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Abstract In Scienti�c Visualization, surfaces have often attached data,

e. g. cutting surfaces or isosurfaces in numerical simulations with multiple

data components. These surfaces can be e. g. the output of a marching

cubes algorithm which produces a large number of very small triangles.

Existing triangle decimation algorithms use purely geometric criteria to

simplify oversampled surfaces. This approach can lead to coarse repre-

sentations of the surface in areas with high data gradients, thus loosing

important information.

In this paper, a data-dependent reduction algorithm for arbitrary trian-

gulated surfaces is presented using besides geometric criteria a gradient

approximation of the data to de�ne the order of geometric elements to

be removed. Examples show that the algorithm works su�ciently fast

to be used interactively in a VR environment and allows relatively high

reduction rates keeping a good quality representation of the surface.

1 Introduction

In Scienti�c Visualization, a common approach consists in extracting isosurfaces

and cutting surfaces from a data set in order to detect essential features of

the data. Especially when visualizing numerical data from high performance

computing (HPC) simulations, there are often multiple data components which

can be mapped onto the surfaces, e. g. by a color map. The resulting colored

surfaces can be still very large. Moreover, they are often produced by a marching

cubes type algorithm leading to a large number of very small triangles. Thus,

the simpli�cation of those surfaces is an important task to make interactive

visualization of scienti�c data practicable.

Existing simpli�cation algorithms employ geometric criteria to determine the

order of the reduction process. Their goal is to obtain a coarse representation of

the surface in areas of low curvature, and a �ner representation in more wrinkled

parts of the surface. But important features in the data components may be

situated in areas of rather 
at shape, e. g. turbulences in 
ow �elds mapped

on a cutting plane. This shows that in the case of data attached to the surface

purely geometric criteria are not su�cient to get an appropriate representation

containing less triangles without loosing essential information.

We developed a surface simpli�cation algorithm involving data-dependent

criteria, namely, a gradient approximation of the data attached to the surface.



As surfaces may be of a simple shape (think of a cutting plane or sphere) geom-

etry related criteria may seem to the user less dominant than data-dependent

criteria. Therefore, our priority criterion is a linear combination of a curvature

and a gradient approximation, weighted by a user-de�ned parameter. The gra-

dient approximation scheme allows both scalar and vector data to be taken into

account.

We decided to stay with topology preservingmethods, although the algorithm

can be easily adopted to allow topology changes. But, topology changes seem

to be more important in the visualization of geometric models, where parts of

the scene can be at such a distance from the observer that holes or cracks get

smaller than pixel size. In scienti�c visualization, this seems to be a less urgent

issue.

Obviously, the more criteria are used to control the simpli�cation process,

the less reduction can be achieved. However, the algorithm is still able to reduce

large surfaces by a factor up to 10 without blurring important features in the

data. Since it has a time complexity of O(N logN), with N being the number

of original vertices, it works su�ciently fast to be used interactively even in a

virtual reality environment.

1.1 Related work

We do not pretend to give a complete survey on surface simpli�cation algorithms.

In the last years, this topic has been developing rather fast. For a historical

overview and a vast bibliography, see the paper of A. Gu�eziec [10].

Our algorithm belongs to the class of geometry removal methods. Direct in-

spirations came mostly from papers by H. Hoppe et al. [13], [15], W. Schroeder

et al. [17], B. Hamann [12], A. Gu�eziec [10], R. Klein et al. [14], and M. Gar-

land and P. Heckbert [8]. In these articles, di�erent removal strategies (vertex

removal, edge collapsing, triangle removal) are proposed involving various kinds

of geometric priority criteria.

Data dependencies are common in the well-developed �eld of data dependent

triangulation (see e. g. [7],[2]). There the data is usually given as function values

in vertices on the 2D plane, thus creating a height �eld. Unfortunately, the

heuristics given in these papers are not applicable directly.

In volume data visualization, there are techniques to compress data given on

a three-dimensional grid by representing areas where the data are not changing

essentially in a more e�cient way, e. g. using a �nite element approximation [9]

or other basis representations (see e. g. [22]). Since we do not have access to the

data on the original grid, but only to a subset of the data de�ned on a 2-manifold

in IR
3, these methods are not applicable, either.

