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Abstract. These days sparse grids are of increasing interest in numeri-

cal simulations. Based upon hierarchical tensor product bases, the sparse

grid approach is a very e�cient one improving the ratio of invested stor-

age and computing time to the achieved accuracy for many problems in

the area of numerical solution of di�erential equations, for instance in

numerical 
uid mechanics. The particle tracing algorithms that are avail-

able so far cannot cope with sparse grids. Now we present an approach

that directly works on sparse grids. As a second aspect in this paper,

we suggest to use sparse grids as a data compression method in order

to visualize huge data sets even on small workstations. Because the size

of data sets used in numerical simulations is still growing, this feature

makes it possible that workstations can continue to handle these data

sets.

1 Introduction

In 1990 sparse grids were introduced by Zenger [10]. With their help it is possible

to reduce the total amount of data points or the number of unknowns in discrete

partial di�erential equations. Due to these bene�ts, sparse grids are more and

more used in numerical simulations nowadays [1{4].

On the other hand, it is rather di�cult to visualize the results of the sim-

ulation process directly on sparse grids, since evaluation and interpolation of

function values is quite complicated on such grids. Because of this, up to the

present the results of numerical simulations on sparse grids are extrapolated to

the associated full grid. Then, all known visualization algorithms on full grids

can be performed, e.g. particle tracing, iso-surface extraction, volume rendering,

etc.. However, a major drawback of this procedure is the fact that the advan-

tage of low memory consumption of sparse grids comes to nothing using the

associated full grid for the visualization step.

Therefore, visualization tools working directly on sparse grids are going to be

an important topic of research. Heu�er and Rumpf already started working on

iso-surface extraction on sparse grids [7]. The �rst aim of our work is to introduce

particle tracing directly on sparse grids (Section 3). Furthermore, a second aspect

of this work is the idea that sparse grids can be used for data compression in

order to visualize huge data sets on small workstations (Section 4). Additionally,

the results of error, time, and memory analyses are listed in Section 4. In order

to introduce particle tracing on sparse grids, new methods and classes had to



be developed. This special class hierarchy is described in Subsection 3.1. In

Subsection 3.2 we describe the implementation of our sparse grid classes as

modules within the framework of the IRIS Explorer visualization environment.

2 Basics of Sparse Grids

In this section a brief summary of the basics of sparse grids is given. For a

detailed survey of sparse grids we refer to [1, 10]. In order to make this overview

easy to understand and to reduce the number of indices, we describe only three-

dimensional grids, whereas the sketches reveal the one- and two-dimensional

situations.

Let f : [0; 1]3 �! R be a smooth function de�ned on the unit cube inR3 with

values in R. Furthermore, f should vanish on the boundary of the cube. This

condition is not a strong restriction but is just helpful for an elegant description.

Of course, our program can handle three-dimensional functions and even vector

�elds without zero boundary conditions. If such a function f is stored in the

computer memory, then function values at certain positions on a spatial grid are

stored in an array. The simplest mesh is a uniform one. Now let Gi1;i2;i3 be a

uniform grid with respective mesh widths hij = 2�ij , j = 1; 2; 3. On these grids

we can introduce the following partial ordering relation: Gi1;i2;i3 is a re�nement

of Gk1;k2;k3 if and only if kj � ij , j = 1; 2; 3. and k1 + k2 + k3 < i1 + i2 + i3.
Thus we obtain a hierarchy of meshes.

Now let L̂n be the function space of the piecewise tri-linear functions de�ned

on Gn;n;n and vanishing on the boundary. Additionally, consider the subspaces

Si1;i2;i3 of L̂n with 1 � ij � n, j = 1; 2; 3. which consist of the piecewise tri-linear
functions de�ned on Gi1;i2;i3 and vanishing on the grid points of all coarser grids.

Apparently, the hierarchy of grids naturally introduces a hierarchy of subspaces

and it follows:

L̂n =

nM
i1=1

nM
i2=1

nM
i3=1

Si1;i2;i3 :

Hence, we have found a hierarchical basis decomposition of the function space L̂n.

