
VisGap’23 – The Gap between Visualization Research and Visualization Software (2023)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

Better Information Visualization Software Through Packages for
Data Science Ecosystems

R. Henkin1

1Queen Mary University of London

Abstract
Good software development practices are important factors for the successful translation of visualization research into software.
This paper argues for the creation of packages for data science ecosystems, with Python and R as case studies, as a way to
employ existing tools and infrastructure towards better information visualization software. The paper describes open practices,
sustainability and FAIR software to motivate package development. The ecosystems of Python and R are then reviewed based on
general software development aspects and how common features of visualization software, such as rendering and interactivity,
are supported. It concludes with the software engineering benefits related to creating packages in Python and R and initiatives
to overcome obstacles that may hinder the development of better software.

CCS Concepts
• Software and its engineering → Software creation and management; • Human-centered computing → Visualization; Hu-
man computer interaction (HCI);

1. Introduction

Many issues that prevent the successful translation of visualiza-
tion research into software overlap with the general theme of soft-
ware sustainability, which includes development practices to en-
sure software continues to work in the future, the adaptation of
existing software to address new needs, training of people to per-
form these tasks, and the funding that will support all of the former.
Some of these aspects overlap with open practices [JKA∗17] and
are also part of the drive towards open and FAIR (Findable, Acces-
sible, Interoperable and Reusable) software in research [HCH∗20],
which aims to increase transparency, reproducibility and reusabil-
ity of research, as an extension of FAIR principles for scientific
data [WDA∗16]. Achieving all of this requires not only practice
changes in software development but also active involvement by all
stakeholders in research, from programmers to project supervisors.

In the visualization community, some authors have dis-
cussed open practices [Har18] and better software develop-
ment [RCM∗20], but not every openness demand or development
suggestion is immediately actionable by researchers creating soft-
ware, nor do they necessarily lead to better software in isolation. In
this paper, I encourage the visualization research community to use
package creation in data science ecosystems as a more accessible
route towards better software, using the Python and R programming
languages as case studies.

These two languages lean heavily on a system of open-source
package distribution that empowers data-related work, with ecosys-
tems that can motivate the creation of FAIR software. They also

provide great opportunities for visualization researchers to deploy
software that can reach large, multidisciplinary audiences and build
on and contribute with tried-and-tested software. Tools in Python
and R ecosystems and existing initiatives can also contribute to cre-
ating more open and sustainable software.

As packages, exploratory interfaces or visual analytics systems
can be deployed in their complete form or broken down into indi-
vidual components. Once published, they can be reused again by
visualization researchers or directly support data analysis activities
by end users. Indeed, projects from the visualization research com-
munity have previously deployed software as packages for these
languages [MQB19,OCL∗21,NSS21], while others have been suc-
cessfully integrated a posteriori into the ecosystems, ranging from
APIs for visualization grammars such as Altair [VGH∗18] and new
plots such as UpSet [CLG17].

However, these all are separate examples with their own incen-
tives and motivation that depended on the context of those projects.
Besides examining the technical aspects of maintaining and test-
ing packages, this paper also explores community-level initiatives,
centered on packages created as open-source software, as attempts
to overcome systemic problems of incentives and motivation.

The rest of the paper is structured as follows: in section 2, I in-
troduce accepted definitions of open practices, sustainability and
FAIR principles and describe existing initiatives for improving soft-
ware in academia; in section 3, I characterize the Python and R
ecosystems and contextualize them in relation to sustainable and
FAIR software; in section 4, I describe how visualization software

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/visgap.20231115 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/visgap.20231115



R. Henkin / Better InfoVis Software Through Packages

can be developed in Python and R: how and which desired features
of visual tools are currently supported if researchers want to create
visualization packages; finally, in section 5, I discuss how exist-
ing tools and infrastructure and open-source community initiatives
help to facilitate sustainability and FAIR software through package
development, as well as obstacles that may hinder it.

2. Open, sustainable and FAIR software

Translating research into good software relates to many different is-
sues as mentioned in the introduction. This section briefly describes
three topics — open practices, sustainability and FAIR software —
that are interconnected and contribute with motivation and ideas to
inform better visualization software in the form of packages.

2.1. Open practices

Open practices have a long tradition in software development in
the form of open-source software, where its source code is made
available and accessible for modification, derivation and redis-
tribution. In addition to demands from funders, there are many
different justifications for making code public and open; in re-
search, concerns about reproducibility have driven the call for
openness [IHG12, SMB∗16], as well as the value of openness for
better software [Bar10]. In visualization research, openness has un-
til now been discussed more in the context of experimental results
than software [Har18] and as a conversation within the commu-
nity. However, the same concerns and benefits that are advocated
for science in general should also be valid for visualization re-
search, and the lack of scientific discussion regarding open prac-
tices does not mean that the practices do not happen. For example,
in a quick search for GitHub, OSF.IO, Zenodo and Figshare (which
are all commonly used repositories for open data/software) in ab-
stracts published in key visualization journals (IEEE TVCG, Com-
puter Graphics Forum and Information Visualization), the number
of published articles found tripled from 2020 to 2022, from 12
to 43. The objective of this paper, however, is to encourage re-
searchers to go beyond copying files to open repositories and ac-
tually transform prototypes into well-designed software packages,
while also acknowledging that the visualization research commu-
nity includes a diversity of backgrounds and that some researchers
may have limited programming experience.

