Efficient Ray Intersection for Visualization and
Navigation of Global Terrain using Spheroidal
Height-Augmented Quadtrees

Zachary Wartell, William Ribarsky, and Larry Hodges

College of Computing
Georgia Institute of Technology, Atlanta GA 30332-0280, USA

Abstract. We present an algorithm for efficiently computing ray inter-
sections with multi-resolution global terrain partitioned by spheroidal
height-augmented quadtrees. While previous methods support terrain
defined on a Cartesian coordinate system, our methods support terrain
defined on a two-parameter ellipsoidal coordinate system. This curvilin-
ear system is necessary for an accurate model of global terrain. Support-
ing multi-resolution terrain and quadtrees on this curvilinear coordinate
system raises a surprising number of complications. We describe the com-
plexities and present solutions. The final algorithm is suited for interac-
tive terrain selection, collision detection and simple LOS (line-of-site)
queries on global terrain.

1 Introduction

The increasing computation power, memory and rendering rates coupled with
efficient data organization make it feasible to interactively visualize global 3D
terrain with varying resolutions down to a centimeter. Interactively rendering
these large-scale terrain databases places increasing demands on the software
system. Real-time level-of-detail management, efficient spatial subdivision and
the use of an accurate two-parameter ellipsoidal coordinate system are a must.
This paper describes the impact of this geodetic coordinate system on quadtree
spatial subdivision with respect to computing ray-terrain intersections. We ex-
tend a well-known ray-casting method for height-augmented quadtrees defined
on Cartesian coordinates. The extension also handles multi-resolution terrain.

2 Background

Our terrain visualization software is VGIS [8]. VGIS uses automatic, continu-
ous level-of-detail management for geometry and imagery. The data is parti-
tioned into 32 spheroidal quadrilaterals called zones. Each zone contains its own
quadtree. Each quadtree supports terrain at resolutions varying from 8km down
to a centimeter. Currently, individual VGIS applications contain datasets with
a mixture of resolutions with the higher detail insets covering the more impor-
tant regions. The current maximum resolution data set is at 1 ft resolution.

To accurately model this global terrain, VGIS uses a two-parameter ellipsoidal
coordinate system commonly used in geodesy [12].

pper

North Cong Boundary

South Cone
West PI ane Wedge

Wedge \
/ ' Base Spheroid

Lower boundary

Fig. 1. Spheroidal Coordinate System Fig. 2. Spheroidal Height-Quad

This two-parameter ellipsoidal coordinate system is based on a spheroid. A
spheroid is subclass of ellipsoid created by rotating an ellipse about its major
or minor axis. It is synonymous with ”rotation ellipsoid” [4] ,” biaxial ellipsoid”
[12] and ”ellipsoid of revolution”[11]. Figure 1 illustrates this coordinate system.
The two parameters are the spheroid’s major semi-axis, a, along X and Y, and
minor semi-axis, b, along Z. In this system longitude, A, is equivalent to the
longitude in polar coordinates; however, latitude, 1, is the angle between the
surface normal and the equatorial plane. Height, h, is measured parallel to the
normal between the point in question, P, and the underlying surface point.

VGIS builds its terrain database and quadtree subdivision on this curvilinear
coordinate system. In this quadtree the quads are bounded by meridians and
parallels. This divides the spheroid into triangles at the poles and quadrilaterals
elsewhere. (Note that since meridians are not geodesics, these quadrilaterals and
triangles are not true spheroidal quadrilaterals and spheroidal triangles; however,
for brevity we will ignore this distinction.) Finally each quad is augmented with
a height attribute equal to the maximum spheroidal height of the contained data.

Using this terrain structure, we must provide an efficient method for finding
arbitrary ray to terrain intersections. Such an algorithm serves as a basis for
interactive terrain selection, collision detection and simple line-of-site queries.

