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Abstract. Multiresolution visualization methods have recently become
an indispensable ingredient of real time interactive post processing. Here
local error indicators serve as criteria where to refine the data repre-
sentation on the physical domain. In this article we give an overview
on different types of error measurement on nested grids and compare
them for selected applications in 2D as well as in 3D. Furthermore, it is
pointed out that a certain saturation of the considered error indicator
plays an important role in multilevel visualization and can be reused for
the evaluation of data bounds in hierarchical searching or for a multilevel
backface culling of isosurfaces.

1 Introduction

A variety of multiresolution visualization methods has been designed to serve as
tools for interactive visualization of large data sets [3,9,12,20]. Here the local
resolution of the generated visual objects, such as 2D graphs, or isosurfaces and
color shaded slices in 3D, depends on error indicators which measure the error
due to a locally coarser approximation of the data.

Different approaches have been presented to solve the outstanding continuity
problem, i.e. to avoid cracks in adaptive isosurfaces. In the Delaunay approach
by Cignoni et al. [4] and in the nested mesh method by Grosso et al. [10] the
successive remeshing during the refinement guarantees continuity. Alternatively,
Shekhar et al. [21] rule out hanging nodes by inserting additional points on faces
with a transition from finer to coarser elements due to an adaptive stopping
criterion.

We apply the method of adaptive projection on nested grids, which has been
described in earlier publications. For the general concept we refer to [18]. Imple-
mentational aspects are especially described in [17]. The core of our approach
is identical to the method of Zhou et al. [24]. In 3D it can be regarded as a
generalization of the techniques presented by Livnat et al. [15] and in [8].

In this paper we give a detailed comparison of error indicators and the per-
formance of corresponding multilevel methods. Here we do not focus on the
methodology itself but on the indicators, their effect on cost reduction, and
their relation to the actual error in a corresponding norm. Therefore, especially
to simplify the exposition, we confine ourselves to simplicial grids generated
by bisection, which are well known from adaptive numerical methods [1,19]. In
explicit, we deal with the recursive bisection of [13, 16].



Let us point out that there are other, more general approaches especially for
surfaces by De-Floriani et al. [6] and Hamann and Chen [11] which also apply
to non nested grid hierarchies, but with a different focus concerning the field of
applicability.

2 A general multilevel algorithm on nested grids

We confine ourselves here to hierarchical simplicial grids which carry a piecewise
linear data function. Let us consider a family of nested, conforming, simplicial
meshes {7 }o<i<in,, in two or three dimensions. We denote by h(T'), h(e) the
diameter, respectively the length of an edge e of a simplex T' € 7. Furthermore,
N(T), N(T") denote nodal sets of single simplices, respectively entire triangu-
lations.

The simplices, triangles in 2D, respectively tetrahedra in 3D are assumed to
be refined by recursive bisection. For a simplex T, the midpoint of a predestined
edge e,..(T) is thereby picked up as a new node #,..(7), and the simplex is cut
at the edge, respectively face, F,..(T) spanned by x,.(T) and the nodes of T,
which are not endpoints of the refinement edge e,..(T), into two child simplices
C(T) = {1z, T2}. A simple alternating scheme for the refinement edge e,., [I,
13] guarantees the conformity of the resulting grids. Finally, let U denote the
piecewise linear function on 7' uniquely described by the data values on the
corresponding nodes.

The multilevel algorithm is based on a depth first traversal of the grid hier-
archy. On every simplex we check for a stopping criterion. If it is true we stop
and visualize locally. Otherwise, we recursively proceed on the child set C(T').

If we stop on a specific simplex T" and refine another simplex T which shares
the refinement edge with T, i.e. €,..(T) = e...(T), an inconsistency occurs at the
hanging node z,.. This leads to jumps in the color intensity or cracks in the
isosurface. In the case of general nested grids we can apply adaptive projection
operators to ensure consistency [18]. Here, we simply have to ensure that, when-
ever a simplex is refined, all the simplices sharing its refinement edge — in 2D
only the one triangle opposite to T" at the edge e, (T) — are refined as well.

