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Abstract. In this paper we propose a new approach for the generation
of visual scales for the visualization of scalar and multivariate data. Based
on the specification of only a few correspondences between the data set
and elements of a space of visual representations complex visualization
mappings are produced. The foundation of this approach is the introduc-
tion of a multidimensional space of visual representations. The mapping
between these spaces can be defined by approximating or satisfying the
user defined relations between data values and visual atributes.

1 Introduction

The visualization of scalar and multivariate quantitative data involves the map-
ping of data onto a visual scale. The principles of such a mapping of scalar data
to scales of visual attributes are well-known for a number of basic scales. In color
mapping, data values are mapped to appropriate hue of lightness values. Scatter
plots are based on the principle of mapping data values to positions, or more
exactly, to distances from an axis. Other variables often applied for such pur-
poses are scale, form, and texture. Bertin [4] describes a general methodology of
how to select an appropriate mapping to these visual variables and how to com-
bine them. Cleveland gives a ranking of their effectiveness [9]. For multivariate
data with two upto five dimensions more complex color and texture scales can
provide solutions in some cases. For the visualization of local variations higher
dimensions data glyphs have been proposed and been applied successfully. Cher-
noff faces [8] and stick figures [13] are well-known examples for this visualization
approach. Tufte gives a good overview of relevant visualization techniques and
discusses their effectiveness in certain application areas [17]. Nevertheless, a gen-
erally accepted set of visualization rules does not exist.

All the techniques mentioned above represent fundamental approaches to the
visualization of scalar and multivariate data. The general understanding is that
no single of these visualizations is effective in all possible situations. One visu-
alization may — and should of course — produce new insights and, by this, new
questions which again produce the need of different views to the data. A good



number of applications have proven that a user can gain knowledge about some
unknown data more effectively when provided with highly interactive techniques
[15]. Techniques such as Focusing and Linking [7] extend this interactivity even
further by connecting different views to the data using interactive feedback.
However, effective visualization still is very, very difficult. There are a number
of reasons for this. First, a mapping of application data to these fundamental
variables involves an abstraction. If the user is familiar with the idea of this
mapping, he may understand the generated visualization pretty good. However,
often the application context is lost and the visualization which was applied to
simplify the analysis of the data involves an analysis step or experience by its
own.

Second, it is not easy to visualize a number of parameters using these funda-
mental mappings only. Usually, the visualization of multiparameter data involves
the generation of application specific models and solutions. General solutions and
general scales do not exist for this purpose. Consequently, the user needs meth-
ods to define a visual scale for such applications very quickly and easily. Such
methods do hardly exist to date.

Last, and may be even most important, it is still difficult to change visualiza-
tion parameters and to produce a new, appropriate visualization intuitively. For
example, to highlight a specific data value one has usually to modify the data
filtering or to completely redefine the mapping of the data to visual attributes.
A direct and interactive modification of local data mappings is hardly provided
by any visualization technique today.

In this paper, we introduce a new approach for the visualization of scalar and
multivariate data, which addresses the problems presented above. This approach
is based on the direct and interactive specification of local data mappings.

2 Visualization by Examples

The general paradigm of our visualization approach is to enable the user to vi-
sualize some data by specifying the mapping of a small number of selected data
values. We call this Visualization by Example.

This approach can be explained best with an example. A simple mapping of
some scalar quantitative data to color can be defined by linking two arbitrary
data values with appropriate color values. This results in a linear mapping. Fur-
ther links can be supplied to adjust the mapping locally, resulting in a more
sophisticated mapping function. The visualization of any local feature and its
neighborhood is directly and intuitively controlled by the user and may be easily
changed when provided with appropriate visual attributes or objects on which
the data may be mapped. Note that this strategy is fundamentally different from
the selction of a color scale and applying this scale to all data.

While the direct and interactive linking of data values with visual representa-
tions is not new, it has not been combined with appropriate methods for the
approximation of data mappings based on the supplied correspondences.

In the example presented above this approach seems simple and easy to follow.



However, the generalization of this approach calls for a mathematical model de-
scribing the data objects, flexible visual scales, and the mapping between this
values based on a small number of parameters and features.