2.2. Sustainable software and research software engineering

Sustainable software relates to ensuring that software created from
research continues to work and is improved or adapted beyond
the end of a project. Challenges to sustainable software involve
motivation, funding, personnel and infrastructure, among others
[ABD∗21]. Enabling the creation of sustainable software, there-
fore, encompasses software development practices as well as ini-
tiatives that go beyond programming and become related to de-
partments, institutions, countries and research communities. In the
United Kingdom, for example, the Software Sustainability Institute
was created in 2010 with the objective of “cultivating world-class
research with software” [CHH∗13]. The institute organizes events
such as the “software carpentry” and collaboration workshops and
also offers other sources for researchers aiming to improve their
software development abilities. The institute was founded by one

of the UK’s research councils, with the recognition of the need for
sustainable software but also with a demonstration of how these
initiatives depend on local and global research environments.

At the same time, this institute has also driven the emergence of
research software engineering (RSE), with an associated job that,
as the name suggests, involves the creation of software for research
through best practices of software engineering [CKB∗21]. The
concept and careers are now recognized worldwide, with associ-
ations in various countries and continents (https://rsse.africa
and https://rse-asia.github.io/RSE_Asia). These associa-
tions promote the recognition of the role of software in research
and many of their aims align with the ideas of software sustainabil-
ity focused on the people involved with it.

The creation of packages for visualization software does not
make software sustainable by definition, but, combined with open
and better software engineering practices, may be able to help re-
searchers follow the path towards better software. For example, in
the countries and institutions where research software engineers
are recognized, there may be a suitable role for them in research
projects at the time of writing proposals.
2.3. FAIR software principles

Initiatives for open practices have come alongside the movement
for better access to scientific data, in particular, the FAIR Guid-
ing Principles [WDA∗16], which established guidelines for making
scientific data findable, accessible, interoperable and reusable from
a machine perspective. In short: findable means that users and com-
puters are able to find the data by using, for example, title, authors
and keywords; accessible data provides methods and protocols that
enable the computers to retrieve the data, using authentication pro-
cedures if needed; interoperable means that data representations are
not unique for that dataset and incompatible with other datasets; fi-
nally, reusable data is published with enough information that en-
ables others to use the data (e.g. the meaning of columns in tables)
or attempt to replicate the data (e.g. which experiment was used to
produce the dataset?). Although these principles are not equivalent
to open data, they are motivated by the same need for scientists to
access, reproduce and reuse previously published data, especially
through the use of computational resources to facilitate managing
large volumes of data.

More recently, researchers involved in software sustainability
have extended the idea of FAIR data to FAIR research software,
called FAIR4RS, with similar concerns regarding the reuse of soft-
ware in research [HCH∗20]. Although the motivation comes from
fields where reproducible computational workflows are more im-
portant, applying FAIR principles in visualization could help to
make visual analytics systems, which are more difficult to repro-
duce than algorithms or pseudo-code, more accessible and repro-
ducible, for example. The FAIR4RS principles [BCHK∗22], shown
in table 2.3, relate to the discovery and reuse of software based on
central repositories for human and machine discovery, as well as
interoperability based on the use of common data formats. One im-
portant consideration of the FAIR principles is that they are guide-
lines rather than a full set of rules that developers must adhere to;
developers must consider which principles suit their objectives and
adapt as necessary. As it will be shown in the next few sections,
package creation ticks many of these boxes.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2

https://rsse.africa
https://rse-asia.github.io/RSE_Asia


R. Henkin / Better InfoVis Software Through Packages

F: Software, and its associated metadata, is easy for both hu-
mans and machines to find.
A: Software, and its metadata, is retrievable via standardised
protocols.
I: Software interoperates with other software by exchanging
data and/or metadata, and/or through interaction via applica-
tion programming interfaces (APIs), described through stan-
dards.
R: Software is both usable (can be executed) and reusable (can
be understood, modified, built upon, or incorporated into other
software).

Table 1: FAIR4RS Principles (first level). Adapted from
[BCHK∗22] which is licensed under the Creative Commons Attri-
bution 4.0 International License http://creativecommons.org/
licenses/by/4.0/.

3. Python and R Ecosystems

The languages and ecosystems examined here — Python and R —
are, at the time of writing, among the most popular for data-related
work. They are not the only ones used, nor they are exclusively
designed for data: whereas R has origins in statistical computing
and graphics, Python is a general-purpose language. However, they
share enough similarities that made them popular for data analy-
sis and with strong support for data visualization, in particular in-
formation visualization. This section describes some of the most
important characteristics of the ecosystems surrounding these lan-
guages that influence the creation of visualization software, with-
out discussing how programming in those languages influences the
software.

3.1. Software distribution

Doing data analysis or writing software in both Python and R is
based on loading packages (or modules) with functions or vari-
ables that the standard set of functions (often included in “base”
packages) does not support. For Python, this is mandatory for any
programmer, as the Python Standard Library (included with every
installation) does not contain functions directly related to data anal-
ysis (e.g. plotting). R, on the other hand, due to its statistical origin,
includes many statistics-related functions as part of any R instal-
lation. Both ecosystems feature official software repositories from
which users download and install packages, with their own rules
for the submission and acceptance of new packages.

The R package repository is part of The Comprehen-
sive R Archive Network (CRAN), which also hosts distri-
butions of the R language itself. CRAN is managed by a
team of volunteers and package submissions must pass an au-
tomatic check procedure (http://cran.r-project.org/web/
packages/policies.html), with the first submission often need-
ing a manual check. The procedure does not ensure that the package
works as intended, but rather if the package is in a state that it can
be included in the repository, that is, it can be compiled across mul-
tiple operating systems, the documentation passes the minimum re-
quirements, among other tests.

