Fast Volume Rotation
using Binary Shear-Warp Factorization

Baldzs Csébfalvi

Department of Control Engineering and Information Technology,
Technical University of Budapest,
Budapest, Milegyetem rkp. 11, H-1111, HUNGARY
cseb@seeger.fsz.bme.hu

Abstract. This paper presents a fast volume rotation technique based
on binary shear-warp factorization. Unlike many acceleration algorithms
this method does not trade image quality for speed and does not require
any specialized hardware either. In order to skip precisely the empty
regions along the rays to be evaluated a binary volume is generated
indicating the locations of the transparent cells. This mask is rotated by
an incremental binary shear transformation, executing bitwise boolean
operations on integers storing the bits of the binary volume. The ray
casting is accelerated using the transformed mask and an appropriate
lookup-table technique for finding the first non-transparent cell along
each ray.

1 Introduction

Direct volume rendering is a flexible but computationally expensive technique
for visualization of 3D density arrays. Because of the huge number of voxels to
be processed the recent software-only acceleration methods are not fast enough
for interactive applications. Real-time frame rates can be achieved using large
multi-processor systems [1][4][10][13], but they are not widely used because of
their high costs. In the last two decades several accelerated volume-rendering
techniques have been proposed, which exploit the coherence of the data set.

Early methods use hierarchical data structures like pyramids, octrees or K-d
trees [2][6][11] to quickly traverse the transparent regions decreasing the number
of samples to be evaluated. Hierarchical data structures are used in homogeneity
acceleration techniques as well [2][14], which apply a simplified approximate
evaluation for the homogeneous regions.

Recent algorithms like distance transformation based methods [15][16] or
Lacroute’s shear-warp factorization projection [5] concentrate on a more precise
skipping of empty ray segments instead of approximated evaluation of homoge-
neous regions. The main advantage of these techniques over hierarchical methods
is the applied encoding scheme, since the information about the empty cells, is
available with the same indices used for the volume data. Furthermore, there is
no additional computational cost for handling a hierarchical data structure dur-
ing the ray traversal. Applying these acceleration methods the rendering time

can be reduced significantly, but the frame rates are still far from interactivity.
Although there are surface oriented algorithms which provide real-time rotation,
their limitation is the lack of the opacity manipulation [17][18].

2 The Algorithm

The software-only acceleration technique presented in this paper can also be
considered as a surface oriented algorithm since interactive frame rates can be
achieved if the opacity function is binary or near binary (the non-zero opacities
are near one). On the other hand unlike the previous iso-surface methods it
supports the high quality transfer function based rendering as well. In a practical
application the surface rendering can be used as a fast preview, where the user
can set the appropriate viewing angle interactively and afterwards the final image
is rendered using the alpha-blending evaluation according to the selected transfer
function.

2.1 Preprocessing

The input data of a direct volume rendering process is a spatial density function
f : R® = R sampled at regular grid points, yielding a volume V : Z3 — R of
size X xY x Z, where

V;',j,k = f(miayﬁzk)'

In the classification process, according to the density values different at-
tributes like opacity or color are assigned to each voxel. The opacity function
maps the volume V onto a classified volume C : Z® — [0, 1] of the same size. In
order to handle the empty cells efficiently many acceleration algorithms create a
binary volume assigning zero to the transparent and one to the non-transparent
cells, where a cell is considered transparent if all of its eight corner voxels have
zero opacities. In our method the definition of a cell depends on the principal
direction of the viewpoint. Without loss of generality, we assume that the prin-
cipal direction is the z-azis. In this case, the proposed algorithm resamples the
volume only in planes z = 2, where k£ = 0,1,2, ... Z-1. The density samples
on these planes are computed from the densities of the four closest voxels using
bilinear interpolation. The opacity of the sample is non-zero if at least one of
the four voxels is opaque, thus the binary volume B : Z* — {0, 1} of size (X-1)
x (Y-1) x Zis defined the following way:

1if C,',j,k >0or
Ci+1,j,k >0 or
Bi k= Cij+1,6 > 0or
Cit1,41,6 >0
0 otherwise.

