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Abstract. Particle tracing in curvilinear grids often employs decompo-

sition of hexahedral cells into 5 tetrahedra. This method has shortcomings

when applied to �-transformed grids, a grid type having strongly sheared

cells, commonly used in hydrodynamic simulations. This paper describes

an improved decomposition method into 6 tetrahedra. It is shown that

this method is robust in �-transformed grids, however large the shear-

ing. Results are presented of applying the technique to a real world sim-

ulation. Comparisons are made between the accuracy and speed of the

5-decomposition and the 6-decomposition methods.

1 Introduction

Particle tracing is an important technique for visualization of velocity vector

�elds resulting from computational 
uid dynamics (CFD) simulations [3]. The

basic particle tracing technique is based on a stepwise numerical integration of

the velocity �eld. Especially the numerical integration techniques have been well

studied [7, 8]. A source of complications is the use of irregular grids in CFD

simulations, such as structured curvilinear grids. The cells of such grids are hex-

ahedra with arbitrarily deformed geometry; the adjacency structure (topology)

of the grid cells is regular. But the irregular geometry causes critical operations

in particle tracing algorithms to be more complex, such as �nding which cell

contains a given point.

Several solutions have been proposed for this problem. One is to transform

the deformed hexahedral cells to cubes (computational space or C-space), per-

form the path integration in a regular grid, and transform the results back to the

original deformed grid. Another solution is to perform the tracing directly in the

deformed grid (physical space or P-space), using a decomposition of the hexahe-

dral cells into tetrahedra. We have analysed and compared these techniques in

an earlier paper [6], and found that the P-space approach gave the best results

both in accuracy and e�ciency, if visualization is applied as a postprocessing ac-

tivity following the actual computations, and C-space velocities are not directly

available.



The P-space algorithms using a tetrahedral decomposition of hexahedral cells

have gained acceptance [4], but some problems can occur in strongly deformed

grid cells. In large-scale hydrodynamic simulations, the x- and y-dimensions are

typically 2 to 3 orders of magnitude larger than the z-dimension. Such simula-

tions often use so-called �-transformed curvilinear grids, in which the hexahe-

dral cells can be very 
at and strongly deformed. This can cause the tetrahedral

5-decomposition to produce locally invalid results, and the P-space tracing al-

gorithm to fail.

In this paper, we will examine the reasons for this failure in more detail,

and propose a new decomposition which can be proven to maintain validity

of the grid even for very strong deformations of �-transformed grid cells. Sec-

tion 2 gives some fundamentals of P-space particle tracing, and brie
y surveys

the 5-tetrahedron decomposition of hexahedral cells. After explaining the �-

transformation in Section 3, we analyse the problems occurring with the 5-

decomposition. Section 4 presents the improved 6-decomposition, and experi-

mental results are shown in Section 5. Conclusions and directions for further

work are given in Section 6.

2 Fundamentals of Particle Tracing

The computation of a particle path is based on the integration of the ordinary

di�erential equation
dx

dt
= v(x) (1)

where x denotes the position of the particle, t is time, and v(x) the velocity

�eld. The starting position x0 of the particle provides the initial condition at

initial time t0: x(t0) = x0. Subsequent points are calculated as

x(t
n+1) = x(t

n
) +

Z
tn+1

tn

v(x)dt (2)

using a numerical integration method. The solution is a sequence of particle

positions (x(t0);x(t1); : : :) at time steps t0; t1; : : :

Particle Tracing in Regular Rectangular Grids

Let us �rst recall the structure of a particle tracing algorithm for regular rect-

angular (uniform) grids:

�nd cell containing initial position (point location)

while particle in grid

determine velocity at current position (interpolation)

calculate new position (integration)

�nd cell containing new position (point location)

endwhile



Point location is the process of determining which cell contains a speci�ed point.