2 The algorithm

We use a typical geometry removal approach, deleting one geometry element at

a time. The general outline of the algorithm is as follows:



Algorithm:

Preprocessing operations (retrieving connectivity information)

Construct priority queue

while (priority queue is not empty)

f Take next geometry element

Perform topology-preserving tests

if (element can be removed)

f Collapse geometry element

Update data structures and priority queue

g
g

In the following, the main steps of the algorithm will be explained in more detail.

2.1 Geometry removal

There are basically three possibilities to remove geometry elements:

{ Vertex removal

{ Edge collapsing

{ Triangle removal

When removing a single vertex, one has to re-triangulate the resulting hole in the

surface. This operation can be avoided by using the edge collapsing approach

instead. Here, the two points adjacent to the edge are merged into one (see

Fig.1), and the surrounding triangles merely change their shape. The simplest

and fastest way to compute the new point the edge collapses in is to take the

midpoint of the edge. But for convexely shaped surfaces, this leads to 
attening

of the surface which is sometimes not desirable. Therefore, A. Gu�eziec [10] de-

veloped a method of calculating the new point according to a volume preserving

strategy. However, for 
at surfaces like cutting planes this additional e�ort is

unnecessary.

If the preferred generic operation is triangle removal, again the hole in the

surface resulting from removing all adjacent faces must be handled. This can be

done in two ways. Firstly, it can be re-triangulated, which results in compara-

tively large, possibly 
attened spots. On the other hand, a midpoint can be cho-

sen according to some rule, avoiding re-triangulation. For instance, B. Hamann

[12] approximates the surface locally by a bi-quadratic function and computes

the midpoint as the value of the approximating function in the origin of the local

coordinate system. Besides being numerically sensitive, this procedure is quite

expensive. But on well-shaped grids which do not contain very small triangles it

leads to surfaces of a high quality.

We implemented and compared all three approaches with respect to time and

memory e�ciency. As a result, we prefer the vertex removal and edge collapsing

strategies to triangle removal because they allow a �ner tuning of the iterative

process, causing less deformation of the surface in each iteration step. Hence in

the present paper, we decided not to report on the triangle removal algorithm.
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Figure1. The edge collapsing operation (left). Total angle �(v) =
P

n

i=1
�i (right).

2.2 The data-dependent priority criterion

The heart of any geometry removal algorithm is a priority queue of geometry

elements (vertices, edges, or triangles) providing the order in which they have to

be removed. In existing surface simpli�cation algorithms, the priority criterion is

purely geometrical, e. g. based on a curvature estimation using an approximating

function [12], [20], edge length [10], triangle area, distance to an average plane

[17], or some energy function [15].

These geometric criteria are su�cient as long as no data is attached to the

surface. But e. g. in the case of cutting surfaces through numerical data, which

often are of a rather simple geometry, a purely geometric approach does not make

sense. Therefore, we combine geometric criteria with data-dependent criteria

approximating the gradient of the data.

For the sake of e�ciency, we use a comparatively simple priority criterion.

We combine a curvature criterion with a gradient approximation, thus assigning

each vertex v a weight

weight(v) = � � curv(v) + (1� �) � grad(v) ; (1)

where � 2 [0; 1] is a user-de�ned scalar parameter.

If the generic operation in the simpli�cation process is edge collapsing or

triangle removal instead of vertex removal, we add up the weights of all vertices

belonging to the edge (or the triangle, respectively) in order to get a weight for

the geometry element to be processed.

Gradient estimation Usually, the gradient of a function f : IR3 ! IR is de�ned

as

gradf =

�
@f

@x
;
@f

@y
;
@f

@z

�
:

Since our data function is de�ned on an 2-manifold in IR
3 rather than on IR

3, and

is not di�erentiable everywhere, this gradient of the data function is not de�ned.

Hence, we have to look for other heuristics to get a measure of the rapidity of

changes in the data values in the neighborhood of a vertex.



Various gradient approximation schemes for scattered data given in points

on a 2D plane are described in [19]. A di�erent approach can be imagined using

again a biquadratic approximation, this time of the 3D manifold in 4D space built

by the surface-attached data. Such an approximation is described in [11]. Besides

being expensive, the least-square optimization used to �nd the best �tting bi-

quadratic function is numerically sensitive to very small triangles which are often

produced by the marching cubes algorithm. Moreover, this approximation can

be used for scalar data only.