2.2 Ray Casting

The binary volume B can be stored in an integer array, where an integer repre-
sents a segment of a bit row parallel to the z-azis. In the special case, when the
viewing direction is exactly the z-azis the volume can be rendered very efficiently
by parallel ray casting, since the problem of finding the first non-transparent
voxel hit by a ray can be reduced to the problem of finding the first non-zero bit
inside an integer. The optimal solution to this problem is the direct addressing
of a lookup table by the given integer which contains the position of the first
non-zero bit for all the possible combinations. For a typical integer size like 32
bits it would require the allocation of a 232 byte array which cannot be used in
practice. Instead of this, the lookup table can store the offset of the first non-zero
bit inside one byte for each byte combination and it can be addressed by the
first non-zero byte of the given integer. Assuming that the most significant bit
is the nearest one to the viewer the first non-zero byte can be determined by
binary search. The following routine provides the position of the first non-zero
bit, where the size of an integer is supposed to be 32 bits:

int Depth(int segment) {
if (segment < 0x00010000) {
if (segment < 0x00000100) return 24 + lut[segment];
else return 16 + lut[segment >> 8];
} else {
if (segment < 0x01000000) return 8 + lut[segment >> 16];
else return lut[segment >> 24];

0 8 10 16
|O‘0‘0‘0\0|0\0\0|0\0\1\0\1|1\o‘lJ ***********

45

,,,,,,,,,,,,,,,,

Fig. 1. An example for a LUT entry.

Usually one integer is not enough for storing a complete row of the binary
volume B, thus the segments of the rows stored in integers have to be checked
sequentially and the routine Depth is called only for the first non-zero integer.

2.3 Shear-Warp Factorization

The previous method works only for a special case but it can be extended to
viewing directions, where the principal component is the coordinate z using
binary shear-warp factorization. This transformation effectively moves the bits
of the binary volume perpendicularly to the viewing direction. In an interactive
volume rendering application the volume is required to be rotated continuously
by small difference angles, in order to perceive the topology of the surfaces much
better than in a static image. If the difference angle is small enough then there
is no slice in the binary volume which has to be shifted by more than one bit. In
this case, one shear operation can be performed very efficiently, since just bitwise
operations need to be executed on neighboring integers. That is the reason why
our method shears the binary volume B incrementally, applying a technique
similar to the method proposed by Cohen-Or and Fleishman [1]. They used their
so called incremental alignment algorithm in order to reduce the communication
overhead in a large multi-processor architecture supporting shearing of volumes.
Since some bits can be shifted out of the integer array storing the binary volume
B, it has to be extended by Z/2 rows filled with zero values along the z-azis and
along the y-axis as well in both directions. This extended array is defined as: int
mask| depth][height][width], where depth = (Z + 31) div 32, height =Y + Z and
width = X + Z. The following routine demonstrates, how to execute one shear
step in the left direction, processing 32 voxels in each step of the internal loop:

void ShearLeft() {
int i, j, k;
for(k = 0; k < depth/2; k++) {
for(j = 0; j < height; j++) {
for(i = 0; i < width-1; i++)
mask[k] [j1[i] = mask[k][jI1[i] & shift_x[k] |
mask [k] [j] [i+1] & “shift_x[k];
mask [k] [j] [width-1] &= “shift_x[k];
}
for(k = depth/2; k < depth; k++) {
for(j = 0; j < height; j++) {
for(i = width-1; i > 0; i--)
mask[k] [j1[i] = mask[k]1[jI1[i] & shift_x[k] |
mask [k] [j] [i-1] & “shift_x[k];
mask[k] [j1[0] &= ~shift_x[k];
}

For the sake of clarity this routine is not optimized, but it can be improved
introducing local pointer variables in order to avoid unnecessary array address-
ing, and on the other hand only that part of the extended mask needs to be
sheared which contains the non-zero bits representing the non-transparent cells.
The integer array shift_z is defined as: int shift_z[depth] and it stores a binary
vector of size Z indicating those z positions where the corresponding slices have
to be shifted in the given shearing phase. There is also such an array denoted