While an efficient method for ray-casting through Cartesian coordinate height-
augmented quadtrees is well-known [2], this method assumes that the bounding
volumes are bounded by their Cartesian coordinates. Extending the algorithm
to handle spheroidal based height-quadtrees for multi-resolution terrain poses a
number of problems. We present our solutions in order of their generality with
respect how terrain is modeled. First we address tracing through the spheroidal
bounding volumes. The presented algorithm applies to terrain modeled either as

voxels, triangles, or bilinear patches. Next we address tracing through individ-
ual terrain elements. Here our solution is specific to terrain modeled as a regular
triangle mesh. Third we address complications added by triangle models using
multi-resolution data sets. Finally, we discuss surface continuity issues that are
specific to VGIS’s continuity preservation methods.

3 Traversing Spheroidal Height-Quads

Cohen et al.’s [2] method for efficient ray-terrain intersection, is similar in spirit
to Bresenham line drawing. It traces the XY projection of a ray through the
XY footprints of a height-augmented quadtree based on Cartesian coordinates.
Upon entering a height-quad the entering and exiting z-coordinate of the ray is
compared to the height of the quad. If the ray intersects the quad, the algorithm
steps into the child quad at the next resolution level. Otherwise, the algorithm
steps into the next quad at the same resolution level. The algorithm is so ef-
ficient that it is targeted towards real-time rendering of terrain. Figure 3 (see
Appendix) illustrates the high-level functionality of the algorithm. The figure
is a side view with the ray in red and 3 levels of recursive height-quads. Blue
volumes are intersected by the ray. Solid black volumes are not intersected, but
the ray does enter their X-Y footprint. Dash black volumes are not examined
by the algorithm at all. The red volume is the lowest level intersected volume.
This figure illustrates the recursive nature of the bounding volumes and of the
algorithm.

Ideally, a spheroidal extension would use incremental integer calculations
similar to Cohen’s midpoint method. Unfortunately, while the basic high-level
algorithm still applies, the midpoint technique that works so beautifully in the
Cartesian setting appears to have no similarly efficient analog in this spheroidal
case.

An exact analog would require a spheroid to plane mapping in which the
spheroidal projection of a ray in 3-space maps to a line and in which the
spheroid’s quads are mapped to a regular square grid. The only common sphere
to plane mapping that maps parallels, meridians and projected rays onto lines is
the gnomonic projection [9, 236]. The gnomonic mapping centrally projects the
sphere through the sphere center onto a plane. The plane is placed tangent to the
sphere at an arbitrary intersection point. Unfortunately, this mapping projects
spherical quads onto planar rectangles with varying sizes. As we examine rect-
angles farther and farther away from the plane-to-sphere intersection point, the
rectangles’ areas grow towards infinity. The gnomonic map will not allow us to
translate the Cartesian algorithm to the spheroidal case.

A partial analog to the Cartesian algorithm would require a spheroid to plane
mapping in which quads map to a regular square grid and a projected ray maps
to a curve. A cylindrical mapping can map quads onto a regular square grid.
Unfortunately, this mapping maps the projection of a 3D ray to a complicated
curve containing multiple embedded transcendental functions (equation 3-1 [14]).
While efficient methods for discretizing lines [6], ellipses [6], and cubics [15] are

known, a similarly efficient method of discretizing a curve of this complexity is
not available.

Without an incremental integer approach for stepping through quads, we re-
sort to floating-point computation of ray-quad boundaries. Unfortunately, there
appears to be no closed form solution for solving t in terms of the latitude, ¢ [14]
for the cylindrical projection. This would be needed for computing the projected
ray’s quad intersections with closed form arithmetic. We therefore perform the
ray-quad intersection tests in 3 dimensions where closed form solutions exist.

3.1 Bounding Surfaces

We begin by describing the bounding surfaces of a spheroidal height-quad. Gen-
erally these boundaries consist of 4 side boundaries formed by 2 plane wedges
and 2 cone wedges, and of upper and lower boundaries formed by quadrilaterals
on the normal expansion of the spheroid (Fig. 2). We now give the equations of
these surfaces. They are derived in [14].

