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Abstract. We present a thread of streamlets as a new technique to visu-

alize dynamical systems in three-dimensional space. A trade-o� is made

between solely visualizing a mathematical abstraction through lower-

dimensional manifolds, i.e., characteristic structures such as �xed points,

separatrices, etc., and directly encoding the 
ow through stream lines or

stream surfaces. Bundles of streamlets are selectively placed near char-

acteristic trajectories. An over-population of phase space with occlusion

problems as a consequence is omitted. On the other hand, information

loss is minimized since characteristic structures of the 
ow are still illus-

trated in the visualization.
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1 Introduction

Visualization [14] has become an established �eld of science during the past

years. Dynamical systems, for example, 
ow �elds, are an important topic con-

cerning research in this area [2, 16]. Dynamical systems provide a mathematical

framework to deal with the dynamics of a set of variables. They are used to

model real world phenomena such as, e.g., the stock market, chemical reactions,

or food chains.

A dynamical system is usually given by a vector of state variables which

change over time [3]. If the formulas which describe the dynamics of the system

are varying over time, a dynamical system is called time-dependent. If the rules

guiding the dynamics are static over time, the dynamical system is called steady

(time-independent). Usually a continuous dynamical system (also called 
ow)

is speci�ed by a set of ordinary di�erential equations (ODEs { _x = f(x;p; t))

together with a set of parameters (p). Often continuous dynamical systems are

visualized in phase space, which is de�ned by associating each of the n state

variables to one axis of an n-dimensional Cartesian coordinate system. In this
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paper we will concentrate on 3D continuous dynamical systems which are steady,

i.e., function f does not depend on time t.

Several approaches to the visualization of dynamical system can be distin-

guished [11]. One class of techniques deals with the visualization of characteristic

elements such as, e.g., �xed points, cycles, or separatrices. A structure of lower-

dimensional objects is composed in phase space to describe the key features of

the system's behavior [1]. For example, a separatrix is visualized to indicate two

subsets of phase space with qualitatively di�erent dynamics. A brief overview

of the relation between local linearization and characteristic structures can be

found in the Appendix.

Another class of approaches deals with the direct visualization of the system

behavior. Integral curves visualize the evolution of speci�c initial settings which

change according to the dynamics of the underlying 
ow. Many techniques are

already available for the 2D case. Spot noise [18] and line integral convolution

(LIC) [5], for example, provide an overview of 2D dynamics within a 2D do-

main. In 3D, however, direct visualization is di�cult. Rendered images tend

to be overloaded when entire portions of 
ow in 3D space are simultaneously

visualized. Some attempts into this direction are illuminated stream lines [19]

and volume-rendered 3D 
ow [7].

In addition to the visualization of characteristic elements and direct visual-

ization, a third class of techniques deals with the representation of local prop-

erties [12]. Glyphs [6] represent certain quantities derived from the Jacobian

matrix (local linearization of the 
ow) such as, e.g., acceleration, rotation, or di-

vergence. Another approach [17] transforms a polygon positioned perpendicular

to a trajectory to represent local information.

In this paper we present a technique which to a certain extent belongs to all

of the three classes mentioned above. It was inspired by the concept of modeling

knit-wear as yarn with a complex micro-structure [8]. We visualize the vicinity

of characteristic trajectories, for example, the stream lines emanating from �xed

points. A great number of short integral curves (streamlets) is used to directly

code the system's behavior near the characteristic trajectory. By this approach

of selectively placing streamlets we omit distracting image cluttering while still

providing direct cues to the (local) system behavior. Visualizing the vicinity of

characteristic stream lines enhances the abstract representation of the system's

behavior by local cues of direct visualization.