In addition, the user will have some additional knowledge about the data in many
cases, which can be exploited with our approach. Moreover, the user might want
to highlight several data values by mapping them to special representations.
There exist approaches to describe data spaces based on mathematical models
[6]. Mathematical models have currently been proposed to describe the spaces
of visual scales and representations in combination with the use of morphing
to construct the corresponding graphical objects for this purpose [2] [12]. This
approach allows to define rich sets of useful visual representations from only a
few graphical base objects. As such, this method provides the appropriate foun-
dation for a Visualization by Example.

In the following section we will discuss the fundamentals and characteristics in
more detail.

3 Space of Visual Representations

For our visualization technique, the visual representations have to be structured
as a multidimensional space. That is, a visual object has to be element of an
n-dimensional space and represented by a vector r € IR™.

For many visual scales such a representation is quite natural:

— Color can be represented by real values in [0, 1]3, color scales might be rep-
resented by real numbers in [0, 1].

— Size or position is naturally a real number.

— For textures one defines a number of real valued parameters, which control
their appearance.

— In general: If the visual representations are used to depict quantitative data
there has to be a reasonable understanding in terms of real valued vector
spaces.

In [2] and [12] we have proposed a more flexible way to define spaces of visual
representations: Given a number of graphical objects of any class (images, poly-
hedra, etc.) we construct a space by morphing among these objects. Morphing is
usually applied to generate animations and, as such, exploited only for blending
between two objects. In this approach, a morph among multiple objects by per-
forming several morphing operations between two objects subsequently defines
a multidimensional space of objects, whereby each of the morphing operations
adds another dimension to the space. Barycentric coordinates can be used to rep-
resent elements of that space. Elements are constructed by morphing between
two objects recursively. In that case, a space constructed from n graphical base
objects is an affine space with dimension n — 1 (a more rigorous treatment of
the mathematical properties of such spaces can be found in [1]).

Since morphing is applicable to produce scales such as color, position, size, etc.
we understand this to be a generalization of these techniques to define spaces of



visual representations. For the mapping technique explained in the next section,
however, the actual construction of the space is not relevant. All we need are
visual representations that can be referred to by n-vectors.

The strength of using morphing techniques to generate visual representations of
data becomes evident when applied to multivariate data. As mentioned before, it
has been proven difficult to find intuitive visual representations for multivariate
data and multidimensional objects. By morphing among multiple objects one
could visualize multivariate data as elements of a space of graphical objects.

4 Mapping Data to Coordinates

The main idea of our approach is to let the user define several relations between
data values and graphical representations. These correspondences are used to
construct a mapping from data to visual representations. We want to allow the
user to define any number of correspondences, usually beginning with only a
small number of correspondences. Depending on the application the user might
decide to generate an affine mapping in any case, or, if no simple affine mapping
can be found, to accept a non-linear function to depict the mapping.
To define a single correspondence, the user first chooses a data value and then
searches the space of graphical representations for a suitable element. That is, the
user gives an example for the intended relation between data and visualization.
We denote the space of data values as V9, i.e. each vector consists of d variates.
Assume a number e of data vectors wg,v1,...,ve—1 should be mapped to a
coordinate rg, 71, ...,7e—1 In the space of visual representations. If e < d then
an affine mapping a : V% — IR" exists that satisfies a(v;) = »; for all i €
0,...,e— 1. However, if ¢ > d that mapping does not necessarily exist.

We suggest to use a linear mapping whenever possible, i.e. in case e < d. The
reason for this is that visual scales are still meaningful, properties of the data
variates are preserved in the visualization, and the order of the data values is
not changed.

If e is greater than d we offer three choices:

1. An affine mapping that fits the given correspondences as far as possible.

2. A non-linear mapping that satisfies all relations by locally changing a linear

approximation.
3. A non-linear mapping that satisfies all relations by globally interpolating the

relations.

The second and third mapping are constructed using the same approach as
discussed in section 4.2. Both need an approximation of the affine mapping
similar to the one used in the first approach. In the upcoming subsection we
explain how to calculate that affine mapping, independent of the number of
given relations.