Python packages are often distributed through the Python Pack-
age Index (PyPI) (https://pypi.org), managed by the Python

Software Foundation (a non-profit corporation). Compared to
CRAN, this repository has a minimal set of rules which a package
must comply with, generally more related to package metadata than
runnable code; indeed it is possible to publish packages that sim-
ply do not work. In the past decade, the Python ecosystem has also
been heavily influenced by the emergence of Anaconda (https:
//www.anaconda.com), a corporation-managed Python distribu-
tion that by default includes many packages and is aimed at fa-
cilitating the setup of a programming environment (and which
also supports R). The company also hosts its own repository, from
where Anaconda users will typically install their packages — users
can still use PyPI and the Anaconda repository side-by-side.

A final note on this is that it is possible to install packages with-
out using these repositories, by sharing release files or setting up
open-source repositories like GitHub. However, all the key repos-
itories and their standards are compatible with the FAIR software
principles, and reusing published software and data formats also
ensures that more principles are covered.

3.2. Programming environments

There are multiple ways to analyze data or use interactive visu-
alizations in Python and R: executing programs that create out-
puts, using Integrated Development Environments (IDEs) or lit-
erate programming (or computing) environments such as Jupyter
Notebooks. IDEs used for data analysis usually have sub-windows
separating code from visual outputs and encourage exploration and
iteration. They are more limiting for interactive visualizations that
have multiple views or that are integrated into pipelines where user
interaction is used to connect different steps (e.g. selecting subsets
of data). However, it is also possible to launch web apps that load
data directly from an IDE after a user has preprocessed data, for
example.

Literate environments support the creation of documents where
code and outputs are mixed with text for documentation or to
provide context in the form of narratives. Platforms and types of
documents for literate programming vary from highly interactive
documents like Jupyter Notebooks to more traditional code writ-
ing like R Markdown. The Jupyter platform supports Python, R
and also other programming languages. Interactive visualizations
used in these documents are web-based and often self-contained,
meaning that, for example, it is difficult to select objects in one
plot and reuse the selection in another plot on the same document.
The Jupyter platform can be run as a server or on the user’s com-
puter, but some services allow publicly sharing collections of note-
books (https://mybinder.org). Notebooks can also be exported
as stand-alone HTML or PDFs: in these cases, the packages must
also have a method to export static graphics so that the visualiza-
tions can be included in those documents.

The platform also supports the creation of interactive widgets
outside of the notebook, i.e. independent of the actual code written
in the notebook. These widgets can be form-like controls (slider
bars) and also interactive visualizations [ISLH19, MT20]. These
are developed targeting the notebook platform itself and are not
typical packages for either Python or R. However, due to the pop-
ularity of the platforms, researchers have been investigating data
work practices and the role of interactive visualization there as
well [SO20, GCL21, WHS20].

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

3

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
http://cran.r-project.org/web/packages/policies.html
http://cran.r-project.org/web/packages/policies.html
https://pypi.org
https://www.anaconda.com
https://www.anaconda.com
https://mybinder.org


R. Henkin / Better InfoVis Software Through Packages

3.3. Deployment of user-facing applications

Python and R strongly support “workbench” analysis through in-
teractive environments and visual interfaces, but they also support
the deployment of applications and interfaces for remote access,
for example, in the form of interactive web apps. The deployment
methods vary between commercial and open-source, and language-
specific and language-agnostic. For example, container methods
such as Docker enable deploying applications that neither require
users to be proficient in a programming language, nor ask them to
install whole environments for any of the languages. There are also
many commercial cloud-based options that support both Python
and R applications.

For R web apps, which would very likely be developed using
the shiny package (see 4.2), there is also the option of the open-
source Shiny server by the Posit company (creators of the RStudio
IDE) that can be self-hosted by any institution. The same company
also offers the widely used shinyapps.io website, which has free
and paid-for plans for hosting Shiny apps. For Python web apps,
the options will depend on the framework used for development;
popular frameworks such as Flask have several open-source and
commercial options (https://flask.palletsprojects.com).

For both ecosystems, it is common to distribute web apps as
packages; either on their own or complementing other pieces of
code. For example, a visual analytics system can be distributed in
the form of a single function that a user executes from a script or
command-line interface and creates a local server, while an interac-
tive visualization component can be distributed as a self-contained
package alongside a web app that demonstrates its functionality
and/or customization options.

3.4. Cross-language interoperability

Another important aspect of these languages for visualization re-
search is interoperability, which includes, for example, the ability
of code written in one language to interact with code written in
another language. There are multiple reasons for its importance,
from running more efficient methods that have been implemented
in other languages to accessing state-of-the-art packages that are
available in one language but not others. Between Python and R,
language-level interoperability is normally done through packages
such as reticulate in R [UAT22] and rpy2 [Gau08] in Python. The
reticulate package supports a variety of methods, including convert-
ing equivalent object types from Python to R and running Python
inside an interactive R session, essentially mixing both languages
in real time. The rpy2 package works similarly, supporting the cre-
ation of functions that are written directly in R, installing additional
R packages from within a Python environment and accessing R ob-
jects. There are also other methods for interoperability across other
languages, for example, at process level or using programming en-
vironments that support that (e.g. RStudio), but these are not exclu-
sive features of these ecosystems for visualization software.