Let fi be the data values attached to the vertices vi, i = 1; ::; k, adjacent to

v 2 T , and f be the data value attached to v itself. We calculate

grad(v) = max
i=1;:::;n

kfi � fk1
kxi � xk1

: (2)

Here, xi and x denote the three-dimensional coordinates of vi, v, respectively, and

k � k1 is the usual sum vector norm assigning each vector y = (y1; : : : ; yk) 2 IR
k

a non-negative number

kyk1 =

kX
i=1

jyij :

Instead of the k�k1-norm any vector norm could be used. If the Euclidean norm is

used to compute the distance between vertices, this heuristic can be interpreted

as an estimate for the maximal value of discretized directional derivatives

@f(v)

@(xi � x)
= (gradf(v); xi � x) ;

taken over all directions xi�x. We preferred to avoid the rather expensive square

root calculation, having in mind that in IR
3 all norms are equivalent. Note that

this gradient heuristic is independent of whether the data attached to the surface

is scalar or vector valued.

Although the approximation of the gradient seems to be quite rough, ex-

periments show that it leads to promising results. Moreover, it can hardly be

surpassed in speed by other methods demanding additional computations. More

sophisticated approximation schemes will be implemented and tested in the fu-

ture, but we expect the gain in accuracy hardly to be worth the loss in e�ciency.

Curvature estimation Triangulated surfaces are non-regular surfaces. There-

fore, their curvature is not de�ned everywhere in the sense of di�erential geome-

try. To avoid this problem we use either simple heuristics or the rather expensive

approximation of the triangulated surface by a smooth surface whose curvature

can be calculated.

In the 50's and 60's, the Russian mathematician Aleksandrov [3] developed a

theory of non-regular surfaces, in particular, of polyhedral surfaces. The polyhe-

dral metrics they employed to de�ne analogues of Gaussian and mean curvatures

were used by Alboul and van Damme [2] for the reconstruction of surfaces from

scattered data, recently. See their report [1] for a compact survey on the basic
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Figure2. Star of a boundary vertex (left) and a non-manifold vertex(middle and right)

ideas of Aleksandrov, and the monograph [4] for a detailed explanation. It turns

out that the Gaussian curvature of a vertex v in a non-regular surface with

polyhedral metric can be calculated very easily. Let �i be the inner angle of the

triangle (vi; v; vi�1) which is next to v (see Fig. 1). Then the total angle �(v) in

v is de�ned as

�(v) =

nX
i=1

�i :

If the point x is not a vertex of the triangulated surface, we set �(x) = 2�.

Then, for any point x on the surface the curvature is de�ned as

curv(x) = 2� ��(x) : (3)

This expression is also known as the angle de�cit. Note that for vertices only we

can have a non-zero curvature. In boundary vertices, the curvature is de�ned as

curv(x) = � ��(x) : (4)

Besides being mathematically sound, this geometric criterion can be calculated

e�ciently.

2.3 Topology preserving tests

All vertices are treated equally, assigning them a weight according to (1). But,

when a vertex (an edge) is extracted from the priority queue, we perform some

tests to preserve feature edges and the topology of the surface. Essentially, it

su�ces to look for two basic properties of the vertex to be removed, or the

vertices adjacent to the edge to be removed, respectively:

- Does the vertex lie on a boundary or a feature edge?

- Is the manifold property satis�ed?

Vertices lying on the boundary or on a feature are removed only in the case

that the boundary (the feature edge) is continuing in the same direction. This is

in some sense equivalent to Schroeders [17] distance to edge criterion, with the

di�erence that for us it is merely an additional test, not the only criterion. Note

that the boundary includes also the boundary of interior holes of the surface.



Vertices whose star, i. e. the set of all triangles sharing the vertex, does not

have a closed boundary polygon, are assumed to be boundary vertices. If the

boundary polygon consists of non-connected components or contains multiple

edges outgoing from one vertex (see Fig. 2), the vertex is a complex one. In other

words, the surface does not satisfy the 2-manifold property in the neighborhood

of this vertex, locally. Complex vertices we do not remove, thus preserving splits

of the surface.

3 Complexity of the algorithm

For the computation of the weights as well as for the topology preserving tests,

we need the star of a vertex, i. e. the set of all triangles sharing that vertex.

