes,
e.g. windows in building walls, and the dataset shows a lot of
thin structures, such as trees or overland-powerlines, which
are comprised of only a handful of points. While tackling
these issues presents an interesting avenue for future re-
search, it was outside the scope of this paper.

We determined the change in performance by the pro-
posed GPU based interpolation. In Table 1 we compare the
compression results to those obtained using the originally
described MLS. The height field generation part was sped
up by a factor of 16.3 on the Bremen dataset. Using De-
launay triangulation yields in this case a compression ratio

iterative static
# points 19,451,257
scene diameter 67.92m
# point clouds 27 1

total compression time 502s 903s
# shapes 1720 1590
# discarded points | 0.61% 0.5%

compression ratio 1:34 1:31
BPP (incl. codebook) 2.84 3.1
RMSE | 4.86mm 5.37mm
decompression time 10.5s

Table 2: Performance of the iterative and static compres-
sion. In this experiment we used the optimal codebook from
the static offline compression as input for the iterative com-
pression. In both cases the faster DT interpolation was em-
ployed. Using a common precomputed codebook saved an
additional 242 seconds in the iterative case.

Figure 2: Visualization of a subset of the Bremen point cloud

and reconstruction quality similar to or better than MLS. In
all consecutive experiments we therefore employ the pro-
posed Delaunay triangulation. This accelerates the overall
compression algorithm by a factor of about 5.

In the next experiment, we tested the influence of using
iterative compression only, but maintaining the “optimal”
codebook. For this, we first used the static compression on
a point cloud obtained from merging the first 27 individ-
ual scans of the Bremen dataset. We then used the “opti-
mal” codebook that was computed by the static compression
as input to the iterative compression. During iterative com-
pression all 27 point clouds, each containing about 720,000
points, were processed individually and added to the com-
pressed representation. Table 2 lists the detailed results. It
is noteworthy that the iterative compression finds a similar
amount of shapes and outliers. This indicates that there is
little overlap in the single scans. In summary, the iterative
compression manages to achieve a better compression ratio
with a higher PSNR at lower compression times. Average
compression times per single scan were 18.6 seconds.

Finally, we investigate the influence of the precomputed
codebook on the Bremen point cloud. For this, we learn the
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n training scans | 1 2 3 4 5 6
RMSE [mm] | 4.1 47 41 54 42 39
BPP | 27 26 28 28 28 27
time [s] | 536 530 563 545 563 535

Table 3: Performance of the iterative compression with re-
spect to codebook learning evaluated on the Bremen dataset.
Here, we selected n random scans from all available. We ex-
tract shapes and height fields from the n point clouds to learn
a codebook. This is subsequently used to incrementally com-
press all 277 scans.

Level of detail | 0 1 2 3. 4 5
RMSE [mm] [ 10. 96 96 62 5 38
time[s] | 0.01 005 0.7 053 18 62

Table 4: Timing and reconstruction error for decompression
of the compressed dataset at different levels of detail.

codebook from a random selection of the input scans. Each
experiment was carried out multiple times and we report the
average values. As the results in Table 3 illustrate, even a sin-
gle scan is sufficient to learn a descriptive set of codewords
for the scenario. For a comparison see also Figure 3, which
depicts the reconstruction results from the compressed rep-
resentation of the static and iterative compression, where the
former used a codebook learned from all scans and the latter
a codebook learned from only 2 scans. Both used Delaunay
triangulation for the height field computation. We conclude
that for urban scenarios, the proposed incremental method
with a precomputed codebook is robustly applicable.

5. Conclusion and future work

We presented a framework for the efficient online compres-
sion of incrementally acquired point cloud data. For this we
modified a state-of-the-art offline point cloud compression
algorithm to fulfill our requirements.

We were able to compress incrementally added point
clouds while achieving a compression ratio and reconstruc-
tion quality comparable to those of offline algorithms.

The employed compressed representation allows recon-
struction at different levels of detail. Lower levels offer real-
time access with still acceptable reconstruction errors (see
table 4). In the example application scenario of urban map-
ping with a robot, this facilitates the direct use of the com-
pressed data for visualization purposes as well as for colli-
sion detection computations.

The algorithm is primarily well suited for input data that
can be well represented by geometric primitives, i.e. man-
made objects. The compression rate and reconstruction qual-
ity depends on the employed vector quantization dictionary.
That is, the data chosen for the dictionary generation — usu-
ally the initial scan(s) — has to be chosen deliberately. It
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should be representative for the data to be acquired in the
future. In our experiments, we found that for the Bremen
dataset, most subsets of the point cloud provided similar
compression results. In the case of the David point cloud,
it was necessary to include parts of the head for the code-
book generation in order to achieve compression rates com-
parable to those of the offline algorithm. Furthermore, our
framework requires a GPU and a reasonably fast CPU and
can thus only be used on autonomous robots with sufficient
computing performance or on base stations, to which the
data is being sent continuously. In the future we intend to
work on further algorithmic optimizations and a comparison
of our Delaunay triangulation-based height field generation
to an MLS-based height field computation implemented on
the GPU.

In summary we conclude that using a pre-learned code-
book for vector quantization-based compression of incre-
mentally acquired point clouds is possible and delivers com-
pression results comparable to those of the offline algorithm.
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