Piecewise tri-linear �nite elements are used as basis functions in each subspace

Si1;i2;i3 . We de�ne the basis functions (Figure 1) of the subspace Si1;i2;i3 of L̂n:

b
(i1;i2;i3)

k1;k2;k3
(x1; x2; x3) :=

3Y
j=1

wij (xj �m
(ij )

kj
) with m

(ij)

kj
= (2kj � 1) � hij ;

1 � kj � 2ij�1 ; and wi(x) :=

8<
:

hi+x

hi
: �hi � x � 0

hi�x

hi
: 0 � x � hi

0 : else .

Now we are interested in some estimations of the interpolation error. Hence, let



Fig. 1. Examples of basis functions, b
(1)
1 and b

(2)
1 on the left and b

(1;2)
1;1 and b

(1;2)
1;2 on the

right hand side.

f̂n 2 L̂n be the interpolated function on the grid Gn;���;n. Then, f̂n is given by

f̂n =

nX
i1=1

nX
i2=1

nX
i3=1

fi1;i2;i3 where fi1;i2;i3 =

2i1�1X
k1=1

2i2�1X
k2=1

2i3�1X
k3=1

c
(i1;i2;i3)

k1;k2;k3
� b

(i1;i2;i3)

k1;k2;k3
:

The values c
(i1;i2;i3)

k1;k2;k3
are called contribution coe�cients and fi1;i2;i3 2 Si1;i2;i3 is

a linear combination of the basis functions of the appropriate subspace. It can be

shown that the following estimations hold with regard to the L2 and L1 norms

(compare [1, pp. 13]):

kfi1;i2;i3k2 �

1
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So far we have just dealt with regular uniform meshes, which are named full

grids. Now let us turn to sparse grids. Consider the subspaces Si1;i2;i3 with

i1+ i2+ i3 = const. Equations (1) and (2) show that kfi1;i2;i3k1 and kfi1;i2;i3k2
have a contribution of the same order of magnitude, namely O(2�2�const) for all
subspaces with i1+ i2+ i3 = const. Additionally, these subspaces have the same

number of basis functions, namely 2const�3. Since the number of basis functions

is equivalent to the number of stored grid points and because of the contribution

argument as well, it seems to be a good idea to de�ne a sparse grid space ~Ln as

follows:
~Ln :=

M
i1+i2+i3�n+2

Si1;i2;i3 :

Now the interpolated function ~fn 2 ~Ln is given by

~fn =
X

i1+i2+i3�n+2

fi1;i2;i3 (5)
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Fig. 2. On the left hand side a two-dimensional hierarchical subspace decomposition

is shown and on the right hand side you can see the respective sparse grid.

and the interpolation errors with regard to the L2 and L1 norms are given by

(compare [1, pp. 23])
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= O
�
h2n
�
log2

�
h�1n

��2�
: (9)

These estimations show that the sparse grid interpolated function ~fn is nearly

as good as the full grid interpolated function f̂n.
Now we consider the dimensions of the function spaces L̂n and ~Ln, which

correspond to the number of nodes of the underlying grids. Obviously, the di-

mension of the full grid space is given by

dim
�
L̂n

�
= O

�
23n
�
= O

�
h�3n

�
: (10)

For the sparse grid the following equation holds:

dim
�
~Ln

�
= O

�
2n � n2

�
= O

�
h�1n

�
log2

�
h�1n

��2�
: (11)

Therefore, a tremendous amount of memory is saved if sparse grids are used

instead of full grids (see Section 4).

If the function f is given and a certain accuracy is required, then it is possible

to use f̂n 2 L̂n or ~fm 2 ~Lm where m is just slightly greater than n. Due to the

very low memory consumption of sparse grids, it is better to use the function
~fm. On the other hand the function f is often given in discrete form as data set



on a full grid. In this case it is not possible to reach a better accuracy with the

sparse grid approach than with the original full grid data. However, equations

(7), (9), and (11) show that a very small loss of accuracy is rewarded with a

huge amount of saved storage.