2 A thread of streamlets

To come up with a useful technique of locally enhanced stream lines, we pro-

pose a model for the generation of a thread of streamlets. Near a predescribed

stream line T (the base trajectory) many short streamlets are placed. Thereby

a continuous representation of the system's behavior in the vicinity of the base

trajectory is approximated.
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Fig. 1. Relation between streamlet density (no), streamlet integration length (len),

and streamlet instantiation interval (dt)

Using constant 
ow as a reference model { stream lines are straight lines in this

case { the thread of streamlets fTigi2N is de�ned as follows: Any cross-section

perpendicular to base trajectory T is pierced by a constant number (no) of

streamlets. Using integration time t as parameterization of base trajectory T
(T (0) = x0 = seed point of T ), streamlets Ti are instantiated at time ti = i � dt
and integrated over the time interval [i �dt� len

2
]. See Fig. 1 for an illustration of

the relationship between no, dt , and len , i.e., dt = len=no. Seed points Ti(i�dt) of
newly instantiated streamlets are randomly chosen within a perpendicular cross-

section through T (i � dt) corresponding to a probability distribution function

(PDF) d(�; r) (see Eq. 1 and Fig. 2). In other words,

{ many streamlets are arranged around a certain base trajectory T in a circular

fashion. Thus, polar coordinates (r and �) were used to describe the seed

states of the streamlets.

{ Through PDF d the generated streamlet distribution is uniform within a

certain radius (qR) and fades out linearly outside radius qR. This way of

instantiating streamlets emphasizes the 
ow near base trajectory T .

d(�; r) =

8<
:

D if 0 < r � qR

R�r

R�qR
D if qR < r � R

0 if R < r

(1)

PDF d(�; r) is de�ned by parameters R (the maximal distance between T (i � dt)
and Ti(i � dt)) and q 2 [0; 1). The latter parameter is used to de�ne PDF d as a

truncated cone. This shape provides the fade-out characteristic of the streamlet

placement procedure with respect to the distance from T . To guarantee that

d is a PDF
R
d(�; r) d� dr must equal 1, i.e., the volume of the truncated cone

must be 1. This constraint can be expressed as speci�cation for parameter D:

D =
3

(1 + q + q
2)R2

�
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Fig. 2. Probability density function d(�; r) for the instantiation of streamlets based

on a perpendicular cross-section through the base trajectory.

Computing a thread of streamlets for the reference model ( _x = const:), a bunch

of line segments (streamlets { fTigi2N) of equal length (len � j _xj) is generated.
It this case of constant 
ow the streamlets are parallel to the base trajectory

which is a straight line itself. The initial positions of streamlets fTi(i � dt)gi2N
are determined according to the PDF d(�; r). For any time t the cross-section

perpendicular through T (t) is pierced by exactly no = len=dt streamlets.

Applying this model to real (non-constant) 
ow data, local 
ow characteris-

tics are visualized through the following variations from the constant 
ow refer-

ence setup:

{ the shape of the streamlets directly visualizes the 
ow locally to the

base trajectory. Local convergence/divergence or rotational behavior with

respect to the base trajectory is intuitively depicted. Since local variations

are signi�cant in the area of (partial) degeneracies of the 
ow, characteristic

trajectories are especially well suited to be chosen as base trajectories.

{ the streamlet length is a direct visualization of 
ow velocities near the

base trajectory. Due to this, the 
ow velocity can be depicted very well.

Compared to color coding which is often used for velocity visualization the

use of streamlets is more e�ective.

Taking a linear node repellor, i.e., a linear source, with eigenvalues 1, 10, and

100, for example, the 
ow characteristics in the vicinity of this �xed point can

be visualized in di�erent ways (see Fig. 3). Using threads of streamlets for a

visualization of the characteristic trajectories { those which are aligned with

the eigenvectors of the �xed point's Jacobian matrix { a dense and intuitive

representation of the 3D 
ow near the �xed point is generated. Through the

threads of streamlets (Fig. 3b) the 
ow next to the characteristic trajectories

is visualized. A purely abstract notation (Fig. 3a) encodes the eigenvectors

of the Jacobian matrix and the magnitudes of the associated eigenvalues. No

information about the vicinity of the characteristic trajectories is provided.



3 Rendering

Drawing 1D objects poses several problems in the rendering stage. Shading,

for example, improves the visual cues concerning the spatial arrangement of

objects, but shading is usually de�ned on the basis of a surface (normal). Lines

and curves have an in�nite number of normals in each of their points. Therefore

typical models such as Phong shading [15] can not be applied directly to 1D

objects in 3D.

In 1989 Kajiya presented an \ad hoc" approach to deal with the problem of

line shading in 3D which is based on an integration of all re
ected intensities [9].

