Internet-Based Front-End to Network Simulator

Taosong He

Bell Laboratories
taosong@research.bell-labs.com

Abstract. We present a Java-based interactive visual interface to net-
work simulators. Having successfully incorporated network visualization
technologies, our system provides an effective front-end interface sup-
porting real time control and monitoring of the back-end simulator through
the Internet or intranets. We extend a traditional spring embedding
graph layout model, and propose a new hierarchical node placement al-
gorithm for presenting the structure of a complex network.

1 Introduction

Network simulators are the tools that enable users to simulate the operations
and behavior of a network. For network designers and managers, these tools
provide a cost-effective way of evaluating a network under different scenarios.
This project focuses on a proprietary Lucent Technologies network simulator
for switching-based voice networks. By manipulating the network parameters
such as routing, topology, and traffic through the simulator, users would be able
replicate an existing network, simulate different kinds of nodes/links failures and
observe their impact, analyze the effectiveness of certain network management
control, and optimize their network designs.

Network simulation is a computational intensive process. For this and other
proprietary and security reasons, our simulator is implemented with C and run-
ning on a back-end multi-processor server. To support the simulator, it is of
crucial importance to develop an interactive visual front-end system. Typically,
users of our system range from the network designers working on high-end graph-
ics workstations to the marketing managers working on their laptop PCs. They
would have to be able to access and control the remote simulator from their
local machines in real time through an intranet or the Internet. To satisfy these
requirements, we have developed a Java-based interactive visual interface as the
front-end to network simulators. We have chosen Java to implement our system
for its free portability, strong support of network programming, and object-
oriented environment. The main contributions of our system include a generic
Java-based framework for designing network visual interfaces, as presented in
Section 2; a new graph layout algorithm for interactively presenting hierarchical
structure of complex networks, as introduced in Section 3; and the discussion
of some issues and lessons related to the development of such an Internet-based
application, as presented in Section 4.

2 Java Framework for Network Interfaces

Developing a network visualization system usually requires programmers to start
from scratch and deal with all the issues such as handling of network data, ren-
dering, and interactions. To address this problem, we have developed a generic
framework for network interface development[5]. In this paper, we extend the
framework from C++ in [5] to Java and enhanced it with networking capability.
The new framework provides the tool developers an OO and Internet-based pro-
gramming environment for the easy implementation of application dependent
network visual interfaces. The main idea is to abstract the most fundamental
functionalities of all the network views, and encapsulate them into several inde-
pendent "building blocks”. Some of the major building blocks include:

Network Data This building block handles the acquisition, storage, and com-
munication of network data. Traditionally, a network is defined as a set of
nodes and links. To handle the more general cases, we adopt the tuple-
based network data representations of [5] where a network is defined as
a set S of n — tuples: (ag,a1,---,an),a; € S,n > 0. Each data entry (a
tuple) in a network is associated with static dynamic attributes such as
trunk capacities or current traffic volume on a switch. This building block
supports some basic data operations including entry create/delete, informa-
tion retrieve/modification, and message receive/send from/to other building
blocks. The new extensions to [5] include a JDBC-based class for querying
the possibly remote databases storing network configuration information;
and a communication component for propagating data update messages be-
tween remote clients. Compared to the more commonly used table-based
representation of network data, our tuple-based representation supports a
unified handling of heterogeneous network data. It is more also flexible for
dealing with edit operations such as delete, add, and connect.

Interactive Operations This building block supports three classes of opera-
tions: selections, display control, and data operations. The purpose of selec-
tion is to identify a set of display entities for a future operation, such as copy
or delete. A more detail discussion of different selection operations can be
found in [7]. display control operations are used to control the rendering en-
vironment, including how to display each individual element on the screen.
They can be classified into wvisual control (highlight, visibility, and glyph
property change) and coordinate control (scale, move). Data operations are
used to modify the underlined network data, which could in turn change the
display of the network. They include interactive editing of network topology
such as create, delete, copy, and paste; and modification of data attributes
such as trunk capacity. Data operations in this buidling block invoke the
correspondent functions in the network data class discussed above.

Most of the views in our system for the displaying of networks are based on
the traditional node and link diagram [2]. A main problem of such a diagram
is that the display can be cluttered when the number of nodes or especially
links is large. To address this problem, our display control operations also

support some standard clutter reduction methods including transformation,
merging, fisheye[6], and interactive filtering (subnet, focus) [1]. We have also
invented during this project a new clutter control operation: aggregate. The
basic idea of “aggregate” is to recursively merge the network elements by
their types and create “virtual” elements with user-defined aggregated at-
tributes in a network. Our experiments have shown that as a generic network
visualization tool, this operation is very effective for reducing the display
complexity, while presenting a skeleton structure of a complex network.