3 Particle Tracing on Sparse Grids

Flow visualization tools based upon particle methods continue to be an impor-

tant utility of 
ow simulation. Additionally, the importance of sparse grids in

numerical simulations is still growing. However, so far particle tracing algorithms

could only handle data sets given on full grids. Now we present a particle tracer

that can cope with sparse grids. Our new particle tracing module supplies the

same features, e.g. colored streak lines, ribbons, tubes, balls, and tetrahedra

(see Figure 3), as our previous full grid particle tracing tool, which is partially

described in [5] and [6].

3.1 Class Hierarchy for E�cient Interpolation on Sparse Grids

Lagrange visualization techniques of a vector �eld v are based upon the numerical

solution of an initial value problem for the di�erential equation: dx=dt = v(x; t).
Usually, a numerical integration method is used to obtain a solution. All such

methods have in common that they must evaluate the vector �eld v at certain

positions, which are in general not at grid points. Therefore, the value of v at such
a position has to be interpolated. As mentioned in Section 2, this interpolation

on sparse grids is di�erent from that one on full grids, whereas the other parts

of the particle tracing algorithm can remain unchanged.

In contrast to the tri-linear full grid interpolation, the sparse grid interpo-

lation does not operate locally, because one basis function in every subspace

contributes to the function value. Since the tri-linear interpolation is one of

the most time consuming operations during the particle tracing process on full

grids [8], the complicated sparse grid interpolation is all the more time consum-

ing. Therefore, it is important to execute the interpolation as fast as possible.

Normally, the contribution coe�cients of the sparse grid are stored in a binary

tree [1, 2, 7]. Then, a recursive tree traversal has to be performed in order to

interpolate the function value. This tree traversal is very slow. Although caching

strategies can increase the e�ciency of the traversal [7], the computation of the

values remains rather time consuming.

Hence, the contribution values are not stored in a binary tree but in arrays.

Then, it is not necessary to traverse a tree but the required contribution co-

e�cient can be accessed directly. Therefore, we have implemented a particular

C++ class hierarchy. Due to the limited amount of space, we can just give a

very brief idea of the classes.

Initially, recall that the sparse grid space ~Ln is the direct sum of all subspaces

Si;j;k with i+ j+k � n+2. Now we de�ne the level of a subspace as the number

n = i + j + k � 2. Moreover, we de�ne a level of the sparse grid space as the



            

Fig. 3. Colored streak balls and tetrahedra

in a vortex 
ow given on a sparse grid.

            

Fig. 4. Streak tubes in a cavity


ow; the red tubes are computed on

a full grid of level 7, the other tubes

are created on sparse grids of level

7 (yellow), 5 (blue), and 3 (green).

direct sum of all subspaces of the same level of subspaces. Therefore, ~Ln is the

direct sum of its �rst n levels and is called a sparse grid of level n.

Besides abstract base classes, classes for input, and other auxiliary classes,

the classes of interest are named hbSparseGrid, hbLevel, and hbSubspace. The

class hbSparseGrid contains a stack of n levels of class hbLevel. Furthermore,

hbLevel comprises the respective number of subspaces ((n + 1)n=2), denoted
hbSubspace. The class hbSubspace contains an array of the size 2n�1 times data

dimension, where the contribution coe�cients are stored. The function value at

an arbitrary position is computed by means of formula (5). In order to compute

a function value, the class hbSparseGrid contains a method calcValue(...).

This method sends a `calcValue()' to each hbLevel to accumulate the con-

tributions to the resulting value. Then, the method hbLevel::calcValue(...)

performs a loop over all subspaces of the current level. In this loop, the required

basis function is determined by means of the coordinates of the current posi-

tion. Recall that only one basis function per subspace is unequal to zero at a

certain position because all basis functions are hat-functions. Hence, we know

the required contribution value. Now the `height' over the current position in

the tri-linear hat-function is determined and multiplied with the contribution

value. Thus, we obtain the total contribution of this subspace to the function

value. Additionally, we compute the Jacobian, which is needed to compute the

local rotation of the 
ow for displaying bands and tetrahedra, in this loop by

looking up the correct `height' of the derivative of the hat-function, a simple

box-function. The e�ciency of this implementation is shown in Section 4.