In uniform grids, this is easily accomplished by splitting the coordinates of a

point into the integer cell indices (i; j; k) and fractional o�sets (�; �; 
). Inter-

polation is the process of determining a data value at an arbitrary position in a

given cell, using the surrounding grid nodes and the fractional o�sets. In uniform

grids, this is typically done with �rst-order trilinear interpolation.

Particle Tracing in Curvilinear Grids

In practice, many CFD applications do not use uniform grids, but structured

curvilinear grids, consisting of deformed, hexahedral cells. An advantage of curvi-

linear grids is that they can follow the shape of curved or complex geometries

such as airplane wings and coast lines. The disadvantage is that algorithms

working on these grids are more complex, because the cells are no longer regular

cubes, but they may be sheared and have curved faces.

One strategy often applied in many CFD simulation systems, is to transform

the curvilinear grids in physical space to a uniform grid in a new domain, called

computational space. Unfortunately, for visualization algorithms, this method

did not turn out to be bene�cial, as was investigated in detail in [6].

Another strategy is to calculate the particle path directly in physical space.

This would avoid transformations between the two domains, although at the ex-

pense of more di�cult point location and interpolation. Interpolation in curvi-

linear grids is more di�cult, because the o�sets are harder to determine in a

curved cell. Point location in curvilinear grids is more di�cult, because there is

no longer a direct relation between the global coordinates of a point and the cell

indices. Instead, a search must be performed, by checking for several cells if they

contain the point. Usually, there is a previous position in a known cell, which is

connected to the new position in the unknown cell by a line. Along this line, the

algorithm traverses subsequent adjacent cells by intersecting the line with the

cell faces and checking which adjacent cell has that face in common.

Decomposition into 5 Tetrahedra

One way to cope with curved cells works by decomposing the hexahedral cells

into tetrahedra. The advantages of tetrahedra is that they are convex and planar,

which facilitates containment tests and face intersection tests.

The simplest and most e�cient scheme is to decompose the hexahedral cells

into 5 tetrahedra, henceforth called the 5-decomposition. Figure 1a shows a cube

which is decomposed into 1 (shaded) center tetrahedron and 4 corner tetrahedra.

In a structured grid, the decomposition can be done in two directions. To ensure

connection of cell faces and to avoid overlapping cells, these two directions should

be alternated in adjacent cells, as shown in Figure 1b.

In tetrahedra, interpolation and point location are performed as follows. In-

terpolation in tetrahedra is done using linear interpolation. Figure 1c shows a

tetrahedron ABCD, where �; �; 
 denote the fractional o�sets in the tetrahedron,

with the restriction that � + � + 
 � 1. If v
A
is the data value in node A, v

B



(a) 1 center tetrahedron and 4 corner
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Fig. 1. Decomposition of a hexahedral cell into 5 tetrahedra

the data value in node B, etc., then the interpolated value v
P
in some position

P in the tetrahedron is: v
P
= v

D
+ �(v

A
� v

D
) + �(v

B
� v

D
) + 
(v

C
� v

D
).

The fractional o�sets (�; �; 
) may be found by inverting the interpolation of

the position of P in the tetrahedron.

P = D + �(A �D) + �(B �D)
(C �D) (3)

(�; �; 
) = (A�DjB �DjC �D)�1(P �D) (4)

Point location is again done by traversing cells from a previous position,

although not entire cells are traversed, but the tetrahedra into which they are

decomposed.

3 �-Transformed Grids

Point location using tetrahedral 5-decomposition regularly fails, especially in a

speci�c type of grids known as �-transformed grids. In our test cases, up to

40%(!) of the particles were caught in an in�nite loop between two cells, or

stopped completely. Before explaining the cause of these problems, let us �rst

describe this type of grids.

�-Transformed grids are frequently used in hydrodynamic simulations of shal-

low waters, such as marine coasts or estuaries. They consist of stacked 2D xy-

layers, each of which is a well-formed quadrangular mesh with curved and usually

orthogonal grid lines. Corresponding nodes in di�erent layers have identical x,y

coordinates. In the vertical direction, the grid lines are straight and parallel to the

z-axis. �-coordinates are de�ned relative to the local water elevation � and depth



d, as � = z��

�+d
. The top grid layer, where � = 0, follows the free water surface,

which usually only varies gradually. The bottom layer, where � = �1, follows

the sea 
oor geometry, which typically has strongly varying depths throughout

the model. The layers in between are constructed with a prescribed distribution.

