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Abstract. Feature extraction is an approach to visualization that ex-

tracts important regions or objects of interest algorithmically from large

data sets. In our feature extraction process, high-level attributes are cal-

culated for the features, thus resulting in averaged quantitative measures.

The usability of these measures depends on their robustness with noise

and their dependency on parameters like the density of the grid that is

used. In this paper experiments are described to investigate the accuracy

and robustness of the feature extraction method. Synthetic data is gener-

ated with prede�ned features, this data is used in the feature extraction

procedure, and the obtained attributes of the feature are compared to

the input attributes. This has been done for several grid resolutions, for

di�erent noise levels, and with di�erent feature extraction parameters.

We present the results of the experiments, and also derive a number of

guidelines for setting the extraction parameters.

Keywords: feature extraction, attribute calculation, experimental ac-

curacy estimation.

1 Introduction

Feature extraction is a set of techniques in scienti�c visualization aiming at algo-

rithmic, automated extraction of relevant features from data sets. This leads to

a small set of numbers (the attributes) describing the properties of the features.

Hence, feature extraction lifts the data to a higher abstraction level, and comes

down to a major data reduction. Since an "interesting feature" is di�erent for

each application, many application-speci�c feature extraction techniques exist,

examples are critical points extraction [2], vortex extraction [1], and shock wave

extraction [3]. A more general approach for extracting features is introduced by

Post et al [4], and [8]. It is summarized by the pipeline model in �gure 1, and

consists of the following stages: selection, clustering, attribute calculation, and

iconic mapping.

Selection identi�es all grid nodes where the data satis�es a certain selection

criterion, clustering clusters the selected nodes into regions of interest, attribute
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Fig. 1. The feature extraction pipeline.

calculation determines a number of attributes for each feature, and iconic map-

ping maps the calculated attributes to an icon which can be displayed. This

process is controlled by the scientist in the sense that his knowledge of the data

and his conceptual ideas of an interesting feature are translated into the selection

expression, the connectivity criteria, the calculation method and the mapping

function.

An example of feature extraction is the

Fig. 2. Iconic presentation of

cloud features on Venus.

detection of cloud formations in the atmo-

sphere of Venus [6]. The clouds are visual-

ized by ellipsoids which give a good indica-

tion of position and size (see Fig. 2). Mo-

tion of the clouds can be derived by visu-

ally matching the ellipsoids in consecutive

frames. However, we believe the attributes

of the ellipsoids can be used for automatic

matching of features. Subsequently, it is im-

portant that the attributes are determined

accurately, and that the results are robust

with respect to noise. The latter will depend

on feature extraction parameters like the se-

lection threshold value, the cluster threshold,

and the connected component de�nition.

Therefore, we wish to investigate the ac-

curacy of the attribute calculation, and the

in
uence of noise in combination with di�er-

ent extraction parameters on the calculated attributes. This is achieved by a

simulation study: synthetic data is generated with synthetic features, i.e. with

known attributes, and with noise with a known distribution function. This data

is used as input for feature extraction, and the attributes obtained are compared

to the initial settings of the attributes. This has been done for di�erent noise

levels, with di�erent grid densities, and with di�erent feature extraction param-



eters. In this way, we derived a number of guidelines for working with the feature

extraction method in practice. Hence, it is not our intention to extract features

below noise level!

The paper is organised as follows: section 2 gives a detailed description of

the problem de�nition, section 3 discusses the generation of the synthetic data,

section 4 describes the experiments performed, section 5 presents the results of

the experiments, and section 6 draws some conclusions, and �nally section 7

suggests work for future research.

2 Problem de�nition

The experiments focus on two main issues:

1. Accuracy of the attribute calculation method. Attribute calculation deter-

mines a number of quantitative characteristics of a feature. The attributes

may be related to the data in the feature, to the geometry of the feature, or

to a combination of both. In order to describe the geometry, we use ellipsoid-

�tting because amorphous 3D objects can be approximated by ellipsoids [7].

The resulting attributes are the center position, the lengths and orientations

of the ellipsoid axes. These can be estimated using an integration over the

selected nodes: the average position of the nodes is the center position of

the ellipsoid, and from the variance-covariance matrix of the node positions

the axis-lenghts and orientations can be derived by solving the eigenvec-

tor/eigenvalue problem of the matrix.