3.2 Implementation as IRIS Explorer Module

Our new particle tracer, which works on data sets given on sparse grids, is imple-

mented as an IRIS Explorer module and named StreakbandHB. As integration



            

            
            

Fig. 5. Streak bands in a vortex 
ow; ribbons containing blue edges display the 
ow

on a full grid of level 7, bands with green edges the 
ow on sparse grids of level 0 (left),

1 (middle), and 4 (right); the ribbons computed on full and sparse grids coincide on

screen for levels greater than 3.

methods for the particle tracing algorithm of StreakbandHB, we use the integra-

tion schemes that we have already implemented in our full grid particle tracer,

called Streakband. A comparison of these schemes can be found in [9]. An adap-

tive Runge-Kutta method of order 3 (RK3(2)) is used for the tests described in

Section 4.

In order to visualize the particles, we have chosen the same geometrical prim-

itives as in our full grid particle tracing module, namely lines, bands, tubes, balls,

and tetrahedra. Of course, all kinds of traces can visualize an additional scalar

value by means of color coding. Moreover, balls and tetrahedra can reveal an-

other scalar value by their size. Besides that, bands and tetrahedra display the

local vorticity of the 
ow via rotating around the actual streak line. Since both

modules, Streakband and StreakbandHB, are provided with the same function-

ality, their results can be compared easily (see Section 4).

Besides the actual particle tracer, some additional modules had to be imple-

mented in order to handle sparse grids properly. First of all, a module, called

DemoSparseGridHB, is needed to create an analytical demo vector �eld on a

sparse grid of a certain level. Secondly, a function, denoted LatToSparseGridHB,

is used in order to transfer a full grid given as Explorer cxLattice data type to

a sparse grid. Finally, PrintSparseGridHB is a helpful tool for debugging sparse

grid routines.

In order to allow these new modules sending and receiving sparse grid data

via the Explorer network, a new Explorer data type has been created, named

HBSparseGrid3D.

4 Results

In order to compare our sparse grid particle tracing module with full grid particle

tracers, two data sets were used. The �rst one, which was provided by S. H. Enger

from the Lehrstuhl f�ur Str�omungsmechanik of the University of Erlangen, is a

cavity 
ow data set on a full grid of level 7, i.e. 1293 nodes (see Figure 4). The



data set contains the velocity, pressure, and temperature at each vertex. Hence,

it consumes more than 40 MB. Notice that the same data set with a resolution of

8 levels would need more than 320 MB, that is too much for most workstations.

On the other hand, this data set stored on a sparse grid of level 7 consumes only

175 kB.

The second data set is an analytic one. It is a vortex 
ow (compare Figures 3

and 5). Since the data set is analytical, we are able to create sparse and full

grids in any resolution only limited by the main memory of the used machine.

Therefore, we chose the analytic vector �eld for our quantitative e�ciency tests.

Nevertheless, the performance of the compared modules was nearly the same

while testing on the cavity data set.

All tests were performed on a Silicon Graphics computer with a 196 MHZ

R10000 processor. For testing, at each time nine streak ribbons were com-

puted consisting of about 500 particles (see Figure 5). The computing time of

StreakbandHB is compared with that of our full grid Streakband module and

of the NAG-Advect module, which is provided together with the IRIS Explorer.

The CPU-times were measured in seconds and are listed in the following table.

level 2 3 4 5 6 7

points of full grid 53 93 173 333 653 1293

StreakbandHB (sparse grid) 0.15 s 0.28 s 0.47 s 0.95 s 1.65 s 4.61 s

Streakband (full grid) 0.42 s 0.87 s 1.60 s 3.22 s 6.51 s 13.26 s

NAG-Advect (full grid) 1.09 s 1.33 s 1.61 s 1.89 s 2.28 s 2.66 s

Table 1. Computing times in CPU-seconds using an analytic vortex 
ow.

The used integration methods were an adaptive Runge-Kutta scheme RK3(2) in

case of our Streakband modules and an adaptive Runge-Kutta scheme RK4(5)

in case of the NAG-Advect program. See [9] for a discussion of di�erent integration

algorithms for particle tracing.

At �rst glance, it is astonishing that the full grid Streakband module is

slower than our sparse grid StreakbandHB module. This is due to the fact that

Streakband is adjusted to multi-block curvilinear grids. In order to cope with

such grids, the stencil walk algorithm is performed during the particle tracing.