Therefore, we store the stars of all vertices in a special array, updating it after

each iteration step. The computation of this is linear in the number of vertices

in the surface. The priority queue is organized in a heap structure, hence its

construction takes linear time as well. So we have a complexity of O(N) for the

preprocessing step, N being the number of vertices in the original surface.

Let us have a look at a single iteration step. Extracting the �rst element of

a priority queue can be done in constant time. The topology preserving tests

consist merely in sorting the edges of the boundary polygon of the star, hence

they take O(r2) operations, r being the number of triangles in the star. The

main e�ort in each iteration step is enclosed in the updating procedure. Here,

we have to update the weights of all vertices belonging to the boundary poly-

gon of the star, which leads to changes of their positions in the priority queue.

Changing position, removing, or inserting an element in the priority queue takes

O(logN�) operations, N� being the current length of the priority queue. Hence,

each iteration step has a complexity of O(r logN�). Usually, fans are not growing

very much, so r is bounded by a constant number and can be neglected.

In the case of edge collapsing, the computation of the new vertex to be

inserted takes a constant e�ort. When Gu�eziec's volume preservation strategy is

applied, the e�ort grows up to O(r), where the constant in the O(�)-expression
can be quite large. However, the re-triangulation required by the vertex removal

strategy takes the most time of those three approaches. Although B. Chazelle

has shown that an arbitrary polygon with r vertices can be triangulated in O(r)

operations [6], his optimal algorithm is of rather theoretical importance. There

is a randomized triangulation algorithm by R. Seidel [18] requiring O(r log� r)

operations which is almost linear in practice. However, in our implementation

we currently use a simpler triangulation algorithm [5] with an O(r log r) e�ort.

Usually, we have reduction rates of a factor 5{12. This means that we have

to perform O(N) removal operations. So the overall complexity of the algorithm

can be estimated by O(N logN). However, this is probably slightly overestimated

in practice, because the length of the priority queue is decreasing linearly with

the number of iterations and can be next to nothing at the end of the iteration.

Hence in practice, the algorithm behaves almost linear, as illustrates Fig. 3 below.

These CPU timings were measured on an SGI R10000 (195 MHz).
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Figure3. CPU timings (in sec) required for the air 
ow isosurface with 50160 triangles

The example (Fig. 3{5) shows the air 
ow inside a car cabin. We simpli�ed the

isosurface corresponding to a temperature of 18.25�C, where the color represents

the pressure inside the car cabin. Since the shape of the surface is not entirely

simple, the user-de�ned parameter � was set to 0:5. The car surface itself was

simpli�ed by our geometric surface simpli�cation algorithm. Both methods are

integrated into COVISE, the collaborative visualization environment developed

by our group (for more detail see [21], [16]).

4 Conclusions

In this paper, we propose a fast algorithm for the data-dependent simpli�cation

of arbitrary polygonal surfaces with vertex-attached, possibly multi-dimensional

data. First experiments show that the O(N logN) complexity of the algorithm

leads to a almost linear behavior in practice. The edge collapsing approach ap-

pears to be still substantially faster than the vertex removal approach due to

the comparatively high e�ort of the re-triangulation procedure. In addition, the

triangulation of the simpli�ed surface resulting from the edge collapsing method

is often more regular, as can be seen in Fig. 5 and 5. By improving the perfor-

mance of the re-triangulation these disadvantages will be moderated in future.

On the other hand, the vertex removal approach does not cause any interpolation

problems for the vertex-attached data, as the edge collapsing does.

Although the proposed gradient criterion is quite rough, it is very e�cient

and seems to be a su�ciently exact heuristic to mark areas where the data func-

tion changes rapidly. The development and comparison of other data-dependent

criteria will be subject to further research.



Figure4. The original isosurface (50160 triangles) and car cabin (29104 triangles). The

data set is courtesy of Daimler Benz AG.
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Isosurface reduced by the Vertex removal (left) and Edge collapse (right) strategies to

25% (12540 triangles) (Frank et.al., Fig. 5).

Isosurface reduced by the Vertex removal strategy to 20% (10032 triangles) (Frank

et.al., Fig. 6).

Isosurface reduced by the Edge collapse strategy to 15% (7523 triangles) (Frank et.al.,

Fig. 7).