View Linking At a top level, a network visualization system consists of a set
of views presenting from different perspectives the status of a (dynamic)
network. One of the main features of our system is that all the views are ap-
propriately linked together through this building block, based on interactive
operations such as selection, focus, and interactive editing. When an opera-
tion is performed in one view, it is passed to a view linking engine together
with its parameters. Based on the type of the operation, the engine sends
out the appropriate view link messages to all the corresponding views. In
our framework, we have designed a three level view linking mechanism. At
the local level, all the operations are restricted to the current display without
propagating to other views. Most of the rendering control operations such as
zooming abd grouping are by default local. The second view linking level is
the display level where an operation propagates to all the other views that
are displaying the same data. Selection and brushing fall into this level. An
interesting feature of our framework is that linking between any two views
at this level can be interactively turned off by users. The highest level of
view linking is the data level. Similar to those at the display level, opera-
tions at this level affect all the related views. The difference is that a data
level view link can not be turned off. Examples include editing operations
such as create or delete.

Other important building blocks include rendering and glyph design. Each
building block is implemented as a Java “interface”. Since Java does not sup-
port multiple inheritance, our framework also includes an implementation of a
BaseView class for gluing all the building blocks. To develop a new view, pro-
grammers could simply inherit from the BaseView, and overload some of its
functions. All the views in our front-end system are implemented within this
framework. One of the biggest advantages of the framework is that each view
developed based on it automatically supports generic network data and a rich
set of interactive operations. OQur experiences have also demonstrated that by
using this framework, tool development time can be dramatically reduced.

3 Network Layout

The back-end network simulator in this project is designed to simulate two-
level switching-based voice networks. The higher level, or the backbone, of this
kind of networks is usually a fully meshed network deployed with several types

of switches such as service nodes and mobile service centers. The lower level
consists of switches configured as local exchanges (LE). Each switch is located
within a Local Calling Area (LCA), and trunks with different capacities are used
to connect the switches. The main view of the front-end is a network editor; cf
bottom left of Fig. 1. In this figure different kinds of switches are represented
by different icons, and trunks are represented by blue lines. A user can modify a
network with a variety of interactive operations as discussed in Section 2 through
the element icon platter.

Network layout is essentially the most important task for network visualiza-
tion. With the help of background maps, geographical-based layout is a straight-
forward yet powerful visual metaphor. Our system supports both polygon and
image based maps. On the other hand, logic layout presenting hierarchical net-
work structures or dynamic simulation patterns are usually more important for
users. Particularly, our clients have identified two requirements for a logical view.
First, all the switches within the same LCA need to be put into the same area on
the screen (cluster problem). Second, within each LCA, switches with stronger
task dependent relationships needs to be put closer to each other (standard node
placement problem [8]). To satisfy these requirements, we have developed a new
algorithm based on the classical spring embedding model (SEM) [4].

In an SEM, nodes are considered as mutually repulsive charges and edges
(relationships) as springs attracting connected nodes. Starting from an initial
layout, the nodes will move along the force directions until achieving minimal
total energy. The force F' is defined as the sum of repulsion and attraction forces:

A(n,m)

F(n:m) = Fou + Frep = /\attA(nam)“A(nam)“z - }‘TCPW (1)

where A(n,m) is the distance vector between two nodes n and m. An edge (n, m)
is at equilibrium if F'(n,m) = 0. Unfortunately, classical SEM approaches can
not be directly applied here since the repulsion and attraction coeflicients Ar¢p
and A4 are usually assigned based on physical models. They do not generate
results satisfying the node placement requirements [8].

Our contribution is to prove that an SEM can be extended to provide an
effective node placement solution. Mathematically, assuming that the weight
on (n,m) is w, we simply assign Az = w* and A\, = 1. Edge (n,m) will
then be at balance when ||A(n,m)|| = 1/w, exactly as required. Wills[8] has
pointed out that for a good node placement solution, higher weight edges have
to affect the layout output more than those more irrelevant edges. To prove this,
a small perturbation is added to the optimal solution, ||A(n,m)|| = 1/w +¢,
and resulting;:

-

Fou(n,m) + Frep(n,m) = A(n, mjw*[(1 + we)* — (1 + we)?

(2)
As desired, Equation 2 illustrates the importance of stronger edges. Compared to
NicheWork|[8] and simulated annealing [3], our method is simpler, usually faster,
and generates consistent results.