A longitude side boundary at longitude A is a wedge of the plane:

cos Az +sin Ay =0 (1)

A latitude side boundary at latitude 1 is a wedge of the cone:

2 2 2 22k k2
Y -t =0

where

m=tany, k=7 — Xm,
_ a cos _a 1—e?) sine 9 a?—p?
X= ey 2= froay € = Tw (e)
For the upper boundary surface of a quad with maximum height, A, the true
boundary surface is not amenable to analytic intersection computations [14].
Therefore we use the approximation spheroid, Bp:

majorAzis = (a + h), minor Azis = (b + hT“) Jfh >0
By =) (3)
majorAzis = (a + f;—b) ,minorAzis = (b+ h) ,if h € (%, 0)

The stipulation that A > —b?/a is necessary due to degenerate cases of the
true boundary surface. In practice, surface terrain models well exceed this lower
boundary because a and b are typically close while the minimum A is orders of
magnitude greater than a or b. For example in the WGS-84 Earth datum, —b%/a
is -6,335,439m while the minimum A is around -15,000m.

Finally, since we assume that traced rays begin outside the planet, it is suf-
ficient to choose a single global lower bounding surface. We model the lower
boundary simply as a sphere whose radius equals the distance from the spheroid

center to the closest terrain vertex. By is inappropriate here since it lies outside
the true boundary while a lower boundary approximation must lie inside the
true boundary.

4 The Algorithm

While the high-level principles of the Cohen algorithm (Section 3), apply to
the spheroidal case, the details differ. The spheroidal algorithm is divided into
two procedures. A user called procedure performs setup and zone traversal and
a recursive procedure then recursively traverses through each zone’s quadtree.
The user called procedure first clips the ray to the volume bounded by a global
upper boundary and the global lower boundary. The global upper boundary
is the upper bounding surface, By, with height equal to the maximum global
height. As part of this clipping, we compute, t_global_exit, the ray parameter
value of the ray’s global exit point. Next, we determine which zone contains the
ray origin. Starting with this zone, we step through successive zones until either
an intersection occurs or the ray exits the global boundaries. Zone traversal is
quite similar to quad child traversal which is discussed in detail below. For each
zone we call the recursive procedure to recursively traverse the zone’s quadtree.

The recursive procedure must first determine whether the ray, which is as-
sumed to enter a quad’s side bounds, truly intersects the quad volume. Since
the upper boundary is curved, it is insufficient to check the height of the ray’s
entering and exiting intersections with the side boundaries. Instead, we compute
the ray’s parameter values, ¢1_in and t_out, at these side intersections and we
compute the ray’s intersection parameters, 1.0 and ¢_1, with the quad’s upper
boundary surface (Fig. 4, see Appendix). If and only if these two parameter
intervals overlap, then the ray has entered the height-quad volume and we step
through the quad’s children.

If the quad volume is intersected, the algorithm must traverse the quad’s
children and recurse at each child. The first encountered child is determined
from two factors. The first factor is which side boundary of the parent the
ray entered. The second factor is in which half-space of one of the parent’s
internal partition surfaces the entrance point lies. In Figure 5 (see Appendix)
these internal partitions are shown in blue. They partition the quad into four
sections. The latitude partition surface is a cone wedge stretching east-west.
The longitude partition is a plane wedge stretching north-south. Knowing which
side boundary is intersected and which internal partition half-space contains the
entrance point, we know which child quad to visit. For example, in Figure 5 the
ray (red) enters the west side boundary and the entrance point (marked by a red
X) is north of the internal latitude partition. Hence, the ray enters the north-west
child. Four side boundaries and two internal partitions yield eight combinations.
Each combination maps to one child. By determining which combination occurs,
the algorithm determines which child to visit. Note an exception arises when the
current quad contains the ray origin. In this case, we visit the child containing

the ray origin. This child is determined by examining which half-spaces of both
internal partitions contain the ray origin.