In 1996 Z�ockler et al. described an e�cient computation scheme for line shading

in 3D which generates comparable results to the technique proposed by Ka-

jiya [19]. A general framework for the task of shading k-dimensional manifolds

in n-dimensional space was worked out by Banks in 1994 [4]. In addition to a con-

sistent framework for the shading problem with arbitrary codimensions Banks

also dealt with the problem of excess brightness-compensation which becomes

an important topic if manifolds with codimension higher than 1 are shaded.

Another problem associated with line shading in 3D is (self-)shadowing. Nor-

mally, if shading 2D manifolds in 3D space, we (implicitly) deal with this aspect

by assuming all surface points in (self-)shadow, where the outward normal n

points away from the light vector l, i.e., n � l < 0. Furthermore we (implic-

itly) consider shadow rays before we compute surface shading. Both aspects

are di�cult with line shading in 3D. One approach to deal with these aspects

comes from volume rendering: lines populating certain regions of 3D space can

(a) (b)

Fig. 3. Visualizing the 
ow near a linear node repellor in 3D: eigenvectors and eigen-

values (1, 10, and 100) (a), characteristic trajectories plus threads of streamlets (b).



(a) (b)

Fig. 4. A thread of streamlets visualizing the 
ow near a torus in 3D space (a); 
ow

near a 3D focus visualized using two threads of streamlets (b).

be considered as volume opacity of a certain density. This assumption yields an

exponential brightness attenuation for light passing through such a region. A

paper by Max in 1995 compiles a comprehensive list of diverse models dealing

with this e�ect [13].

For our implementation we chose the shading model used by Z�ockler for shad-

ing the streamlets. Additionally we used depth cueing as a rough approximation

of shadowing to enhance the spatial perceptability of the streamlets in 3D space.

See Fig. 4a for an example. The heads of the streamlets have been pointed out by

small arrow-heads to indicate the orientation of the 
ow. Furthermore color has

been used to encode the 
ow velocity (blue $ slow, red $ fast). Line shading

and depth cueing has been applied as described above.

4 Results

To test the newly proposed technique we �rstly applied it to a simple cases, i.e.,

the �xed point of a linear dynamical system. Depending on the Jacobian matrix

evaluated at this point, di�erent results are obtained. Fig. 3b, for example, shows

six threads of streamlets applied to the characteristic trajectories emanating

from the �xed point. In this case the eigenvalues of the Jacobian matrix at the

�xed point are 1, 10, and 100. The new visualization technique allows to easily

depict the slow, medium, and fast directions of 
ow. Moreover, an impression

is conveyed, how system states are repelled from the plane de�ned by the slow

and medium direction (eigenvalues 1 and 10). Within that plane states are

repelled from the slow direction which itself is therefore extremely instable in

this setup. These 
ow characteristics typical for a dynamical system near a �xed

point cannot be communicated by either showing an abstraction only (Fig. 3a)

or a complete set of stream lines.



(a) (b)

Fig. 5. Visualizing the 
ow velocity near a stream line of the Roessler system (a);

visualizing the dynamics of a periodic dynamical system exhibiting a twisted torus (b).

Fig. 4b is generated by using two threads of streamlets for the visualization of

a 3D focus, also within a linear dynamical system. The Jacobian matrix of this

system exhibits one negative eigenvalue and two conjugate complex eigenvalues

with positive real parts. System states are attracted along an instable 1D mani-

fold { a line in the case of a linear system { and repelled into a stable 2D manifold

(plane) perpendicular to the instable set. Applying the threads to both instable

trajectories the dynamics near this �xed point are meaningful visualized. As in

Fig. 4a color was used to encode 
ow velocity.

There is no need for applying the new technique only to characteristic tra-

jectories. Fig. 5 shows two examples where di�erent results were produced with

this technique. The left image shows a thread of streamlets through the Roessler

system. Instead of the streamlets themselves just arrow-heads at the end of each

streamlets are displayed. Using size and color according to the velocity of the


ow slow and fast areas within this system are intuitively visualized. The right

image depicts the dynamics of a periodic 
ow near a twisted torus. Color coding

indicates the velocity along the streamlets. As in Fig. 5a and 5b no characteris-

tic trajectories were used, the evolution of the streamlets is more or less aligned

with the base trajectory. Regions of local convergence/divergence are implicitly

shown as areas with more/less streamlets.