To solve the cluster problem, the classical SEM is extended so that a node
is represented by a region instead of a point. A(n,m) is consequently defined as
the shortest distance between region n and m. Starting from a random initial
layout, Equation 1 guarantees that no regions intersect each other in the final
layout. Our complete algorithm is therefore a two-step process. First, different
LCA regions, represented by circles for simplicity, are placed using the extended
SEM. To better use the screen estate, the area of each circle is proportional
to the total number of switches in the correspondent LCA. The edge weights
between different LCAs are task dependent. Second, switches within each LCA,
represented by zero radius circle, are placed within the area.

Fig. 1 presents a logic layout of a network with 324 switches located within
12 LCAs. The bottom left displays the overall structure of the network. Inside
each LCA, switches are placed by assigning higher weights to relations between
an LE and its toll home. That is, the long distance traffic through an LE, repre-
sented by a smaller icon, has to be first routed through a “toll home” backbone
switch before reaching other LCAs. The tree structured homing information is
clearly presented in the overall view. In the bottom right of Fig. 1, we have fo-
cused on a specific region, and demonstrate the effectiveness of our algorithm by
verifying that the outlier LE does not have toll home information. Qur clients
have reported that this is due to database incompleteness.

4 TImplementation and Discussion

Our system supports real time visualization through a variety of monitoring and
analytical tools such as histogram and table view. Fig. 2 presents a snapshot
during a simulation run. In the main window, colors of switches and trunks
are encoded to represent the current states of equipments, where red indicates
emergencies, green for normal, and other colors for in-between situations. The
dynamic strip charts present real time statistic information on certain parame-
ters interactively demanded by users through the front-end. An animation con-
trol tool with full play-back functionality allows users to interactively examine
simulation results at any time from the start of a simulation to the current time.

There are several important issues related to the development of such a real
time Internet-based application:

Synchronization Two kinds of information generated by the back-end simula-
tor need to be displayed in the front-end: statistics information interactively
required by users such as number of calls on certain switches or trunks; and
“alarm” information such as node/link failure. Since alarm messages require
immediate attention, an independent thread with infinite loop is applied to
continuously update the network views. To synchronize the statistical infor-
mation, a “simulation clock” message is sent from the simulator every 10
secs to update the display.

Bandwidth To simulate a large network such as that displayed in Fig. 1, the
back-end simulator could generate huge amount of log data. Fortunately, not
all of them need to be sent to the front-end in real time through the socket

connection. For example, statistical information are generated every 10 secs
and only the demanded parameters are sent back. In the mean time, limited
by the screen size, a user can not simultaneously monitor too many strip
charts. There could be a high number of alarm messages, especially when
some key nodes and links fail. However, the length of each message is very
short. Our experiences have shown that we can run the system through a
28.8Kb modem across the states with US, and through an intranet across
the continents. In general, we suggest that current network bandwidth is
enough for many non-graphica; real time applications.

Speed Not surprisingly, our system bottle-neck is the interactive rendering of
large networks, especially those with large number of trunks. Generally, the
performance of Java is not as good as native C++, and sometimes causes
delay on low-end laptops. We expect this problem to be greatly alleviated
with the advance of graphics card and Java implementations.

Security Our system can be run both as an application and as an applet
through Netscape. We have applied the netscape.security package and digital
ID to guarantee the security through browser.

5 Conclusions

In this paper we present an Internet-based visual interface to a switching-based
voice network simulator. Implemented with a generic Java framework for de-
veloping network visualization package, our system allows users to interactively
create and modify a network, remotely control the network simulation, and visu-
alize simulation results with a variety of tools in real time. We have also proposed
an innovative hierarchical network layout algorithm.

We are currently investigating connecting the front-end system to other kinds
of network simulation and management systems. We have also finished a proto-
type of incorporating 3D views through VRML and Java3D into our system.

References

[1] R. Becker, S. Eick, and A. Wilks. Visulizing network data. IEEE Transcations on
Visualization and Computer Graphics, 1(1):16-28, March 1995.

[2] J. Bertin. Graphics and Graphics Information Processing. Walter de Gruter & Co.,
Berlin, 1981.

[3] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions On Graphics, 15(4):301-331, 1996.

[4] P. Eades. Heuristic for graph drawing. Congressus Numerantium, pages 149-160,
1984.

[5] T. He and S. Eick. Constructing interactive network visual interfaces. Bell Labs
Technical Journal, 3(2):47-57, April 1998.

[6] M. Sarkar and M. Brown. Graphics fisheye view. CACM, 37(12):73-84, 1994.

[7] G. Wills. Selections: 524288 ways to say ”this is interesting”. Information Visual-
ization’95, pages 54-60, October 1996.

[8] G. Wills. Nicheworks - interactive visualization of very large graphs. Graphics
Drawing’97, 1997.