Having visited the first child, we must determine the other child quads in-
tersected by the ray. Note that in the spheroidal case, a ray may intersect all
four of a quad’s children or may enter a quad twice. This can occur since a ray
can have two intersections with a quad’s latitude cone boundary. Given these
complications we determine the next child quad by computing the ray’s inter-
section with the current child’s boundaries. Note these boundaries are subsets
of the parent’s boundaries and internal partitions. The child exit boundary is
the child boundary whose ray intersection’s ray parameter value is the smallest
while still being greater than the child’s entrance point’s value. This exit point
is illustrated by the second red X in Figure 5. So given the current child, we
compute t_child_out, the ray parameter where the ray exits the child, along with
side_out, the boundary of the child at this exit. With knowledge of side_out,
we know what child is entered next. Child traversal terminates when either a
child reports terrain intersection, all children are visited, or ¢_child_in of the
current child is greater than ¢_global_exit, the ray intersection with global upper
boundary.

5 Traversing Individual Terrain Elements

While the methods of the previous section apply to terrain regardless of the
modeling method (voxel, bilinear patch, or triangles), the issues raised when
traversing individual terrain elements are model dependent.

In ray-casting methods [2] the height-quad tree recurses down to the level of
the smallest modeled terrain element. In regular triangle mesh methods, however,
the height-quad tree typically does not recurse down to the level of the smallest
modeled terrain element. Instead, a quad contains a fixed size matrix of triangles
such as in Figure 6 (see Appendix). Within this block there is no further quadtree
subdivision. This means that for triangle modeled terrain, once we trace a ray
to a leaf quad, we must then separately trace the ray through that quad’s block
of triangles. Additionally, the modeling method affects the mathematical surface
in between the sampled elevation points. If we render with ray-casting we might
model the surface as set columnar voxels which project radially out from the zero-
elevation surface. (Note on the spheroidal coordinate system, these voxels are not
cubes as in traditional Cartesian based terrain.) Alternatively, we can define the
surface to be a set of bi-linearly interpolated patches. This is the typical method
of interpolating height fields in geodesy [3]. Unfortunately, while these are the
most mathematically robust surface definitions, a practical polygon graphics
pipeline based system must interpolate between sampled elevation points by
treating these points as vertices of triangles.

Here we will focus on the triangle model. In order to minimize the number
of triangles tested, we treat each triangle-pair as if it was contained in its own
small height-quad and we then visit only those height-quads whose sides are
intersected by the ray.

In Figure 7 (see Appendix), four triangle pairs are drawn in red on a part
of a spheroidal quad in black. The blue arrows are extensions of the spheroid
normal at the quad’s terrain grid points. Triangle vertices are confined to these
lines. Furthermore, the lines delineate plane wedges defining four-sided volumes
(blue). Note, triangle edges are confined to these plane wedges. These four-sided
volumes can serve a similar purpose to the high level height-quads. If the ray
intersects the first triangle pair’s volume, A (in bold blue), we determine which
of the 4 neighboring triangle-pairs to visit next by intersecting the ray with the
volume’s planar wedge sides. If the ray intersects the side shared by volume A
and B, this immediately tells us to visit the triangle-pair volume B. Similarly
if the ray next intersects the side shared by B and C, we step into volume C.
At each volume we test for ray-triangle intersections with the triangles in that
volume. We continue traversing and testing triangle pairs until either a triangle
is intersected, the quad boundary is reached or t_volume_exit, the ray parameter
at its exit from the current triangle-pair’s volume, is greater than ¢_global_exit.
Figure 6 (see Appendix) illustrates a typical pattern of examined triangle pairs
in red.

Unfortunately the triangle model poses a theoretical problem that the other
surface models do not have. Since the spheroidal height-quads are concave vol-
umes, they will not contain all parts of the triangles whose vertices are contained
in the volume and assigned to the quad. Specifically, the latitude conical bound-
aries do not contain all parts of the planar terrain triangles along this border.
This problem is illustrated in Figure 8 (see Appendix). Figure 8 shows 3 terrain
triangles in red at the corner of a quad whose east, north, south and lower bound-
aries are drawn in black. The upper triangle is assigned to the illustrated quad
while the lower 2 triangles are assigned to the adjacent quad across the south
border. The green highlighted portion of the lower 2 triangles is the portion of
these lower triangles not contained in the adjacent quad.