Figure 2 shows one possible distribution of 6 layers. Figure 3 shows a sea 
oor

geometry and a vertical grid slice in the Lith harbour data set, which was used

in a simulation and visualization project at WL j Delft Hydraulics [5] (see Figure

9 for colour (see Appendix)).

Fig. 2. Distribution of a �-

transformed grid with 6 layers
Fig. 3. �-transformed grid, with a sea 
oor

geometry and a vertical grid slice

In �-transformed grids, many cells are sheared in the vertical direction, be-

cause the number of layers is constant, while the local depth varies, so parallel

vertical edges often lie at very di�erent depths. The shearing is increased as the

cells are typically very thin in these applications: the model may be hundreds of

kilometers wide and only tens of meters deep. Strongly sheared cells have some

typical characteristics. In a normal cell, the orientation of the center tetrahedron

is as shown in Figure 4a, but in a strongly sheared cell, the center tetrahedron

has been turned inside out, as shown in Figure 4b. The top faces BEG and DEG

now lie at the bottom, while the bottom faces BDE and BDG lie on top. The

edges BD and GE have crossed each other. This is possible because the center

tetrahedron has edges spanning the entire cell.

These strongly sheared cells result in two problems with the 5-decomposition.

One problem is that the center tetrahedron overlaps with corner tetrahedra, and

even with a neighbouring cell. As a consequence, the point location algorithm

cannot determine a unique tetrahedron which contains a given point, and exits.

The second problem is that particles may get caught in an in�nite loop between

two tetrahedra. Due to the reversed orientation of the center tetrahedron, the

point location algorithm fails to �nd the correct outgoing face, and therefore

the correct adjacent tetrahedron. As a consequence, the algorithm moves from

a corner tetrahedron to the center tetrahedron, and then return to the corner

tetrahedron where it came from, instead of proceeding to the next one. In this

way, it will continue moving back and forth forever.
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Fig. 4. (a) Normal (a) and (b) reversed tetrahedral orientation in 5-decomposed hex-

ahedra

The frequency at which these problems occurred, varied between 4% and 40%

of the particles, depending on the data set and particle source locations. In some

cells, the problems might be solved by changing the decomposition direction,

since the problem is direction dependent. But then the problem would probably

occur in other cells, because the direction is chosen globally for the entire grid.

4 Tetrahedral 6-Decomposition

An apparent solution to the point location problems comes to mind: scale or

shear a deformed cell such that the twisted orientation of the edges and tetra-

hedra is avoided. However, scaling or shearing grid cells amounts to applying a

computational space algorithm: the grid is transformed to a di�erent domain,

where the cells are regular and rectangular. We chose not to do this in Section 2

because of the loss of accuracy and e�ciency [6].

A better approach is to use a di�erent tetrahedral decomposition. A system-

atic overview of the possibilities can be found in [1]. A hexahedron can be decom-

posed into 5, 6, and any even number between 12 and 24 tetrahedra. For reasons

of e�ciency and storage space, the preferred approach is the decomposition into

6 tetrahedra, henceforth called the 6-decomposition. Figure 5 shows how this is

accomplished: a hexahedral cell is decomposed into two three-sided prisms, each

of which is decomposed into 3 tetrahedra. Just like the 5-decomposition, the 6-

decomposition has two directions: each face diagonal can be chosen in two ways.

But an advantage of the 6-decomposition method is that it does not require the

directions to alternate for adjacent cells.