by shift_y for the y direction. In order to determine the offsets of the slices
in different shearing phases, another two arrays are introduced for storing the
real translations along the z-azis and the y-azis and they are defined as: double
trans_z[Z] and double trans_y|Z] respectively. These translation arrays contain
the z and y coordinates of those points, where the z = z; planes intersect the
3D line connecting the point po(trans_z[0],trans_y[0],0) with point p; (trans_z{Z-
1],trans_y[Z-1],Z-1). Initially, this line aligns to the z-azis, thus the translation
arrays contain zeros. Before executing a binary shear operation the shift vectors
are evaluated in advance according to the rotation direction. For example, when
a clockwise rotation around the y-axis is needed, the point pg is translated by
one along the z-axis into negative direction and p; is translated as well, but into
positive direction. After this, the intersection points of the line connecting the
new po and p; and the planes z = 2 are computed anew and the coordinates
are stored in the translation arrays. The new binary shift vectors are determined
according to these translation values. For example, the new shift_z array can be
computed using the following routine:

void ComputeNewShiftX()
{

double x0 = trans_x[0] -= 1.0, x1 = trans_x[Z-1] += 1.0;

int bit = 0x80000000, 1 =27Z - 1;

for(int z = 0; z < Z; z++) {
double x = (x0 * (1 - z) + x1 * z) / 1;
if (floor(x) != floor(trans_x[z])) shift_x[z/32] |= bit >> (z % 32);
else shift_x[z/32] |= “(bit >> (z % 32);
trans_x[z] = x;

If the floors of the previous and the new translation values are not the same
then the corresponding bit is set to one in the shift_z array, indicating that the
associated slice needs to be shifted in the next binary shear operation. Since the
difference between the old and new translations is the greatest in the plane z = zg
(or z = zz_1) the difference cannot be greater than one in the intermediate z
points, thus there is no slice which needs to be shifted with more than one bit.

2.4 Resampling

Using the transformed binary volume an intermediate image of size width X
height is generated casting the rays from the grid points. Due to the shear trans-
formation the Depth routine can be applied in the general case as well, since
the segments of the rows perpendicular to the temporary image plane are stored
in integers. The position of the first non-zero bit in a row determines the in-
dex i of the z = z; plane, where the first opaque sample is located along the
corresponding ray. The accurate location of this sample is computed taken into
account the exact translation values at the given depth z. In order to calculate
the density in this sample point location, bilinear interpolation is used for the

four closest voxels. Since the opacity of the sample is not necessarily one so the
ray has to be traced further and evaluated according to the transfer function. If
the volume contains internal empty regions (like a human skull) it makes sense
to use the binary volume for evaluating the rest of the samples. First, the integer
representing a z-row of bits is copied into a temporary variable, and whenever
a non-zero bit has been processed it is set to zero, thus the routine Depth can
be used again for finding the z position of the next non-transparent cell. Having
the intermediate image generated it has to be warped in order to produce the
final image, which is the parallel projection of the volume.

3 Extensions

The presented method can be extended to arbitrary viewing directions since a
binary volume can be created for each principal direction. Applying an appropri-
ate scaling for the slices perpendicular to the principal component, the algorithm
can be used for perspective projection as well. The next two subsections describe
two further improvements which could be useful in a practical implementation.

3.1 Rotation of Large Data Sets

Due to the incremental shear transformation the effective speed of the rotation
could be low, especially processing larger volumes (256°). Since most of the time
is used for rendering, a possible solution to this problem is to render the volume
after a couple of incremental shears. Increasing the size of the data set the ratio
of the rendering and shearing times is getting lower, thus this strategy is not
the best one. Another alternative is the introduction of super cells, which are
square regions in the slices perpendicular to the principal direction. In the binary
volume, one is assigned to the corresponding super cell if at least one voxel in it
is opaque. Increasing the size of the super cell the shear transformation becomes
faster but the rendering process slows down since the routine Depth does not
necessarily return the exact depth only a lower bound, so the rays have to be
traced further until having found a non-transparent sample. In the next section
the performance is analyzed investigating the optimal cell size for data sets of
different sizes.