It is important to note that the containment problem is fundamental to any
recursive spheriodal partitioning. Using Bowring’s theorem on normal sections
[3], it is easy show that all spheroid partitionings, such as [1], [5], [7] and [10],
have this problem [14].

The containment problem can potentially cause the ray intersection algo-
rithm to miss an intersection. Referring to Figure 8, the ray could first pass over
the adjacent southern quad without intersecting it and then enter the illustrated
quad. If the ray is at a steep angle, it could then pierce the green area. Since
the illustrated quad does not contain the triangles associated with this green
area, the ray will exit the global lower boundary and the algorithm would falsely
indicate no intersection occurred.

When using this algorithm for interactively pointing at and grabbing terrain,
however, it has been our experience that such pathological cases never occur [13].
The reason is that each quad contains a relatively dense 128x128 triangle-pair
block making the green area in Figure 8 extremely small. While the increasing
curvature of the cone wedges at extreme latitude quads could exacerbate the
containment problem, the increasing surface density of the triangles at these

extreme latitudes counteracts this effect. This increase in surface density occurs
because the quad surface area grows smaller at extreme latitudes.

6 Managing Multiresolution Aspects of Terrain

While covering the general traversal of the high-level spheroidal quads and the
specific traversal of triangle-modeled terrain elements, we glossed over how a
multi-resolution terrain model interacts with the ray casting algorithm. A typical
multi-resolution model such as VGIS stores terrain data in 2"x2” blocks at
resolutions at varying powers of 2. For rendering purposes, the system then goes
to great lengths to ensure that the rendered terrain is a continuous surface. The
algorithm uses a visual error metric to render the lowest-detail level necessary
to maintain visual quality while preserving mesh continuity [8].

As previously mentioned, contrary to ray-casting models where the recursive
subdivision of height-quads continues down to individual voxels, in a regular
mesh model a leaf quad contains a N by N array of triangle pairs called a block.
Equally important, the quadtree is not a full tree. Instead a branch is only as deep
as necessary to reach the highest resolution block available on disk. Moreover,
while the complete quadtree is always in main memory, the actual triangle data is
dynamically paged into main memory as dictated by the rendering algorithm. In
Figure 9a, a flattened and zoomed in view of a single zone is shown. The outlines
of the sub-quads existing in the zone are also shown. High resolution data is only
available for the north-eastern most quad. This is indicated by the presence of
the higher resolution quads in this region. Figure 9b shows the corresponding
quadtree data structure.

a) b)

A

Fig. 9. Multi-resolution quadtree.

These complications lead to the following modification to the high-level quad
traversal algorithm. We traverse the quad-tree as detailed in Section 4 until either
the ray exits the tree or the ray enters a leaf quad. If the ray enters a leaf quad,
we need to find the highest resolution in-memory block covering the quad. So
if the entered quad’s block is paged out, we must find the first quad ancestor
whose block is paged in. A loop accomplishes this traversal. At each iteration
we attempt to trace the ray through triangles of the ancestor quad. There are
three possible results. Either the ray intersects a triangle, intersects no triangle,
or the ancestor quad has no in-memory data available. The loop continues until

reaching an ancestor with data available. For example, assume in Figure 9 we
have recursed down to and intersected the north-eastern most quad. This quad
is shown as a solid square in the geometric diagram (9a) and a solid circle in
the tree diagram (9b). Let’s assume data for this quad is paged out. Then the
ancestor loop climbs up the tree to the first ancestor that contains terrain data.
In Figure 9 we assume this is the 2nd level quad which is tinted light grey.

When an ancestor with data is found, we should only trace through the
rectangular subset of its block which covers the original leaf quad. We compute
the boundaries of this subset using an incremental integer approach [14] since
floating point methods allowed rounding errors that occasionally yielded invalid
array indexes.