4. Support for features of visualization software

The previous section focused on the general factors surrounding
the development of packages for Python and R. When adapting or
developing outputs of visualization research as packages, there are

some features of these outputs that researchers will want to preserve
as much as possible in any context. This section describes some of
these features relative to both Python and R ecosystems, including
existing packages and programming environments. These features
are described mostly from an information visualization perspec-
tive — scientific visualizations may have different requirements not
covered here.

4.1. Visualization rendering and outputs

R, with the standard set of packages, supports drawing static plots
to graphic devices such as windows in the computer, PDF, bitmaps
or SVG files, among others. The standard R installation includes
functions to draw basic 2D X-Y plots, but it is also possible to
create a whole plotting engine or set of functions using “graphi-
cal primitives” such as lines, rectangles and other shapes. For 3D
drawing, the rgl [MA22] package includes high-level operations
for drawing plots and drawing shapes, as well as lower-level opera-
tions such as camera control and interaction. Python does not have
an “inbuilt” package for rendering and relies purely on packages
for drawing static plots and graphical primitives. For static plots,
both ecosystems also have well-established packages such as gg-
plot2 [Wic16] in R and matplotlib [Hun07] in Python; their popu-
larity also led to the development of other packages to extend func-
tionalities and include new types of plots. One of the limitations of
these two packages is that the outputs are static: interactivity can
only be added through complex coordination with graphical user
interface (GUI) packages that enable tracking mouse position and
clicks.

Figure 1: Simple example of an interactive scatterplot based on
Plotly and Shiny in R.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4

https://flask.palletsprojects.com


R. Henkin / Better InfoVis Software Through Packages

Figure 2: Similar example of fig. 1 but written in Python with Plotly
and Streamlit.

Python and R developers have also created packages that pro-
duce web-based graphics and rely on modern JavaScript for inter-
activity. Some of the packages expand on existing information visu-
alization libraries already implemented in JavaScript, such as Plotly
(https://plotly.com), and Altair [VGH∗18], which is built on
top of Vega and Vega-lite. Others, such as Bokeh [Bok18] in Python,
were developed from scratch, and led to the development of other
packages such as HoloViews [RSB∗22].

4.2. Coordinated and multiple views

Individual plots are the backbone of visual analytics systems or ex-
ploratory tools, but coordinated and multiple views (CMV) tie all
the plots together in a user interface. Depending on the program-
ming language of choice, visualization designers may have to spend
programming hours on both the data visualization side and the con-
struction of the interface. For JavaScript visualizations based on a
library such as D3.js [BOH11], the charts often need to be inte-
grated with web app frameworks such as React, introducing new
learning obstacles or another layer of software dependency. In both
Python and R, frameworks have been developed to enable devel-
opers to keep their focus on the backend data computations and the
visualizations. Although they all introduce their own language con-
structs and changes in programming paradigms, developers should
be able to create functioning prototypes more easily.

For web-based tools, the shiny package [CCA∗22] (R, as of 2022
also available for Python) is a web application framework based
on reactive programming that enables developers to use R func-
tions to construct HTML interfaces and write code that links the

visual outputs to the computations. A simple explanation of reac-
tive programming is that variables are monitored for changes in
values and trigger any number of computations; in interactive inter-
faces, this could mean that when a slider is moved, the new value
will trigger a function that will then be used to update the inter-
face again, creating a loop that works very well with interactive
visualizations. In Python, Streamlit (https://streamlit.io) is a
package that enables the creation of interactive web apps in a very
similar paradigm. Figures 1 and 2 show how two simple interfaces
can be created using Plotly in R and Streamlit in Python with a
minimal amount of programming.

Other frameworks embed the ease to design an interface into the
environments where people code. For example, the voila (https:
//github.com/voila-dashboards/voila) framework assem-
bles dashboard-like interfaces from Jupyter Notebook documents.
In R, a similar package is flexdashboard [SIAB22], which assem-
bles an interface from an R Markdown document. Some of the
packages described above also contain dashboard and layout func-
tionalities, such as Bokeh with grid functions, or are used as the
drawing package for dashboards, such as how plotly is used in the
Dash framework (https://dash.plotly.com).

In the context of data visualization software, building CMV-
based applications is one aspect of translating research into soft-
ware; the visualizations themselves are also the key elements of an
application. One benefit of the frameworks discussed above is that
outputs from different packages can be easily integrated into an
application. For designers, this means that they can develop visual-
izations as independent components and publish those components
as stand-alone packages if they wish so. This is also applicable to
novel visualization techniques, which can include custom methods
for rendering as well.

4.3. Interactivity

For individual visualization components, there are two sides to in-
teraction: direct user manipulation of the visualization and the com-
munication of interactions between components or an interface.
For web-based components, user manipulation is normally done
through events that are controlled in JavaScript. If using any of
the frameworks above, programmers will have access to objects
that contain a value representing a state (e.g. a button has been
clicked) of the interface and, depending on the level of integration
with a visualization package, the parameters of a selection. The
Shiny framework, for example, can be integrated with Vega plots
through the vegawidget [LV22] package. For visualizations that are
not web-based, interactions must be dealt directly with the graphi-
cal system that is being used and may require additional work.