The accuracy of the ellipsoid attribute calculation depends on the integra-

tion procedure. The accuracy of the integration depends on the number of

nodes within a feature; the average position and variation in position is more

accurate when we integrate over a large number of nodes. Thus, the accuracy

of the attributes will also depend on the (local) grid density.

2. Robustness of the extraction method with noise. The presence of noise in data

will introduce false positives, and false negatives in the collection of selected

nodes. Besides an error in the attributes, this will cause the emergence of

spurious features. The latter can be eliminated by choosing the right extrac-

tion parameters. The extraction parameters consist of the selection threshold

value, the cluster threshold, and the connected component de�nition.
{ The selection threshold value (or multiple values) decides whether the

data in a grid point satis�es our selection criterion. It can be set above the

noise level in order to eliminate noise e�ects, but this will also in
uence

the resulting feature.

{ The cluster threshold is the minimum number of nodes of a cluster; all

clusters smaller than the cluster threshold are discarded. Thus, only large

features remain, and small features resulting from noise are removed.

However, we may also remove small but genuine features.
{ The connected component de�nition can be de�ned as: 1D-connected

(where a node has 6 neighbours), 2D-connected (18 neighbours), and

3D-connected (26 neighbours). This de�nition is crucial in the clustering



stage, since it determines if two adjacent nodes are in the same cluster

or not. Obviously, 1D-connected will result in more and smaller clusters

than 2D- or 3D-connected.

The extraction parameters must be chosen with care, therefore we will es-

tablish a number of guidelines for �nding the right settings.

3 Synthetic data

In order to examine the relations between accuracy, noise, and extraction pa-

rameters, we created well-de�ned synthetic data on which we perform a number

of experiments. The data is generated on a regular grid with a variable density.

A scalar �eld is created on this grid with a variable initial value (set to zero by

default), and noise is possibly added on top of this. The noise has a Gaussian

distribution function with zero mean, and a variable standard deviation (SD); it

is generated with an algorithm given by Press et al [5]. Furthermore, data values

are added to grid nodes inside the synthetic features. The synthetic features are

ellipsoids with given center position, axis lengths and orientations, plus a data

value is de�ned at the center of the ellipsoid (set to 100.0 by default). The data

within the ellipsoid decreases linearly from the center to the surface (value =

0.0). Thus, for each grid node inside the feature a data value is calculated and

added to the present node value.

The synthetic data is used as the input

Fig. 3. Histograms of the gener-

ated synthetic ellipsoid data.

in the feature extraction pipeline, where the

data is thresholded, the selection clustered,

and an ellipsoid-�t is performed around the

clusters. Since the features in this data are

prede�ned, the obtained attributes can be

compared directly to the attributes speci�ed

as input, thus obtaining an experimental er-

ror estimation.

Figure 3 shows the histogram of the data

within an ellipsoid feature (background with

data = 0 is omitted from the histogram).

Most of the nodes in the feature have a value

close to zero and only few come close to the

maximum value (=100). Additional noise will

mostly a�ect the feature-nodes near the surface of the ellipsoid where the data

values are small. Still it is possible to extract the feature since the maximum

data value of the feature is signi�cantly higher than the noise data. This is shown

in �gure 4, where a selection is made of nodes with a data value > 2*SD = 30.0,

the �gure shows the selected nodes by small crossmarks, and ellipsoids are �tted

around each cluster with more than one node. One of the ellipsoids is signi�-

cantly larger than the rest, this is the synthetic feature, it can be �ltered out by

choosing a larger cluster threshold, thus eliminating all small clusters.



Fig. 4. Resulting selections from data with noise.