Whether the algorithm should only address paged-in data is application de-
pendent. Therefore we also have a parameter controlling how ray traversal han-
dles paged-out data. This allows the programmer to balance the accuracy of
the terrain data used against the performance penalty of paging. The additional
parameter, min_level ("minimum level”) indicates the minimum tree depth of a
quadnode that may be used during triangle traversal. We modify the high-level
quad traversal algorithm as follows. Recall that high-level traversal continues un-
til a leaf quad is encountered. Now instead of just using terrain data from the leaf
quad’s first ancestor with paged-in data, we add the constraint that we must stop
at the ancestor whose depth equals min_level. If we reach this ancestor without
finding paged-in terrain data, we must wait and page in this ancestor’s terrain.
Note it 1s possible that the leaf quad depth is less than min_level. This means
that terrain data at the desired resolution does not exist on disk. We must make
do with the terrain data from this leaf quad and page it in as needed. With
this modification, setting min_level to zero will use only the data in primary
memory and will never wait for new data to be paged-in (unless even the lowest
resolution data is absent). Setting min_level to the maximum possible depth
will page-in whatever data i1s necessary to ensure that ray traversal uses the
greatest resolution data on disk. Setting min_level to some other value allows
the programmer to balance the accessed terrain’s resolution with the algorithm’s
real-time performance.

7 VGIS Surface Continuity

Surface continuity issues add further complications. When two adjacent terrain
blocks have different resolutions the edges of triangles along the shared border
will not match. When rendering, VGIS uses a set of rules to discard certain
vertices and generate a triangle mesh using this vertex subset. This resulting
mesh has no cracks along block borders. How and/or when should we apply
such rules to the terrain traversed by the ray intersection algorithm? The answer
depends on the application of the intersection algorithm.

In our current VGIS virtual reality application, we use the ray-terrain inter-
section for terrain selection with a hand-held virtual laser pointer [13]. Whenever,
the ray crosses block boundaries during triangle-pair traversal we compute tem-

porary geometry for these polygons and test them for intersection with the ray.
This method is simple and fast but it violates the spirit of the VGIS rendering
algorithm. We continue to research how to modify VGIS’s rendering rules for
applications where the temporary geometry approach may be inappropriate.

8 Results and Conclusions

Figure 10 (see Appendix) illustrates our complete algorithm in operation. Here
min_level is zero and we use the simplest continuity algorithm appropriate for
fast interactive terrain selection. The application is running on a virtual work-
bench [13]. The red ray is a virtual laser pointer interactively manipulated by
the user. In order to better distinguish the terrain from the quad outlines, the
terrain has been altered to appear black-and-white. The yellow lines indicate the
projection of the ray origin onto the spheroid and the point on the ray where
it exits the global boundaries. The visited height-quads’ upper boundaries are
outlined in green, black, red and blue. Blue indicates the quad volume was inter-
sected. Red indicates the quad was intersected and is a leaf. Green indicates the
quad’s polygon data was used for polygon traversal. Black indicates that while
the quad side bounds were intersected the quad volume was not, i.e. the upper
boundary was not pierced. The small streaks of green inside the red quads are
the outlines of the triangles which were tested for intersection. In 10a, the planet
is at a resolution such that the polygon data associated with the leaf quad (red)
is not paged in. The algorithm visits ancestor quads until reaching the first quad
(green) with polygon data covering the leaf quad. Figure 10b is similar to 10a,
but it shows a further zoomed in view.

We are successfully using this algorithm for navigating global terrain on the
virtual workbench [13]. The algorithm is fundamental to our navigation method.
The user navigates with a virtual laser pointer used to grab the terrain when
panning, rotating and zooming. Empirically the intersection algorithm has had
no affect on framerate, as is desired for VR interaction. Asymptotically, the
algorithm is equivalent to standard quadtree and octree traveral methods. Tt is
linear in the number of pierced bounding elements.

To conclude we have described the impact of the geodetic coordinate system
on quadtree spatial subdivision with respect to computing ray-terrain intersec-
tions. We presented a new set of efficient methods for tracing a ray over the
terrain. These methods go beyond the work of Cohen, promoting a complete
approach for global terrain in a multi-resolution spheroidal quadtree structure.