4.4. Scalability

Another challenge for the creation of visualization packages is scal-
ability, which can come in many forms, such as algorithmic, com-
putational and visual [RPA∗22], for example. For computational
issues such as time to compute results, researchers have to deal
with hurdles related to the language of choice. In both Python and
R, it is common for developers to write functions in variants of
C/C++ that are faster than if written in the former languages. Visu-
alization researchers have tried to address such issues through more

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

5

https://plotly.com
https://streamlit.io
https://github.com/voila-dashboards/voila
https://github.com/voila-dashboards/voila
https://dash.plotly.com


R. Henkin / Better InfoVis Software Through Packages

efficient computation performance [MHH19] to progressive visual-
ization [LM19,ZGC∗17], but some of the solutions are in develop-
ing stages or sometimes are difficult to implement in a language
of choice. The Shiny framework, for example, supports interaction
delays, i.e. waiting for all interactions to stop before triggering a
computation, but it does not have a method to stop a visualization
from being rendered once that step is triggered.

On the computation side, support for solutions such as multi-
threading and parallel computations vary across the languages. R,
for example, does not natively support parallel computations, thus
programmers must rely on packages. However, some of the widely
used packages work differently across operationg systems, adding
extra work for programmers as well.

Issues with data size and rendering time must also be dealt with
by programmers implementing visualizations or full systems. Re-
garding data size, there may also be issues with memory limits
for loading datasets or even computation on remote servers. Both
ecosystems include support for modern databases and filesystems,
as well as packages that support the creation of APIs to facilitate
data access. With rendering time, programmers must be aware of
the speed and toll of computation on users’ machines with web-
based outputs, which are typically rendered on the user’s browser
and not on the Python or R backends. The use of JavaScript pack-
ages that speed up rendering can also help with that – in this case,
a trade-off to be considered is the number of packages loaded in
JavaScript in addition to the overheads of Python and R.

4.5. Novel visualization designs

For web-based visualizations, an appealing aspect of both ecosys-
tems is the ability to reuse visualization components that were de-
veloped using libraries such as D3.js and web application frame-
works such as React or Vue. In R, it is possible to create R-friendly
versions of components downloaded from the npm registry, which
is the de-facto standard repository for JavaScript modules. For
Python, the Dash framework contains functions and templates to
facilitate that. A pipeline that begins with the deployment of a vi-
sualization component as a JavaScript module can, in the end, en-
compass the creation of packages for both Python and R.

Personal perspective: as an exercise, I have successfully ported
some interactive visualizations from the SHAP Python package
for machine learning explainability into an R package (https:
//github.com/rhenkin/rforceplots), using the reactR pack-
age. This was successful due to the fact that the authors of
SHAP published the D3-based interactive visualizations separately
on npm.js (https://www.npmjs.com/package/shapjs). I was
therefore able to create an API that enables using those visualiza-
tions with native R packages, while removing Python dependency.

5. Addressing software issues and obstacles to successful
package creation

This section describes how the creation of packages can help to ad-
dress issues identified inside and outside the visualization research
community that are related to software in research. As the creation
of packages is not a silver bullet that will solve all problems, ob-
stacles and potential community and individual actions are also de-
scribed.

5.1. Software development

5.1.1. Creating reusable software

Researchers have described the need for visualization building
blocks to facilitate new research. Existing blocks have been iden-
tified [RCM∗20] mostly as tools for visualization design, but, in
the form of packages, they could include smaller, reusable com-
ponents that directly tie visualizations to other pieces of software,
such as machine learning models. In this case, an implementation
challenge is to build visualizations that are not only the endpoint of
a workflow but can also be combined with each other. For exam-
ple, an interactive visualization package for model steering could
be designed to receive a model results object as an input, and the
visualization interactions could be linked to a model interpretabil-
ity package. Following this example, a complete visual analytics
system can be built using existing and new components based on
frameworks such as Shiny and Streamlit. Reusing packages could
also create a trust loop: the more a package is seen to be used, the
more researchers will be encouraged to use it. The development
of building blocks is also related to some of the issues discussed
further down, such as encouraging new researchers by providing
better tools to begin projects.

5.1.2. Testing packages

Visualization research does not typically include the verification
of published software, and prototypes that are not developed fol-
lowing software engineering practices can quickly become bloated
and difficult to test. In the R ecosystems, packages such as
testhat [Wic11] and RUnit [BJK18] facilitate the creation of tests
to check that code works, that visual outputs are as expected and
Shiny app interfaces behave as intended. Including tests is not a
requirement for either the CRAN repository or the Python repos-
itories, but the tight integration of these tools with package de-
velopment is an encouragement for developers to include testing
from the outset of software creation. In Python, the unittest pack-
age is included in all installations as part of the Python Standard
Library and other packages are also available. Source code reposi-
tories such as GitHub also allow the creation of automated scripts
that trigger testing when there are changes in the code, ensuring that
uploaded packages are passing the defined tests. These scripts also
support testing the requirements for repositories such as CRAN.

5.1.3. Maintaining packages

Identifying and fixing errors in software, communicating with users
and updating imported packages are crucial for well-maintained
software. Any software uploaded to the CRAN repository is con-
nected to other software that it depends on, such that, for each pack-
age, there is also a list of reverse dependencies. This enables devel-
opers to contact and notify other users of that package regarding
breaking changes or errors that may have been identified. On web-
sites like GitHub, it is also possible to set up automated alerts for
vulnerabilities in dependencies, as well as workflows that test the
installation of dependencies, to check if any updates in the depen-
dencies causes the software to stop working.