4 Experiments

4.1 Accuracy of the ellipsoid-�tting method

{ Center position. The position detection is expected to have an error below

cell-size level, which can be proved by the following experiment. Synthetic

data is generated with a spherical feature with �xed radius and a position

moving in 50 steps from a corner node of a cell diagonal through the cell to

the center of the cell. Each of the 50 data sets are analysed by the feature ex-

tractor, and the resulting positions are used for error estimation. We expect

the resulting position to move stepwise through the cell, the steps are caused

by nodes entering or exiting the moving sphere. The distance to the diagonal

(the real position) divided by the diagonal length, gives a relative error for

the position detection. The same experiment can be repeated for di�erent

grid resolutions, i.e. a feature with a larger number of selected nodes. This

will probably show that the accuracy is better for higher resolutions.
{ Axis length. To determine the accuracy of the axis lengths, synthetic data

is generated containing ellipsoids with �xed orientation and with the radius

of one of the axes varying in one direction. Again, the variation is limited

within a cell, and the experiment is repeated for several grid resolutions.

Errors are calculated relatively to the cell size.
{ Axis orientation. Synthetic data is generated containing ellipsoids with

�xed axes ratios with an eccentricity of 3:1:1, and with varying orientation

of the main axis (from 0 to 45 degrees), for several grid resolutions. Errors

are calculated relatively to the maximum possible angle, i.e. 45 degrees.

4.2 Robustness of the method

As discussed in section 2, there are three important settings in the feature extrac-

tion procedure, the selection threshold, the cluster threshold and the connected

component de�nition. The following experiments establish the relationships be-

tween these parameters, and the e�ects on the extracted features.



{ The selection threshold value. Noise may introduce additional undesired

clusters if the threshold value is set too low. The next experiment surveys

the number of clusters found, as a function of the threshold value, and of the

noise level. Synthetic data is generated with one feature, and for a number

of di�erent noise levels. Using this data, the number of clusters is monitored

while slowly increasing the threshold until only one cluster (the synthetic

feature) is found. The lowest threshold value that results in one feature is

called the cut-o� threshold value. It is an important value since it gives us

the minimum threshold value that distinguishes the feature from the noise.

The cut-o� should be as low as possible, as higher threshold values result

in smaller features. Therefore, the cut-o� threshold will be used in further

experiments, because it depends not only on the noise level, but also on the

other feature extraction settings.
{ The cluster threshold. The cluster threshold is a very useful parameter,

since small irrelevant clusters are removed by it. In many cases (especially if

noise is involved) the selection results in single unconnected nodes that just

happen to satisfy the selection criteria, but are not signi�cant. The cluster

threshold is often an adequate remedy to �lter out these undesired features.

Therefore, we determine the cut-o� threshold for di�erent noise levels, as a

function of the cluster threshold.
{ Connected component de�nition. The neighbour de�nition will a�ect

the number of clusters found. The 1D-de�nition is more strict than the oth-

ers, and will result in more and smaller clusters, which ampli�es the e�ects

of the cluster threshold. In order to test this, the cut-o� threshold is deter-

mined for all three de�nitions as a function of the cluster threshold, for one

given noise level.

5 Results

5.1 The accuracy of the ellipsoid-�tting method

First, the accuracy of the ellipsoid
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Fig. 5. Stepwise movement of the po-

sition within a cell.

�tting method is established using the

experiment described in section 4.1. Fig-

ure 5 shows the results of the accuracy

tests for the position detection. The cen-

ter position of the sphere starts at one

corner node of the cell (relative posi-

tion = 0), and ends in the center of the

cell (relative position = 0.5). The ob-

tained position is plotted as a function

of the input position. It changes discon-

tinuously every time a node enters or

exits the moving sphere. Thus, a step-

wise update of the position is found. The average distance to the diagonal is

the average relative error of the position detection. Similar stepwise results are



obtained for the axis and orientation detection. Since the attributes were var-

ied within cell size, we may conclude that the ellipsoid-�t method detects shifts

within sub-cell level.

As may be expected,
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Fig. 6. Obtained errors for the ellipsoid attributes.

the accuracy becomes bet-

ter when the grid is more

dense. Figure 6 shows the

errors as a function of the

number of selected nodes

in the cluster. The �gure

clearly shows the expo-

nential decrease of the er-

ror with respect to the

number of nodes. The er-

rors are below 7% when

the clusters consist of more

than 15 nodes. Thus, the

ellipsoid attributes are ac-

curate if a cluster threshold of 15 nodes is used.

5.2 Robustness of the method

Now that the accuracy has been assured, the robustness of the method with

respect to noise is investigated using the experiments described in section 4.2.