3.2 Adaptive Thresholding

The primary limitation of the presented technique is that the volume has to
be classified in advance in order to generate the binary volume, and afterwards
the opacity function cannot be modified in a flexible way. Supposing that, the
user wants to operate with a fixed number of transfer functions an appropriate
density encoding scheme can be used to allow rapid switching between them.
Each transfer function has a lower density threshold, where below this threshold
zero opacity is assigned to the given sample. Assume that we want to use only
three transfer functions. The lower density thresholds divide the density domain

into intervals Iy, I1, I, I3 sorted in ascending order by their borders with in-
creasing index. To each interval the two bit binary format of the corresponding
index is assigned as a unique code. The code of a cell is defined as the code of
the interval which contains the highest corner voxel density. The cell codes are
stored in an integer array which is similar to the mask array but it contains two
bits for each cell instead of one. This array can be sheared as well, but the bits
of a code should always be moved at the same time in order to avoid the cutting
of the codes. In the rendering phase the routine Depth must use the appropriate
lookup table depending on the bit pattern to be searched for. Whenever the
user changes the transfer function the variable lut has to be set to the address of
the corresponding lookup table. This encoding scheme allows rapid access to the
first non-transparent cell along the viewing ray independently from the selected
transfer function. Let us take an example from the medical imaging practice,
where only four materials (air, fat soft tissue, and bone) can be separated ac-
cording to the Hounsfield densities[3][9]. In this case it makes sense to divide the
density domain according to the lower density threshold of fat, soft tissue, and
bone respectively. For example, having selected a transfer function which assigns
zero opacities to the samples below the lower threshold of the soft tissue, only
the codes 10 and 11 will be searched for in the binary volume, precisely skipping
the transparent cells. In this case, the corresponding lookup table contains the
bit offset of the first 10 or 11 pattern inside the given byte. The presented den-
sity encoding scheme does not affect significantly the performance and allows
fast switching between the predefined transfer functions.

4 Implementation

The proposed fast rotation technique has been implemented in C++ and it has
been tested on an SGI Indy workstation. Table 1 summarizes the running time
measurements for a CT scan of a human head and Table 2 contains the test
results for a higher resolution volume of the same data. The applied transfer
function assigns high opacities to the voxels representing the bone thus rays
terminate right after reaching the boundary of the skull (Figure 2).

| cell size || shearing time | rendering time | frame rate |
1 0.019 sec 0.114 sec 6.87 Hz
2 0.005 sec 0.107 sec 8.64 Hz
3 0.002 sec 0.118 sec 8.11 Hz
4 0.001 sec 0.156 sec 6.26 Hz
Table 1. Test results for the CT head of size 128 x 128 x 113.

Note that, the optimal super cell size is not necessarily the one which the
highest frame rate belongs to, since with larger super cell size the effective ro-
tation speed is higher. In order to rotate the volume continuously the cell size

| cell size || shearing time | rendering time | frame rate |

1 0.160 sec 0.590 sec 1.21 Hz
2 0.040 sec 0.492 sec 1.81 Hz
3 0.017 sec 0.535 sec 1.78 Hz
4 0.009 sec 0.709 sec 1.37 Hz

Table 2. Test results for the CT head of size 256 x 256 x 225.

must be set small and higher rotation speed can be achieved by setting larger
cell size producing approximately the same frame rates.

Fig. 2. Interactive rotation using fast iso-surface rendering.

Using transfer functions which assign low opacity values to different tissues
the rendering time increases drastically, since after skipping the empty regions
the alpha-blending evaluation of the semi-transparent segments is computation-
ally very expensive. Although setting larger super cell size higher rotation speed
can be achieved in the fast previewing phase the high quality rendering slows
down since the binary volume contains less precise information about the trans-
parent cells. Table 3 and Table 4 show the average rendering times for the low
and high resolution data sets respectively using three different transfer functions
as demonstrated in Figure 3.

| cell size || transfer function A | transfer function B | transfer function C |

1 0.36 sec 0.19 sec 0.18 sec
2 0.39 sec 0.21 sec 0.21 sec
3 0.43 sec 0.25 sec 0.24 sec
4 0.51 sec 0.32 sec 0.31 sec

Table 3. Rendering times for the volume of size 128 x 128 x 113.

Fig. 3. Alpha-blending rendering using different transfer functions.

| cell size || transfer function A | transfer function B | transfer function C |

1 1.97 sec 1.02 sec 0.99 sec
2 1.93 sec 1.01 sec 0.96 sec
3 2.08 sec 1.09 sec 1.08 sec
4 2.44 sec 1.45 sec 1.46 sec

Table 4. Rendering times for the volume of size 256 x 256 x 225.