Authors of successful packages that are used outside the visu-
alization community can also engage with sponsorship programs,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

6

https://github.com/rhenkin/rforceplots
https://github.com/rhenkin/rforceplots
https://www.npmjs.com/package/shapjs


R. Henkin / Better InfoVis Software Through Packages

widely used in Python and R and development, to dedicate time
to improving or maintaining a package. Typically, package authors
identify issues or improvements that are eligible for sponsorship
and interested parties can fund the required work.

5.2. Beyond packages

5.2.1. Code and software peer review

Code review is an established practice of software development
where code is inspected and critiqued by other members of a team
to improve it, either for finding problems or improving documen-
tation and creating alternative solutions to problems [BB13]. In re-
search teams, “code clubs” can be set up and run by researchers and
students to introduce reviewing practices. These clubs can also be
run across teams and departments as well, and include both visual-
ization and non-visualization researchers. When focused on pack-
age development, there are aspects such as successful installation
and good documentation that code reviewing can help in addition
to automated testing.

Personal perspective: I have been involved in a code review club
within a computational biology interest group but run across de-
partments, which is in its third year running. Colleagues have found
benefits from interacting with other people’s codes and receiving
feedback, but code complexity was also an intimidating factor. An-
other obstacle to a successful code review is having enough volun-
teers offering their code to review to keep the activities going. In
the computational biology group, where producing software is not
actually the aim of most participants, this may be more problematic
than in a visualization software code club.

Outside research groups, there are also organizations that
provide and encourage software peer review, such as rOpen-
Sci (http://ropensci.org) and pyOpenSci (http://https:
//www.pyopensci.org), which also incentivize the creation of
reusable software and best practices for publishing software. Al-
though visualization software is currently not within the scope of
rOpenSci, for example, they are still good examples that could
eventually make their way into the visualization research commu-
nity, and can also inspire smaller research teams.

5.2.2. Hackathons and other events

Hackathons are events where small teams work intensively on soft-
ware projects in a short period of time (typically no more than 3
days). They cover specific applications and technologies or also
subjects, e.g. transport systems [BM14], and may also be em-
ployed in public spaces and learning environments [NM16]. Al-
though aimed at prototyping, these events could lead to medium
and longer-term benefits. For visualization research, hackathons
could encourage researchers that work on similar technologies to
solve problems together and collaborate. One possibility would be
to encourage people to work on visualization challenges such as the
VAST Challenge and SciVis context with a hackaton perspective.

Another type of event that could help to improve software devel-
opment is the annual Hacktoberfest (https://hacktoberfest.
com), a month-long initiative to encourage people to contribute to
open-source software on GitHub, by improving documentation or
attempting to solve logged issues. Similarly to hackathons, this type

of event could serve as an inspiration for teams to spend time im-
proving their visualization software.

5.3. Obstacles for package creation

5.3.1. Incentives

As in other fields, there are also several incentives-related obsta-
cles that prevent researchers from improving software, no matter
its form. One of them is the recognition of software as a research
output, as mentioned above. For people planning to follow an aca-
demic career, time spent on software development will not always
be rewarded. Venues such as the Journal for Open Source Software
(JOSS) provide an opportunity to get more recognition for smaller
pieces of software, but researchers must also consider the purpose
of the software, which could be used to demonstrate contributions
to visualization research. Organizations for RSE have been pur-
suing more recognition for software and visualization researchers
could benefit from getting involved in those as well. The practice
of citing software used in research rather than only adding external
links to web pages also helps with that.

Personal perspective: I have published an article in the JOSS
for an R package that contains Shiny app for hierarchical clus-
tering [HB22]. As the main efffort was about tying up together
separate packages rather than a research-oriented development, I
thought the JOSS was a good venue to formally publish it. It en-
couraged me to polish the package as much as possible and con-
sider many different use cases. In my case, it also worked as a way
to wrap up the project as I had no further plans for the tool.

5.3.2. Onboarding of new researchers

Onboarding, the integration of new members into an organization,
is a fundamental aspect of open-source software (OSS), and can
also affect package development and the visualization community.
No matter the level of experience in programming in a particular
language, programmers will face unknown code and collaborators
with different goals, experience and skills, and may end up being
discouraged from contributing. As the long-term survival of OSS
projects depends on the constant rotation of developers, researchers
have suggested guidelines [STG19] to facilitate the onboarding
process, also identifying personal, communication and technical
obstacles for the success of onboarding. Research teams also have
similar needs: one or more group leaders may remain constant over
time, whereas post-doctoral researchers, PhD students and research
assistants move on to different positions, places and interests. For
visualization software to be successful, research teams should also
consider onboarding best practices.

5.3.3. Cultural factors in applied domains

An obstacle to reaching wider audiences for visualization software
is that cultural factors may hinder adoption. As many visualiza-
tion researchers know very well, it is very difficult to break with
established practices, even when those practices can be improved.
Visualization packages must conform to those, which may range
from data formats to visualization designs. On the software side,
to increase adoption, thorough examples and on-screen guidance
can help new users. R package development strongly encourages

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

7

http://ropensci.org
http://https://www.pyopensci.org
http://https://www.pyopensci.org
https://hacktoberfest.com
https://hacktoberfest.com


R. Henkin / Better InfoVis Software Through Packages

the use of vignettes to demonstrate functionality, and web apps can
include on-screen tutorials to facilitate use. Software contributions
are also often more valued if they enable new scientific findings
in the domain; non-scientific findings such as more efficient work-
flows would likely be directed to a short “application note” (e.g.
Bioinformatics journal), which may well undervalue the effort put
by researchers into the software and disincentivize future work.