5 Implementation

The technique presented in this paper was implemented within DynSys3D, a

visualization system concerned with analytically speci�ed dynamical systems in

3D space [10]. According to the modular concept of this system the new visu-

alization technique is independent of the dynamical system and the numerical

integrator speci�cation. An AVS module is generated by linking the implemen-

tation of a speci�c dynamical system { basically two evaluation functions for

calculating the 
ow vector and the Jacobian matrix at a speci�c system state

{ and a speci�c numerical integrator, for example, a Runge-Kutta integration

scheme, to the thread of streamlets implementation. The module generates one

thread of streamlets for a speci�c dynamical system by using a speci�c numerical

integrator.

Parameters for the module are the starting location of the base trajectory

(T (0)) and its length (either temporal or spatial), the number of streamlets per

cross-section (no), their length (len), the maximum distance of their seed-points

(R) together with the fade-out parameter (q). The performance of this technique

is between interactive and moderate (up to one or two minutes), depending on

how many steamlets are computed. However, if parameter no temporarily is set

to some small number, the visualization can be adjusted interactively.

6 Conclusions

We present a new technique for the visualization of dynamical systems, namely

the use of a thread of streamlets for characteristic trajectories. This is useful,

since a trade-o� is made between only displaying structural information such as,

e.g., �xed points and separatrices, and directly visualizing the system dynamics

by the use of stream lines or stream surfaces. Since an abstract denotation of the

dynamics caused by a dynamical system are very hard to understand for most

users, enhancing this information by locally adding cues of direct visualization

helps to communicate the crucial aspects of the system behavior.

Contrary to surface based stream line visualization techniques like the stream

tube of sweep base trajectory representations threads of streamlets visualize

the 
ow continuously in the vicinity of a stream line. Furthermore, using a

thread of streamlets instead of entirely populating 3D phase space with stream

lines, has the advantage of reducing occlusion. Although quite a number of

papers deal with densely visualizing 
ow in 3D space, it seems to be necessary

to place visual cues selectively to reduce occlusion problems. For high-quality

versions of the images presented in this paper please visit the web page at URL

http://www.cg.tuwien.ac.at/research/vis/dynsys/KnitDS97/.
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Appendix: Fixed Points and Characteristic Trajectories

Assuming _x = fp(x) to be continuous and steady dynamical system in 3D space,

the �xed points oi of fp are given by

_oi = fp(oi) = 0

Using the Taylor expansion of fp in the vicinity of a �xed point oi together with

local linearization a linear ODE in terms of � = x� oi can be derived:

fp(oi +�) =

1X
k=0

1

k!
(� � r)k � fp

��
oi
� fp(oi)| {z }

=0

+ rfpjoi ��

_oi|{z}
=0

+ _
� =

d(oi +�)

dt

= fp(oi +�)

=) _
� = rfpjoi ��

This linear dynamical system can be investigated by analyzing fp's Jacobian ma-

trix rfpjoi at the �xed point oi. One possibility is to determine the eigenvalues

and eigenvectors of the Jacobian. They completely describe the dynamics of a

linear dynamical system [1].

Transferring the results from local linearization to the original system, we

facilitate the fact that (in the hyperbolic case) manifolds spanned by the eigen-

vectors of rfpjoi are coplanar with fp's characteristic manifolds through oi.

Characteristic stream lines, for example, are trajectories which are attracted to

a saddle �xed point oi while all the other stream lines near the characteristic

trajectory (�nally) are repelled from oi.



(a) (b)

Visualizing the 
ow near a linear node repellor in 3D: eigenvectors and eigenvalues (1,

10, and 100) (a), characteristic trajectories plus threads of streamlets (b) (L�o�elmann

et.al., Fig. 3).

(a) (b)

Visualizing the 
ow velocity near a stream line of the Roessler system (a); visualizing

the dynamics of a periodic dynamical system exhibiting a twisted torus (b) (L�o�elmann

et.al., Fig. 4).



(a)

(b)

A thread of streamlets visualizing the 
ow near a torus in 3D space (a); 
ow near a

3D focus visualized using two threads of streamlets (b) (L�o�elmann et.al., Fig. 5).