The main advantage of this 6-decomposition method is that it solves the point

location problems. There is no longer a center tetrahedron whose edges span the

entire cell, and which may cross each other when the cell is sheared in the vertical

direction. Figure 6 shows the 6-decomposition in a normal cell, and in a sheared

cell comparable to Figure 4b. It can be clearly seen that the tetrahedra in the



Fig. 5. Decomposition of a hexahedron into 6 tetrahedra

sheared prism retain their orientations, since the hatched planes AGH and ADG

retain their orientations and relative positions. No tetrahedron has been turned

inside out. It can be shown that this method is robust: the tetrahedra will never

change orientation, no matter how large the shearing is, as long as the edges are

only displaced in the vertical direction (as is the case with �-transformed grids).

5 Results

The technique described above was implemented in a set of AVS/Express mod-

ules called PLANKTON-97 [2]. Modules were developed for interactively placing

point, line, and plane particle sources, for calculating the particle paths, and

for creating animations. To evaluate the technique, three types of tests were

performed: a functional test and a speed test.

Functional Test

To test the system, we have performed tests in arti�cial and real world data

sets. Whereas the 5-decomposition method would fail in 4% to 40% of the re-

leased particles, the 6-decomposition method did not have any problems in trac-

ing the particles through strongly deformed cells. Here, we show an example

of particles traced in the Lith Harbour data set. The grid is a �-transformed

curvilinear grid with 121x40x10 cells. At the grid nodes, velocity and turbulence

intensity were de�ned. In this data set, 100 particles were released in a horizontal

plane. Figure 7 shows the particles rendered as arrows. It is clearly visible that
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Fig. 6. Tetrahedral orientation in 6-decomposed (a) normal cell and (b) sheared cell

the 5-decomposition method failed to trace 14 out of 100 particles, rendered as

circles. The 6-decomposition was successful for all particles (not shown).

Fig. 7. The 5-decomposition method failed to trace 14% of the particles in Lith Harbour

Figure 8 shows another example where the 6-decomposition was successful

(see Figure 10 for colour (see Appendix)). Here, instead of the particles them-

selves, the traced particle paths were rendered, coloured with velocity magnitude.

In addition, a bounding box and a sea 
oor geometry were rendered to increase

the sense of depth.

Speed Test

To compare the speed of both algorithms, we measured the execution times

necessary for creating 100 animation frames. In the Lith Harbour data set, par-

ticles were released from one source located near the center of the data set.



Fig. 8. Particles successfully traced with the 6-decomposition method

After every 25 frames, a new particle was released. For each frame, we calcu-

lated 25 integration steps of �t = 10s, which amounts to 2500 integration steps.

The machine used was an SGI Indigo2 with a MIPS R10000 processor at 195

MHz. Note that the 6-decomposition is slightly faster than the 5-decomposition,

even though it creates more tetrahedra. This is due to a simple optimization for

avoiding redundant operations in traversing the decomposed cell. Table 1 lists

the test results, which were performed several times and averaged, to obtain

accurate measurements.

5-decomposition 6-decomposition

execution time (s) 10.61 10.47

# traversed cells 85 85

# traversed tetrahedra 234 243

Table 1. Speed comparison of 5-decomposition and 6-decomposition methods

6 Conclusions and Future Work

It has been shown that decomposition of hexahedral cells in �-transformed grids

into 6 tetrahedra is better than decomposition into 5 tetrahedra. Particles whose

paths could not be traced due to the limitations of the 5-decomposition, could

be successfully traced with the 6-decomposition method. The 6-decomposition

method has shown to be robust, regardless of the amount of vertical shearing of

the cells.

In practice, the grids used in hydrodynamic simulations have more application-

speci�c features, such as missing (dry) grid points, thin dams, boundary points



requiring special care, etc. However, these do not fall within the scope of this

paper, but some solutions are presented in Chapter 6 of [2].

The tetrahedral decomposition can be used in unstructured tetrahedral grids

with only slight modi�cations, if face/cell adjacency information is available for

traversing the grid.
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Sigma-transformed grid in Lith harbour (Sadarjoen et.al., Fig. 9).

Particles successfully traced with the 6-decomposition method

(Sadarjoen et.al., Fig. 10).