Figure 3: Summary of packages and activities described through-
out the paper that facilitate creating visualization software.
5.4. Conclusion

The paper described the Python and R ecosystems in the context
of information visualization software, useful tools, existing infras-
tructure and initiatives, as summarized in Fig 3. The path towards
better software includes actions readily available for researchers
as well as community-level actions that require more coordination
and time. Raising researchers’ awareness of what is out there is also
aimed at helping the community move beyond individual efforts.

However, this paper also acknowledges that the situation sug-
gested here does not always align with some overarching aims, de-
spite the ambition for better software. For example, for researchers
looking into commercializing their outputs, there might be issues
about how to break up their code so that parts of it are made open-
source and others are not. Other researchers may be interested in
creating better software but not to the point of investing effort and
time into creating packages. Another aspect of commercial outputs
is the level of polish required for tools, and the different incentives
and personnel involved, none of which are discussed in this paper.

This paper also covered visualization software support from the
information visualization perspective. For scientific visualization,
which may have more demands on computation and rendering, not
every solution presented on the software side will be applicable.

Finally, the paper used Python and R as examples of ecosystems
where data science activities happen. The Julia language is already
a relatively established alternative, in part due to its native support
of features such as parallelism. At the same time, the visualization
community is still strongly engaged with web-based visualizations
based on JavaScript. The software engineering aspects described
in this paper should be also applicable to those languages but they
could merit other similar articles as well.

Acknowledgements

For this work, RH was funded by the Health Data Research UK
(grant ref: LOND1).

References
[ABD∗21] ANZT H., ET AL.: An environment for sustainable re-

search software in Germany and beyond: Current state, open chal-
lenges, and call for action. F1000Research (2021). doi:10.12688/
f1000research.23224.2. 2

[Bar10] BARNES N.: Publish your computer code: It is good enough.
Nature (2010). doi:10.1038/467753a. 2

[BB13] BACCHELLI A., BIRD C.: Expectations, outcomes, and chal-
lenges of modern code review. Proceedings of the 2013 International
Conference on Software Engineering (2013). 7

[BCHK∗22] BARKER M., ET AL.: Introducing the FAIR Principles
for research software. Scientific Data (2022). doi:10.1038/
s41597-022-01710-x. 2, 3

[BJK18] BURGER M., ET AL.: RUnit: R Unit Test Framework, 2018. 6

[BM14] BRISCOE G., MULLIGAN C.: Digital Innovation: The
Hackathon Phenomenon. Tech. Rep. 6, 2014. 7

[BOH11] BOSTOCK M., ET AL.: D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics (2011). doi:
10.1109/TVCG.2011.185. 5

[Bok18] BOKEH DEVELOPMENT TEAM: Bokeh: Python Library for In-
teractive Visualization, 2018. 5

[CCA∗22] CHANG W., ET AL.: Shiny: Web Application Framework for
R, 2022. 5

[CHH∗13] CROUCH S., ET AL.: The Software Sustainability Institute:
Changing Research Software Attitudes and Practices. Computing in Sci-
ence & Engineering (2013). doi:10.1109/MCSE.2013.133. 2

[CKB∗21] COHEN J., ET AL.: The Four Pillars of Research Software
Engineering. IEEE Software (2021). doi:10.1109/MS.2020.
2973362. 2

[CLG17] CONWAY J. R., ET AL.: UpSetR: An R package for the visu-
alization of intersecting sets and their properties. Bioinformatics (2017).
doi:10.1093/bioinformatics/btx364. 1

[Gau08] GAUTIER L.: Rpy2, 2008. 4

[GCL21] GADHAVE K., ET AL.: Reusing Interactive Analysis Workflows.
Preprint, Open Science Framework, 2021. doi:10.31219/osf.io/
udqjr. 3

[Har18] HAROZ S.: Open Practices in Visualization Research : Opinion
Paper. In IEEE Evaluation and Beyond - Methodological Approaches for
Visualization (BELIV) (2018), IEEE. doi:10.1109/BELIV.2018.
8634427. 1, 2

[HB22] HENKIN R., BARNES M. R.: visxhclust: An r shiny package
for visual exploration of hierarchical clustering. Journal of Open Source
Software (2022). doi:10.21105/joss.04074. 7

[HCH∗20] HASSELBRING W., ET AL.: From FAIR research data toward
FAIR and open research software. it - Information Technology (2020).
doi:10.1515/itit-2019-0040. 1, 2

[Hun07] HUNTER J. D.: Matplotlib: A 2D Graphics Environment. Com-
puting in Science & Engineering (2007). doi:10.1109/MCSE.
2007.55. 4

[IHG12] INCE D. C., ET AL.: The case for open computer programs.
Nature (2012). doi:10.1038/nature10836. 2

[ISLH19] IBRAHIM S., ET AL.: Interactive in situ visualization and anal-
ysis using Ascent and Jupyter. In Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualiza-
tion (2019). doi:10.1145/3364228.3364232. 3

[JKA∗17] JIMÉNEZ R. C., ET AL.: Four simple recommendations to
encourage best practices in research software. F1000Research (2017).
doi:10.12688/f1000research.11407.1. 1