First the number of clusters is determined as a function of the selection threshold

value, and as a function of the noise level.

Figure 7 shows that for small thresh-
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Fig. 7. The number of clusters as a

function of the selection threshold value

and the noise level.

olds a large number of clusters is found.

This is an obvious results since the

noise causes many node values to rise

above the threshold level. If noise is

added with an SD > 10, the number of

clusters �rst increases with increasing

threshold values because many nodes

connect to form a large cluster which

breaks up while increasing the thresh-

old. In the end, a threshold value is

found where only one feature remains.

This value is the cut-o� threshold; it

becomes larger as the noise level in-

creases.

The cut-o� threshold is examined as a function of the noise level and the clus-

ter threshold. Figure 8 shows that the cut-o� threshold increases with increasing

noise, still the cut-o� threshold remains low for a large cluster threshold. Using

a cluster threshold of at least 20 nodes, it su�ces to use a selection threshold

value of 1*SD in order to eliminate all clusters due to noise. If smaller features

are expected, then a cluster threshold of 5 nodes in combination with a selection
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Fig. 9. The cut-o� threshold value as a func-

tion of the connected component de�nition and

the cluster threshold.

threshold value of at least 2*SD su�ces, provided that the threshold value is

signi�cantly smaller than the maximum data value in the feature.

The next experiment determines the cut-o� threshold for the three connected

component de�nitions, as a function of the cluster threshold, with the noise level

set to SD = 15.0. The result is plotted in �gure 9, which shows that the cut-o�

threshold drops as the cluster threshold increases, and also that it drops faster

if the connected component de�nition is set to 1D-connected. This de�nition re-

sults in more, smaller clusters which are easier to discard by the cluster threshold.

Therefore, in case of noisy data, one should use the 1D-connected component

de�nition.

5.3 Robustness of the calculated attributes

Finally, the e�ect of noise on the obtained ellipsoid attributes are investigated

with optimal extraction parameters. Noise with an SD = 15.0 is added to the

data, and 1D-connected component de�nition is used in combination with a

cluster threshold of 15 nodes. In �gure 10 errors are plotted as a function of the

selection threshold value.

The �gure clearly shows a large error in position for low selection threshold

values. This is caused by the large cluster throughout the entire domain due to

noise. Also, the error increases for large thresholds, caused by the fact that the

feature is small and additional selected nodes due to noise a�ect the position

signi�cantly. Between the two extremes the errors are stable, thus the results of

the method are relatively invariant to noise.
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6 Conclusions

During the execution of the experiments it became clear that a lot can be learned

about the behaviour of the feature extraction method. Therefore, we consider

this type of experiment extremely important for the exploration and validation

of visualization techniques, and we recommend to do similar experiments with

any new visualization method. In this case, the following conclusions can be

drawn:

1. The ellipsoid attributes can be estimated with an accuracy below the cell-

size level. The errors decrease for increasing grid density, i.e. for clusters with

more nodes. A cluster threshold of 15 nodes results in errors below 7%.

2. In case of noisy data, the feature extraction parameters can be set in such a

way that spurious features can be �ltered out. A statictical analyses is needed

in order to give the exact requirements, but based on these experiments the

following guidelines for the feature extraction parameters can be given:

{ The cluster threshold is a powerful parameter to discard spurious features

due to noise. Large cluster thresholds result in correct feature extraction,

even close to the noise level. This is caused by the coherence in space of

the selected nodes.

{ In case of noise, the use of the 1D-connected component de�nition is

recommended, since this results in smaller clusters which are easier dis-

carded by the cluster threshold.

3. The obtained ellipsoid attributes are stable despite the presence of noise.

This means that the ellipsoid attributes are relatively invariant to noise.

7 Future research

The results of the experiments described in this paper pave the way for a number

of interesting studies in the future.



{ Small spurious features may be �ltered out by morphological operators like

opening and closing. This may enhance the e�ects of the cluster threshold.

{ Further statistical analysis can be done on the extraction of features below

noise level. Besides coherence in space, coherency in time may be exploited:

e.g. if a feature is detected at one time, a prediction can be made of the fea-

ture some time later, this prediction can be used to extract the new feature.

This suggests a predictive approach for feature tracking in time-dependent

data.
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