This can be achieved by defining error indicators n(z) on the grid nodes
and choosing 7(z..(T)) < ¢ as stopping criterion on a simplex for some user
prescribed threshold value £. Since all nodes, except those on the coarsest level,
are refinement nodes 2,.(7') on a refinement edge e,.¢(7T), the indicator value 5(z)
measures the error on those simplices sharing the edge. Therefore, the recursive
traversal would stop not only on T but — if visited — on all other simplices sharing
the refinement edge if their common stopping criterion is true.

However, for an arbitrary error indicator it might still occur that, although
N(2.(T)) < e, n(mref(T)) > £ on some descendant T whose refinement node
J;ref(T) is located on the boundary of T. The adjacent tetrahedron will possibly
be visited and then refined, whereas on T' the stopping criterion already holds.
To avoid this we assume the following saturation condition on the error indicator
(for a generalization compare [18]):



Saturation Condition:

(@, (T)) > n(x,y(1e)) for al T € T" withl <, and Te € C(T).

An error indicator 7 is called admissible, if it fulfills the saturation condition.
Otherwise, it can easily be adjusted in a preroll step (cf. section 3). The adaptive
algorithm can be sketched in pseudo code as follows

Inspect(T) {
if SimplexIsOflnterest(T)

if C(T) £ O An(z..(T)) > ¢
{ Inspect(72); Inspect(TZ); }
else Extract(T);

}

where the function SimplexIsOfInterest() checks whether the simplex is a candi-
date for some local rendering or not. For example, in 3D slicing the cutting plane
has to intersect the simplex T'. In multilevel isosurface extraction this function
checks whether the isosurface intersects the current simplex. At the end of the
next section we show how this function can be implemented efficiently.

3 An overview of error measurement

In this section we will discuss several principle techniques of error measurement.
The starting point will be some actual local error measure on the grid hierarchy.
The local resolution and the visual impression of the numerical data is closely
related to the specific type of error measurement applied in the adaptive traversal
of the tree structure.

Choices for the error metric

Let n*(2) be a measure on nodes z, which weights the effect of stopping for some
local rendering already on a simplex T with « = z,.(T) instead of traversing the
locally finest grid level. Furthermore, let us denote by S(z) the support of the
piecewise linear base function corresponding to the node x. Then, given a fine
grid data function U and a coarse grid function U' on level [ with 1" € T*, we
assume n*(z) to be the distance between U and U' measured locally on S(z) by
some metric ds(z), i.e.

n*(z) = ds@) (U, U")
Let us consider several widely used metrics:

— We can choose some local norm of the difference functions such as
N (2):=[|U = U'[p,s(a),

where || - ||, () is the usual L¥ norm for p € [1,00] restricted to the do-
main S(z) . Due to Holder’s inequality the error indicators obviously become
sharper for increasing values of p.



— Instead of function values we can consider derivatives and define

n*(z):=||VU — VU'|

p,S(z) -

In general the resulting error measurement is sharper then the one based on
function values. By some worst case analysis based on inverse estimates we
obtain the estimate
IVU = VU .50 < CHILIT = Vs

where b =minre7i_,, 7c5(x) h(T). This estimate is asymptotically sharp
on fine grid levels for a function U, which is the interpolation of some smooth
function. Frequently, the norm of the gradient is taken as an error indicator.
This is questionable, because rendering is "linearly exact” and therefore
refinement in areas of uniformly large gradient norms does not improve the
graphical representation.

— Third - a smooth graphical representation in mind — we may be interested in
measuring the geometric smoothness of the approximation independently of
the true function values. A possible measure is a discrete curvature quantity.
For surfaces this should be related to the absolute curvature x = \/mf + K%
where the k; are the principle curvature terms. As clearly indicated in the
case of minimal surfaces with vanishing mean curvature or cylinders with
vanishing Gaussian curvature, mean or Gaussian curvature discretization
does not make sense in terms of general error control.

— A fourth choice of a suitable measure is closely related to geometric shapes
[14]. In our simple case of a scalar function U a suitable approach is to
compare the graphs of U, respectively U' on S(x). If dist(-, -) is a geometric
distance metric on graphs, we are lead to * (z):=dist(graph(U), graph(U")) .
For flat graphs this error indicator only slightly differs from measuring the
difference of the function values.

Furthermore, the viewing direction and distance may enter the error metric
[15], or the error measurement may depend on the distance to a specific region
of interest [2,5, 18]. We will here restrict ourselves to the basic error norms and
discrete curvature measurement.