9 Future Work

There are several avenues of future work. First, the continuity issues have yet
to be fully resolved for all uses of ray-terrain intersection. Next it is probably
possible to switch from the spheroidal approach to the much simpler Cartesian
approach when the algorithm reaches high detail quads. This is plausible because
at some point the results of these two approaches will be the same due to the

finite precision of computer arithmetic. Finally, the algorithm can be extended
to manage spheroidal octrees for partitioning aerial information.

10 Acknowledgements

This work was performed in part under contracts N00014-97-1-0882 and N00014-
97-1-0357 from the Office of Naval Research. Support was also provided under
contract DAKF11-91-D-004-0034 from the U.S. Army Research Laboratory. We
thank Frank Jiang for help in setting up the workbench environment.

References

10.

11.

12.

13.

14.

15.

. Borgefors, Gunilla. A hierarchical ’square’ tesselation of the sphere. Pattern Recog-

nition Letters 13 (1992), pages 183-188.

. Cohen, Daniel, and Amit Shaked. Photo-Realistic Imaging of Digital Terrains.

Eurographics ’93, Volume 12, (1993), No. 3. Pg 363-373.

. Hooijberg, Maarten. Practical Geodesy Using Computers. Springer. 1997.
. Dragomir, V., D.Ghitdu, M. Mihailescu, M.Rotaru. Theory of the Earth’s Shape.

Elsevier Scientific Publishing Company. Amsterdam. 1982.

. Fekete, Gyorgy, Rendering and Managing Spherical Data with Sphere Quadtrees.

Proceedings of the First IEEE Conference on Visualization. Visualization '90. 1990.
Pp. 176-86.

. Foley, James D., Andres Van Dam. Fundamentals of Computer Graphics. Addison-

Wesley. Reading, Mass. 1990.

Hwang, Sam C.; Hyun S. Yang. Efficient View Sphere Tessellation Method Based
on Halfedge Data Structure and Quadtree. Computer & Graphics, Vol. 17, No. 5
(1993), pages 575-581.

Lindstrom, Peter, David Koller, William Ribarsky, Larry Hodges, Nick Faust, and
Gregory Turner. Real-Time Continuous Level of Detail Rendering of Height Fields.
Computer Graphics (SIGGRAPH 96), pp. 109-118.

Maling, D.H. Coordinate Systems and Map Projections. London: George Philip
and Son Limited. 1973.

Otoo, Ekow J., Hogwen Zhu. Indexing of spherical surfaces using semi-quadcodes.
Advances in Spatial Databases. Third International Symposium, SSD ’93 Proceed-
ings, pages.510-529.

Smith, James R. Introduction to Geodesy. John Wiley & Somns, Inc. 1997.
Vani’(;ek7 Petr, Edward Krakiwksy. Geodesy: The Concepts. North-Holland Pub-
lishing Company. Amsterdam. 1982.

Wartell, Zachary, William Ribarsky, Larry Hodges. Third-Person Navigation of
Whole-Planet Terrain in a Head-tracked Stereoscopic Environment. (to appear)
Proceedings of IEEE Virtual Reality 1999 (March 13-17 1999, Houston TX).
Wartell, Zachary, William Ribarsky, Larry Hodges. Efficient Ray Intersection for
Global Terrain using Spheroidal Height-Augmented Quadtrees. GVU Tech Report
98-45.

Watson, Ben, Larry Hodges. Fast algorithms for rendering cubic surfaces. Proceed-
ings Graphics Interface 92 (May 11-15 1992, Vancouver, BC), 19-28.

N

’7 |:| Side Boundaries

Fig. 3. General algor- Fig. 4. Interesection Fig. 5. Quad traversal.
-ithm. test

East Plane Wedge

North Cone

Fig. 6. Fig. 7. Triangle Fig. 8. Triangle containment problem.
Triangle grid. traversal.

a) b)

Fig. 10. Complete Algorithm.