4.1 Finding an affine mapping

We want the mapping a to be represented by a matrix multiplication. Thus, we
are searching for a n x d matrix A that maps from V¢ to coordinates in the



space of visual representations. In case e < d, A has to satisfy the simultaneous
equations

AU() = To

Avl = T

(1)

Ave—l = Te—1,

in case e > d we like to minimize the residual
([[Avo — rol|, [|[Av1 — 71|, .. ., [[AVem1 — Te—1]]) .

We now first solve the first case. The techniques we employ here will automati-
cally produce a solution to the second case.
If we look at the i-th row a; of A we get the simultaneous equations
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(2)
A;Ve—1 — Te—1;.

We define the d x e matrix

— Ve—1 —

to rewrite the simultaneous equations in (2) as a matrix equation:

T
BaiT = <r0nrlnsarﬁ—1i,> (4)

The solutions of these n systems of linear equations yield the rows of A. In order
to solve one of these systems we use the Singular Value Decomposition (SVD,
[14]). The SVD is a decomposition of a matrix into a product of an orthogonal
matrix, a diagonal matrix and again an orthogonal matrix. This decomposition
is always possible [11]. For most applications the values of the diagonal matrix
(singular values) are of particular interest. If any of the singular values is zero, the
above matrix equation has no solution. If we replace any zero singular value by
infinity, we can invert the diagonal matrix (the orthogonal matrices are invertible
anyway). By multiplying both sides of (4) with the three inverted matrices we
always find a solution for a;, no matter what the condition of B is. The SVD
has several nice properties that are interesting for our problem:

1. Tt gives a stable solution in the quadratic case, even in the presence of de-
generacies in the matrix.



2. It solves the underspecified case in a reasonable way, i.e. out of the space of
solutions it returns the one closest to the origin.

3. Tt solves the overspecified case by minimizing the quadratic error measure
of the residual.

Using the SVD we can compute all rows of A and thus have found the affine
mapping we were searching for.

4.2 Non-linear mappings

We want to find a mapping a the satisfies all equations a(v;) = ;. This could
be seen as a scattered data interpolation problem where we try to find a smooth
interpolation between the values r; given at locations v;. Contrary to some other
application domains of scattered data interpolation, we deal with different and
high dimensions of the vectors and typically the number of relations is close to
the dimension of the input data.

As explained before, it seems desirable to have an affine mapping from the data
values to the space of visual representations. Therefore, we always start with a
linear approximation of the mapping (as calculated in the previous section) and
then fit the relations in the mapping by tiny adjustments. For these adjustments
we use radial sums. The idea of combining an affine mapping with radial sums for
scattered data interpolation is considered in e.g. [3] and [16] (for two-dimensional
vectors, only).

Hence, we define a by

a(v):AT+ijf(|v—vj|),vEVd,TEIR" (5)
J

where w; € IR" are vector weights for a radial function f : IR — IR. We consider
only two choices for f:

1. The gaussian f(z) = e=7*/¢* which is intended for locally fitting the map
to the given relations.
2. The shifted log f(z) = log+/(z? + ¢?), which is a solution to the spline

energy minimization problem and, as such, results in more global solutions.

We compute A beforehand as explained in the previous section. Thus, the only
unknown in (5) is a pure radial sum, which is solved by constituting the known

relations
ri— Ari =Y w;f(jvi — v5]) (6)
J

This can be written in matrix form by defining

f(0) f(lvo—v1l) ... f(|vo — ve-1])

e f(|”1.—1’0|) f(.o) ~.~~f(|”1 —.Ue—1|)

F(1vees - vol) f(lvecr —val) ... £(0)



and separating (6) according to the n dimensions of r; and w;:

wo, o, — @370
wy, 1, —a;r1

F . = . ,1€0,...,n—1 (M)
We_1; Te—1;, — A3Te—1

Again, we solve these n equations by calculating the SVD of F'. This time we
are sure that an exact solution exist, because the solvability for the above radial
functions f can be proven |[10].