Hierarchical error measurement

Usually, an error measurement which locally compares coarse grid functions with
the functions on the finest grid is expensive to evaluate even in a preprocessing
step. We will apply an often used simplification, which only compares data on
the current grid level to data on the next finer grid level. We will denote the cor-
responding one level look ahead error indicator by 7(z). However, the saturation
condition as a minimum precondition to guarantee continuity of the adaptive
projection may fail for 7.



— Hierarchical offset error indicators: In analogy to the norm of the dif-
ference function we can consider the hierarchical offset function Us defined
on a tetrahedon as

Usly = Ullr — Uitz

The values of Us on A" \ N'=! are related to the original data values by the
following recursive formula

)

where z; and z9 are the end points of the edge corresponding to ,..(T)
on a simplex 7. For smooth data, i.e. U(z) = u(z) for all nodes = with
u € C?, |Us (2..:(T))| = O(h(T)Z), which implies the saturation condition
holds asymptotically on grids 7" for ! sufficiently large. Let us emphasize
that the handling of the Us—values would therefore allow an economical §—
compression of the data. The original values can easily be retrieved during
the recursive tree traversal. Now, we define the hierarchical 1> error indi-
cator

oo (2):=|Us (2)

Instead of the L* norm we can analogously consider different integral norms
applied to the difference function which corresponds to a new node. Using
lumped mass integration we obtain

pE) =< D T |Us(2)]

T,zeN(T)

for 1 < p < oo. Decreasing p leads to an earlier stopping of the tree traversal
on simplices of small size.

— Gradient type error indicator: Instead of measuring the one level error
with respect to function values, we can consider the error of the function
gradient. We thus define

P
Y. T]) [[VUs|r| for 1< p< oo,
M,p(2):=\7 zen(T)

max ||V, for p=oc.
T,zeN(T)” sl p
The evaluation of these error indicators takes some effort in the precomputing
step. If we replace simplices by simplex refinement edges without modifying
the scaling we gain at least for p = co

__2 |U6 (-’I‘ref(T))l

M (1))



— Discrete curvature type indicators: With a focus on an isosurface’s ge-
ometric shape, we will now consider some kind of curvature estimation. We
ask for a discrete curvature quantity which locally measures the quality of
the data approximation from the perspective of the visual appearance [18].
In isosurface images consisting of linear patches we can easily recognize folds
at surface edges. In each tetrahedron the data gradient VU! is always per-
pendicular to an isosurface. Therefore, at any face F' the normal component
of the jump of the normalized gradient, denoted by [%]F, locally mea-
sures the fold in the data function. Here the jump operator [-]z is defined
as the difference of the argument on both sides of the face. This jump ob-
viously serves as a well-founded graphical error criterion and motivates the
definition

VU

nN(fIfref(T)) = W]F (T) .

We can apply the simplification of the previous indicator here as well and
denote the resulting error indicator by ny ..

Ensuring the saturation condition

As pointed out above, the hierarchical error indicators do not fulfill the satu-
ration condition. We can overcome this drawback by defining a modified error
indicator 7, which is defined as the minimal saturated error indicator larger or
equal to n. This definition is constructive in the sense that in a bottom up,
breadth first traversal of the grid, we can blow up these error indicator values.
In pseudo code this blow up mechanism looks as follows:

for (| = laam—151>0;1——)
forall T € T' and z = z,.+(T)

n(z) = maX{TCHé?(XT) n(z..(Te)), n(z) };

Let us emphasize that a depth first traversal of the hierarchy in the adjust-
ment procedure would not be sufficient. If the error indicators are adjusted in
this way the continuity problems are solved automatically.

Recursive blowup

Alternatively, we can ensure saturation of an indicator 1 by recursively defining;:

+(.) — , + o o—
T (z) = n(z) + Tcrgg()%) N7 (2e(T)) for = z,.(T).

On the finest grid level, where C(T) = @, we simply set nt(z) = n(z). The

different error measures are obviously related to each other by n <7 < pt.



Furthermore, we obtain 5%, < nf, and nj ., < nioo due to the triangle
inequality. The indicator T, although the largest one derived from the original
indicator n*, and thus the weakest, can have other desirable properties. For
instance, an easy computation of min/max-values for isosurface extraction or
criteria for multilevel backface culling are possible, which is demonstrated next.