This algorithm is unnecessary on uniform grids and therefore not performed by

StreakbandHB. Thus, it is not fair to compare the computational times of those

modules, but anyway the full grid Streakband is needed for the comparison of

the actual particle traces.

The measured times show that interactive particle tracing is possible even

on sparse grids of level 7. Secondly, the table reveals the drawback of sparse

grid interpolation that the computing time exponentially rises if the level of the

grid is increased. In contrast to this, the computing time of the NAG-Advect

module is growing slowly. In theory, the time for particle tracing on full grids is

independent of the grid size.



Now the accuracy of sparse grid particle tracing is considered. Therefore,

the traces computed by StreakbandHB are compared with their counterparts

resulting from Streakband. Recall that the error of full grid interpolation can

be estimated at O(h2) and that of sparse grid interpolation at O((h�log2(h
�1))2).

This is a rather small di�erence. Moreover, the integration error of RK3(2) is of

order O(�3) where � denotes the current time step [9]. From this point of view,

it does not seems to be too bad using sparse instead of full grid particle tracing.

In fact, the results of particle tracing on the analytic data set con�rm these

estimations because the ribbons computed on full and sparse grids coincide on

screen for levels greater than 3 (compare Figure 5).

However, during the deduction of the mentioned upper bounds of the inter-

polation errors, the smoothness of the data was needed (compare equations (3),

(4), (6), and (8)). Since discrete data sets are not smooth at all, these estima-

tions do not hold in case of discrete data. Indeed, Figure 4 reveals that the

particle traces computed on sparse grids converge rather slowly to the full grid

solution. Nevertheless, due to the great advantage of low memory consumption,

it is possible to use a sparse grid of quite a high level to overcome this problem.

The great bene�t of the sparse grid technique is the low number of required

grid points. The next table shows the memory consumption of a typical data

set resulting from a numerical 
ow simulation. Assume that �ve 
oating point

values, namely three velocity components, pressure, and temperature, are given

at each grid node. Then, these 
oating point values add up to 20 bytes per node.

Thus, we obtain the following results:

level 5 6 7 8 9 10

points of full grid 333 653 1293 2573 5133 10253

sparse grid 29 kB 73 kB 175 kB 415 kB 970 kB 2.2 MB

full grid 640 kB 5 MB 40 MB 320 MB 2.5 GB 20 GB

Table 2. Memory consumption of a typical data set.

This table shows that sparse grids are very suitable for compressing huge data

sets. By dint of this, it is possible to visualize such data even on small worksta-

tions.

5 Conclusion

We have introduced particle tracing on sparse grids. This allows to carry out


ow visualization directly on sparse grids without transforming the results of

numerical simulations on sparse grids to the associated full grids. Secondly, the

sparse grid approach can be used as a compression method in order to realize

particle tracing in huge data sets on small workstations.



There are several directions of future work. The �rst aim is to introduce

further visualization techniques on sparse grids. First of all, we are going to in-

troduce volume rendering on these grids. A second goal is to enlarge the �eld

of applications. At the moment, we are thinking about a particle tracing algo-

rithm on curvilinear sparse grids. Furthermore, we intend to implement adaptive

sparse grids with error monitoring. Last but not least, there are possibilities to

accelerate the sparse grid interpolation by sophisticated caching strategies. On

the one hand, a pre-computing mechanism of a certain number of levels could be

implemented. On the other hand, pre-computing a certain number of cells could

be advantageous.
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Colored streak balls and tetrahedra in a vor-

tex 
ow given on a sparse grid (Teitzel et al.,

Fig. 3)

            

Streak tubes in a cavity 
ow; the

red tubes are computed on a full

grid of level 7, the other tubes are

created on sparse grids of level 7

(yellow), 5 (blue), and 3 (green)

(Teitzel et al., Fig. 4)
            

            
            

Streak bands in a vortex 
ow; ribbons containing blue edges display the 
ow on a full

grid of level 7, bands with green edges the 
ow on sparse grids of level 0 (top), 1 (left),

and 4 (right); the ribbons computed on full and sparse grids coincide on screen for

levels greater than 3 (Teitzel et al., Fig. 5)