5 Conclusion

In this paper a fast volume rotation technique has been presented which provides
interactive frame rates without using any specialized hardware support. Real-
time rotation can be achieved using binary or near binary opacity function,
when rays terminate right after reaching an opaque surface. In this sense the
proposed technique is a surface oriented algorithm but unlike other interactive
iso-surface methods it significantly speeds up the classical transfer function based
ray casting. Because of the precise skipping of empty regions it is approximately
as efficient as the classical shear-warp algorithm based on run-length encoding.
In a practical implementation it can be applied as a fast previewer rendering
the iso-surface defined by the lower density threshold of the selected transfer
function, where the viewing direction can be set interactively, and the final image
is rendered using the alpha-blending evaluation. The effective rotation speed can
be increased by setting a larger super cell size and applying the proposed adaptive
thresholding extension the user can switch rapidly between predefined transfer
functions.

Acknowledgements

This work has been funded by the VM®d project (http://www.vismed.at).
VisMed is supported by Tiani Medgraph, Vienna (http://www.tiani.com), and
by the Forschungsforderungsfond fiir die gewerbliche Wirtschaft. This paper has
also been supported by the National Scientific Research Fund (OTKA ref.No.:

F 015884) and the Austrian-Hungarian Action Fund (ref.No.: 2964 and 326u9).
The CT scan was obtained from the Chapel Hill Volume Rendering Test Dataset.
The data was taken on the General Electric CT scanner and provided courtesy
of North Carolina Memorial Hospital.

References

1.

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

Daniel Cohen-Or and Shachar Fleishman. An incremental alignment algorithm
for parallel volume rendering. Computer Graphics Forum (EUROGRAPHICS 95
Proceedings), pages 123-133, 1995.

. John Denskin and Pat Hanrahan. Fast algorithms for volume ray tracing. Work-

shop on Volume Visualization, pages 91-98, 1992.

R.A. Drebin, L. Carpenter and P. Hanrahan. Volume rendering. Computer Graph-
ics (SIGGRAPH ’88 Proceedings), 22:65—74, 1988.

Jirgen Hesser, Reinhard Minner, Gilinter Knittel, Wolfgang Strasser, Hanspeter
Pfister and Arie Kaufman. Three architectures for volume rendering. Computer
Graphics Forum (EUROGRAPHICS ’95 Proceedings), pages 111-122, 1995.
Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. Computer Graphics (SIGGRAPH 9
Proceedings), pages 451-457, 1994,

David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement al-
gorithm for volume rendering. Computer Graphics (SIGGRAPH ’91 Proceedings),
pages 285—288, 1991.

Marc Levoy. Display of surfaces from ct data. IEEE Computer Graphics and
Application, 8:29-37, 1988.

Marc Levoy. Efficient ray tracing of volume data. ATG, 9(3):245-261, 1990.
Derek R. Ney, Elliot K. Fishman, Donna Magid and Marc Levoy. Computed tomog-
raphy data: Principles and techniques. IEEE Computer Graphics and Application,
8, 1988.

Peter Schréder and Gordon Stoll. Data parallel volume rendering as line drawing.
Workshop on Volume Visualization, pages 25-32, 1992.

K.R. Subramanian and Donald S. Fussell. Applying space subdivision techniques
to volume rendering. IEEE Visualization ’90, pages 150-159, 1990.

L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics.
Akadémia Kiad4, Budapest, 1995.

Guy Vézina, Peter A. Fletcher and Philip K. Robertson. Volume rendering on the
maspar mp-1. Workshop on Volume Visualization, pages 3-8, 1992.

Jason Freund and Kenneth Sloan. Accelerated volume rendering using homoge-
neous region encoding. IEEE Visualization 97, pages 191-196, 1997.

D. Cohen and Z. Shefer. Proximity clouds - an acceleration technique for 3D grid
traversal. TR FC93-01, Ben Gurion University, Israel, 1993.

K. Zuiderveld, A. Koning, Viergever and A. Max. Acceleration of ray casting
using 3D distance transformation. Visualization in Biomedical Computing, pages
324-335, 1992.

Jae-jeong Choi and Yeong Gil Shin. Efficient Image-Based Rendering of Volume
Data. TR http://cglab.snu.ac.kr/ jjchoi/ibr.html, Seoul National University, Ko-
rea, 1998.

Bjorn Gudmundsson and Michael Randén. Incremental generation of projections
of CT-volumes. In First Conf. on Visualization in Biomedical Computing, Atlanta,
1990.