5 Results

We will demostrate the techniques at two examples. These examples show two
principally different application scenarios:

— The first example shows the mapping from multivariate data onto low-
dimensional visual representation. That is, the dimension of the data is much
higher than the dimension of the representations.

— The second example shows a mapping from scalar data onto either basic
or more complex, multiparameter representations. Here, specific aspects of
the scalar data set are mapped to a specific channel of the visual attribute
enhancing the expressiveness of the visualization.

5.1 Visualizing city rankings

In this example we visualize an overall (scalar) ranking of cities in the USA.
Suppose we want a visual aid for a decision which of the major cities would be
nice to live in. In order to quantify the different amenities and drawbacks of
these cities we use data from “The places rated almanac” [5]. This data contains
values for nine different categories. That means, we need to project nine-valued
vectors onto scalar values.

To visualize the ranking of the cities we use a Chernoff-like approach. The faces
are generated by morphing among a standard set of facial expressions (see [2]).
In this example we make use of only a smile and a grumble, defining a one-
dimensional visual scale. Thus, the degree of smiling represents the living quality
determined by a combination of the nine data attributes from [5].

One way to find this mapping might be to inspect the nine different categories
and try to find some weights for the values. This requires not only to define nine
values, also the correlation to the outcome of this mapping does not take into
account the user’s knowledge about the cities.

A more intuitive approach is to allow the user to supply a ranking based on
personal experience. Remark that a ranking of a subset of all cities is suffi-
cient. In figure 1 only three examples were given to generate an affine mapping.
Namely, Chicago was thought to be nice to live in and was mapped to a smiling



k1

o

Salt L

| Paso

"!h\lli

;

Fig.1. Cities of the united states represented by mona lisa faces. The representation
is generated from 9-valued ranking vectors. The mapping was defined by mapping
Chicago to a smile, Washington to neutral face, and Miami to a grumble.

face, whereas Miami was unacceptable and mapped to a grumble. Additionally,
Washington appeared nice but expensive and, therefore, mapped to a neutral
face.

5.2 CT scan data

In this example, we inspect CT scan data from the “Visible Human”-project.
The data is given as 16-bit data values on a 512 by 512 grid. A standard linear
mapping of the relevant CT data to gray values is depicted in figure 2. Note,
that this image could be produced by picking the two boundary values to define
an affine map.

In figure 2 the soft tissue is display relatively bright. We can adjust this for a
better distinction of bones and soft tissue by simply seleting one of the data
values from the soft tissue and assigning a dark gray to it. This time an affine
mapping is a bad choice, because the three correspondences cannot be satisfied.
Instead, we fit the mapping globally to the data value - gray value pairs by using
radial basis sums with the shifted logarithm as the radial function. The resulted
is depicted in figure 3 and clearly shows the advantage in comparison with figure
2.

If we take a closer look at figure 3 we find a brighter substructure in the stomach.
We would like to bring this region of data values to better attention in the visual
representation. We do this by mapping a data value of this region to a red color.
That is, instead of using gray values in the visualization we now use RGB color.
Note, that it is not necessary to use specific two-dimensional color scales: We
simply specify which data value maps to which RGB triple. The gray value



Fig.2. The CT-scan of the chest of a man. Fig.3. Here, the CT scan was generated

This image is generated from the raw CT- by a mapping defined from three corre-

data by linearly mapping the range of use- spondences. The background was mapped

full CT-data values to a greyscale to black, the bones were mapped to white,
and the soft tissues surrounding the lung
were mapped to dark grey.

representations of the three correspondences defined earlier are mapped onto
corresponding RGB values. The resulting mapping is shown in figure 4 in the
color section. Note, how the empty structures are colored in the complementary
color of red. This gives a nice distinction of empty spaces and tissues.

6 Conclusion

In this paper we presented a new approach to the construction of visual scales
for the visualization of scalar and multivariate data. Based on the specification
of only a few correspondences between data values and visual representations,
complex visualization mappings are produced, hereby introducing a Visualiza-
tion by Examples.

This approach exploits the user’s knowledge about the data in a more intuitive
way. Moreover, the user is enabled to adapt the visualization interactively and
easily. The technique of Visualization by Examples can be used in combination
with any visual representation.
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