On the one hand, we are able to compute a bound 8y(T) for second order off-
set terms of the data function on a simplex T' € T, i.e. the difference of the true
function and its linear approximation. This can be applied in the implementation
of the SimplexIsOfinterest()-function. We obtain

M Tl )
minU' — fo(T) <U < maxU* + (7).

The SimplexIsOfInterest() routine corresponding to the extraction of an iso-
surface for the isovalue ¢ can be written in pseudo code:

SimplexIsOﬂnterest(T) {
if mingen(r) U(z)=Bo(T) < ¢ < maxgenry Uz)+5o(T)
return true;
else
return false;

}

In the hierarchical offset case and for the choice nt, we can define

%njo(x,ef(T)), for hierarchical offset indicators

Po(T) = h(T)nIm(mr&f(T)), for gradient type indicators

In both cases, the expensive storing of min/max—values as discussed in [23] can
be avoided.
On the other hand, we may check — based on coarse grid simplices - Whether

all polygons extracted by the algorithm will be backfaces. Let N' ” denote

= VU T
the normal of some triangle of the final isosurface triangulation 01|1I the simplex
T € T', and V the viewing vector from the object to the eye (we confine ourselves
here to parallel projection). If N'-V > 0, the triangle is faced towards the viewer.
Otherwise it does not need to be drawn. We obtain a significant acceleration of
our isosurface algorithm, if on a much coarser grid level we recognize simplices
containing only isosurface triangles which are faced away from the viewer so that
we are already able to stop the local traversal at this level. If 8y (T) is a bound

of the modification of N' in T' € T*, we obtain the multilevel backface test
N'-V 4+ Bn(T) <0, with By (T):=n" y (2.(T))

for the discrete curvature type error indicator T .

Skipping the normalization and considering instead a bound §1(7T) which
measures the possible offset in ||[VU]|, we alternatively obtain the rejection cri-
terion

VU' -V +B(T) <0,  with 8i(z) = nf (2..:(T)).

It can easily be seen that, on average, while arbitrarily rotating the object, we
save up to one half of the computing time for an isosurface.



4 A quantitative comparison

Up to now we have analyzed qualitative aspects of different error indicators. In
what follows, let us focus on a detailed quantitative discussion. Therefore, we
study certain test problems in 2D as well as in 3D.

Test data sets

In 2D we pick up different examples from different classes of data sets. On
the one hand, we choose a typical measurement data set, which represents a
geographical map, originally sampled on a 2572 regular grid, which we afterwards
cover with a hierarchical triangular grid (see Appendix). It consists of regions
with a significant roughness and other areas which are almost planar.

On the other hand, we apply multilevel visualization to a typical numerical
data set already computed on a triangular grid hierarchy. It is characterized
by smooth, less steep areas which alternate with thin transition zones where
the data function is rather steep. Nevertheless, the frequencies are, on average,
much more damped in the latter data set, and the numerical data set is much
smoother than the geographical map. Here we consider a timestep of a Cahn-
Hilliard simulation on the same 257 regular grid (see Appendix). It represents
the density of an alloy after quenching (rapidly cooling), which leads to phase
separation [7,22].

In the 3D case we consider isosurface extraction and color slicing (see Ap-
pendix). Here the well known 1293 bucky ball data set serves as an example.
Like the Cahn-Hilliard data set it contains smooth areas in the interior of the
molecule and steep areas in the vicinity of the carbon atoms.

Measures of cost, quality and efficiency

The cost of the visualization method is mainly controlled by the number of visited
grid cells in the recursive traversal. We suppose that a suitable graphics hardware
guarantees a fast processing and final rendering of graphic primitives on the
adaptively finest grid levels, so that the CPU and not the graphics hardware
is the bottleneck. Since error indicators come along with different ranges of
indicator values on the grid nodes, we ensure comparability by normalizing the
maximal indicator value to 1.

An alternative measure of the cost would be the number of rendered prim-
itives. Not surprisingly both measures are closely related and therefore it does
not really matter which one we choose. In our experiments there is at most a
ratio of logarithmic size with respect to the maximal depth of the grid hierarchy.
The following results are based on the visited-cell-count cost measure.