[LM19] LI J. K., MA K.-L.: P5: Portable Progressive Parallel Process-
ing Pipelines for Interactive Data Analysis and Visualization. IEEE
Transactions on Visualization and Computer Graphics (2019). doi:
10.1109/TVCG.2019.2934537. 6

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

8

https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.1038/467753a
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/MCSE.2013.133
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1109/MS.2020.2973362
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.31219/osf.io/udqjr
https://doi.org/10.31219/osf.io/udqjr
https://doi.org/10.1109/BELIV.2018.8634427
https://doi.org/10.1109/BELIV.2018.8634427
https://doi.org/10.21105/joss.04074
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/nature10836
https://doi.org/10.1145/3364228.3364232
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537


R. Henkin / Better InfoVis Software Through Packages

[LV22] LYTTLE I., VEGA/VEGA-LITE DEVELOPERS: Vegawidget:
’htmlwidget’ for ’Vega’ and ’Vega-Lite’, 2022. 5

[MA22] MURDOCH D., ADLER D.: Rgl: 3D Visualization Using
OpenGL, 2022. 4

[MHH19] MORITZ D., ET AL.: Falcon: Balancing Interactive Latency
and Resolution Sensitivity for Scalable Linked Visualizations. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (2019). doi:10.1145/3290605.3300924. 6

[MQB19] MING Y., ET AL.: RuleMatrix: Visualizing and Understanding
Classifiers with Rules. IEEE Transactions on Visualization and Com-
puter Graphics (2019). doi:10.1109/TVCG.2018.2864812. 1

[MT20] MUNK M., TURK M.: Widgyts: Custom Jupyter Widgets for
Interactive Data Exploration with yt. Journal of Open Source Software
(2020). doi:10.21105/joss.01774. 3

[NM16] NANDI A., MANDERNACH M.: Hackathons as an Informal
Learning Platform. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (2016). doi:10.1145/
2839509.2844590. 7

[NSS21] NARECHANIA A., ET AL.: NL4DV: A Toolkit for Generating
Analytic Specifications for Data Visualization from Natural Language
Queries. IEEE Transactions on Visualization and Computer Graphics
(2021). doi:10.1109/TVCG.2020.3030378. 1

[OCL∗21] ONO J. P., ET AL.: PipelineProfiler: A Visual Analytics Tool
for the Exploration of AutoML Pipelines. IEEE Transactions on Vi-
sualization and Computer Graphics (2021). doi:10.1109/TVCG.
2020.3030361. 1

[RCM∗20] REINA G., ET AL.: The moving target of visualization soft-
ware for an increasingly complex world. Computers & Graphics (2020).
doi:10.1016/j.cag.2020.01.005. 1, 6

[RPA∗22] RICHER G., ET AL.: Scalability in visualization. IEEE
Transactions on Visualization and Computer Graphics (2022). doi:
10.1109/TVCG.2022.3231230. 5

[RSB∗22] RUDIGER P., ET AL.: Holoviz/holoviews: Version 1.15.2. Zen-
odo, 2022. doi:10.5281/ZENODO.7277284. 5

[SIAB22] SIEVERT C., ET AL.: Flexdashboard: R Markdown Format for
Flexible Dashboards, 2022. 5

[SMB∗16] STODDEN V., ET AL.: Enhancing reproducibility for com-
putational methods. Science (2016). doi:10.1126/science.
aah6168. 2

[SO20] SCHMIDT J., ORTNER T.: Visualization in Notebook-Style In-
terfaces. VisGap - The Gap between Visualization Research and Visual-
ization Software (2020). doi:10.2312/VISGAP.20201104. 3

[STG19] STEINMACHER I., ET AL.: Let Me In: Guidelines for the Suc-
cessful Onboarding of Newcomers to Open Source Projects. IEEE Soft-
ware (2019). doi:10.1109/MS.2018.110162131. 7

[UAT22] USHEY K., ET AL.: Reticulate: Interface to ’Python’, 2022. 4

[VGH∗18] VANDERPLAS J., ET AL.: Altair: Interactive Statistical Visu-
alizations for Python. Journal of Open Source Software (2018). doi:
10.21105/joss.01057. 1, 5

[WDA∗16] WILKINSON M. D., ET AL.: The FAIR Guiding Principles
for scientific data management and stewardship. Scientific Data (2016).
doi:10.1038/sdata.2016.18. 1, 2

[WHS20] WU Y., ET AL.: B2: Bridging Code and Interactive Visualiza-
tion in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (2020).
doi:10.1145/3379337.3415851. 3

[Wic11] WICKHAM H.: Testthat: Get started with testing. The R Journal
3 (2011), 5–10. 6

[Wic16] WICKHAM H.: Ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016. 4

[ZGC∗17] ZGRAGGEN E., ET AL.: How Progressive Visualizations Af-
fect Exploratory Analysis. IEEE Transactions on Visualization and Com-
puter Graphics (2017). doi:10.1109/TVCG.2016.2607714. 6

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

9

https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10.21105/joss.01774
https://doi.org/10.1145/2839509.2844590
https://doi.org/10.1145/2839509.2844590
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.1109/TVCG.2020.3030361
https://doi.org/10.1109/TVCG.2020.3030361
https://doi.org/10.1016/j.cag.2020.01.005
https://doi.org/10.1109/TVCG.2022.3231230
https://doi.org/10.1109/TVCG.2022.3231230
https://doi.org/10.5281/ZENODO.7277284
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1126/science.aah6168
https://doi.org/10.2312/VISGAP.20201104
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1109/TVCG.2016.2607714