The crucial measure of the quality of an adaptive projection in visualization
is the visual impression of the rendered image. However, this is impossible to
quantify. So in order to get a comparable notion of the quality we chose the
reciprocal of the corresponding global norm of the difference between the adap-
tively extracted function and the function on the finest grid. In this context the



efficiency E of an error indicator is the quotient of quality and cost and would

thus be

1

Ey(U,e) = U =T

where k is the number of visited cells used for the adaptive projection P,U.

Results

Fig. 1 and 2 compare results obtained for the different classes of error indicators.
The scaling on the y axes is logarithmic. For the geographical data the different
characteristics of the hierarchical offset error indicators compared to the error
indicators based on derivatives are striking.

The smoother numerical data show a similar behaviour. Not surprisingly, the
graphs for 7y and 7y . are especially for the geographical data set nearly the
same. Therefore, the simplification incorporated in 7y, . seems to be admissible
and as 7. is easier to calculate, it is more favourable for practicable purposes
than 5. As also can be expected, the indicators 1; and 75 are — in comparison
to 7o, — rather similar.

The efficiency of these indicators is depicted in Fig. 3. It becomes clear that
floo 18 less efficient than 7; and 7j5. In the case of the geographical data set and
also for not too high threshold values in the case of the numerical data, the
qualities of the three error indicators differ only slightly. So the main reason for
the low efficiency of 7, is that even for high threshold values a large number of
cells is visited. In the 3D-case the results are similar.

Finally, we compare the different methods for ensuring the saturation condi-
tion in case of the 7..-indicator. In our experiments the differences in smoothness
between the geographical and the numerical data are clearly visible in the char-
acteristic if 7o, is used. However, these differences are lost for p . This is also
true for other indicators as for example 773' compared to 7j;. Hence, an appli-
cation of an nt-type saturated indicator is only reasonable if the advantages
concerning min/max-bounds or backface culling are exploited.

Visual Impression

We also want to show that for reasonable threshold values the visual impression
of the original and adaptively projected images are rather close (see Appendix).
For the geographical map, the adaptive image consists of 13666 patches whereas
the original image has a size roughly ten times larger (131072 patches). Addi-
tionally, we show extracted isosurfaces of the bucky ball data set with 128709
and 590018 triangles, respectively (see Appendix). In all these figures we used
the 7o error indicator.



(a) geographical data (b) numerical data

(c) isosurface (d) slice

Fig. 1. Error indicators 7, (dashed), 7. (solid) and 7]« (dotted) based on the different
local L', L? and L™ norms of the hierarchical offset are compared, concerning the
count of visited simplices for varying threshold values.

(a) geographical data (b) numerical data

(c) isosurface (d) slice

Fig.2. The visited cell count is compared for the error indicators i e (solid),
fin(dotted), and fjn . (dashed, only 2D) respectively.



(a) geographical data (b) numerical data

Fig. 3. Efficiency as function of threshold value for local fjeo-error (dotted), ij-error
(solid) and local fz-error (dashed)

5 Concluding remarks

In this paper we have considered several error indicators which are used in
multiresolutional visualization and compared their quantitative as well as their
qualitative properties. We have specifically looked at local norms of difference
functions, differences of gradients and discrete curvature measures. We have
employed the saturation condition as an important prerequisite for interactive
visualization since it solves the continuity problem.

We have shown how this condition can be fulfilled by a blowup of 1. We
have thereby defined the minimal saturated hierarchical error indicator 7, which
indeed gives very good results concerning triangle count vs. global error.

On the other hand, by a slight alteration of the blowup mechanism, we have
defined the error indicators nt, which have a slightly worse efficiency but other
desirable properties. For instance, based on the error indicator data bounds on
simplices can be computed which then serve as stopping criteria for multires-
olutional isosurface extraction. We have also shown how gradient type error
indicators allow multilevel backface culling. In a series of numerical experiments
on application data the different error indicators have been compared and their
mutual advantages have been outlined.
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a) Adaptive projection of the geo- b) Original data
g g
graphical map

|

(¢) Timestep of Cahn-Hilliard (d) Color shaded slice of
Equation the bucky ball

(e) Adaptive projection (f) Original data
of the isosurface

Fig.4. Above the graph of a geographic height field, its adaptive projection and a
timestep of the Cahn-Hilliard-Equation are shown. Of the bucky ball data set we show
a color shaded diagonal slice, an adaptive projection and a full resolution isosurface.



