
The Gap between Visualization Research and Visualization Software (VisGap) (2020)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

How the deprecation of Java applets affected
online visualization frameworks – a case study

M. Skrodzki†1

1RIKEN iTHEMS, Wako, Saitama, Japan

Figure 1: Unfolding an Archimedean solid with one of the mathematical web services of the JavaView visualization framework.

Abstract

The JavaView visualization framework was designed at the end of the 1990s as a software that provides—among other services—
easy, interactive geometry visualizations on web pages. We discuss how this and other design goals were met and present several
applications to highlight the contemporary use-cases of the framework. However, as JavaView’s easy web exports was based on
Java Applets, the deprecation of this technology disabled one main functionality of the software. The remainder of the article
uses JavaView as an example to highlight the effects of changes in the underlying programming language on a visualization
toolkit. We discuss possible reactions of software to such challenges, where the JavaView framework serves as an example to
illustrate development decisions. These discussions are guided by the broader, underlying question as to how long it is sensible
to maintain a software.

CCS Concepts
• Human-centered computing → Visualization toolkits; • Social and professional topics → History of software; •Mathe-
matics of computing → Mathematical software;

1. Introduction

At the end of the 1990s, the internet grew exponentially. More and
more people discovered a multitude of options for using the new
technology. In the context of science, it was investigated how ed-
ucation, publication of results, experiments, and general commu-
nication of scientific ideas could be realized online. A generally

† Corresponding author: mail@ms-math-computer.science

helpful tool for all of these applications is visualization. This holds
particularly true for the realm of abstract mathematical content.

It is within this period that decisions where made to develop a
new online visualization framework named JavaView [JVWeb]. It
set out to tackle two major challenges that any mathematical visual-
ization framework has to cope with. First, the mathematical content
needs to be translated into a suitable visual setting. Second, the vi-
sualization has to be realized by the necessary technical steps in
order to deliver it to the envisioned recipient. The situation at the
end of the last century saw many researchers all over the world

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/visgap.20201111 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8126-0511
mailto:mail@ms-math-computer.science
https://doi.org/10.2312/visgap.20201111


M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

investigating visualizations of different mathematical objects and
procedures. However, their works were generally published in the
form of images or very short videos, where an interactive visual-
ization would have been tremendously more informative [Pol00,
Sec. 1–3]. A first goal of JavaView was therefore to:

Goal 1 (Interactivity) Provide interactive, online visualization of
mathematical content.

Furthermore, as different research groups of the time tackled the
implementation of visualizations and interactive applications, they
all wrote their own code. These programs were tailored towards the
specific hardware and operating systems available in the respective
groups. Therefore, exchanging programs was not at all an easy task.
Thus, a second goal of JavaView was to:

Goal 2 (Accessibility) Provide a system-independent framework
that takes as much technicality away from the content creators as
possible.

Thereby, the creators can focus solely on the production of new vi-
sualizations and research output. Furthermore, they can easily share
the output based on the common framework.

Finally, even the exchange of research data—like geometric
models—was not easily possible because of the lack of a widely ac-
cepted and supported file format. Therefore, regarding the field of
experimentation in computational geometry and computer graph-
ics, as a third goal, JavaView should:

Goal 3 (Communication) Introduce a unified file format for easy
exchange of research and visualization data.

In fulfilling the goals outlined here, JavaView competed with
other contemporary frameworks, such as Cabri [Kun02] or Cin-
derella [KR02]. However, these two frameworks specifically tackle
2D visualizations, while JavaView is to a large part concerned with
interactive 3D applications. Still, the discussion on JavaView in this
paper is rather exemplary for these and other frameworks of the
time.

Guided by these three main goals, the authors of JavaView aimed
to create a framework that should be easily transferable between
different architectures. Also, it should provide native export to web
applications. To satisfy these constraints, the programming lan-
guage Java was chosen, with the included availability of Java Ap-
plets for the internet, see Section 2. In this language, a framework
was developed for others to build on, see Section 3. After its re-
lease, extensive use was made of the new software and several
widely used applications were created, some of which we discuss
briefly in Section 4.

However, after several successful years in the early 2000s, the
JavaView framework faced a significant challenge. The structure
of Java Applets—one of the core building blocks of JavaView—
was deprecated within the Java language. Vendors of modern web
browsers removed support for Java Applets and banned them from
their software, see Section 5. This development left the JavaView
framework without one of its main features, i.e. the easy web ex-
port. From this situation of the JavaView framework as a basis, we
start a broader discussion in Section 6 revolving around the ques-
tion: What software frameworks can and what reasoning should
this maintenance be based on? Results from the discussion and the
entire article are summarized in the concluding Section 7.

2. Choice of the Programming Language

A first important decision in the creation of the JavaView frame-
work was choosing the underlying programming language. The
contemporary popular high-level languages like Fortran, C, or
C++ are all machine-dependent and require a compilation of the
code on the specific machine of the user. Clearly, this hinders an
easy distribution and dissemination of the framework. The Java en-
vironment had been introduced in 1995 [GM95] and offered several
appealing aspects towards the goals of the envisioned visualization
framework [Pol00, Sec. 4].

For instance, most of the contemporary browsers installed a Java
environment on the local machine. Hence, the potential user base—
i.e. those equipped with the necessary software—was almost equiv-
alent to the users of the internet. Another particular advantage is
that the installed Java runtime environment (JRE) or virtual ma-
chine is independent of the actual browser software that uses it.
Thus, all users had the same underlying runtime environment.

In terms of accessibility of interactive web content, Java
promised to be efficient in terms of data to be transferred. As the
core classes and functionality of Java are already present on the
user’s machine, these do not have to be downloaded. This makes
the actual programs and applets extremely lightweight.

Furthermore, the build-in functionality of Java comes with very
accessible support of graphical user interfaces (GUI). As the pro-
grams are easily spread to other machines, operating systems, and
users, a comprehensive GUI immediately became extremely im-
portant. That is, because a program with a series of convoluted text
commands does not at all disseminate as well as a program with an
intuitive GUI.

Finally, as stated above, the easy transfer of Java programs to
other machines and operating systems was a tremendous advantage
of the new language. As the programs are not compiled into exe-
cutable files, but bytecode, they can easily be executed on any target
machine with a corresponding runtime environment or virtual ma-
chine. The developer therefore does not have to keep the specific
architecture in mind any more when developing a program.

Additional to the programming language for the framework it-
self, also a new file format was sought for. This new format should
enable easy exchange of created geometrical models and data. A
basis for this format was found in the extensible markup language
(XML), which had been introduced in 1998 [BPS*98]. Based on
this specification, the JVX file format was developed. Being an
XML-based format allows for easy automatic validation of JVX
files, which even works online [XMLVal]. The format supports
several geometric primitives as well as colors and textures [JVX;
Map].

These aspects of the new Java language resonated well with
Goals 1 to 3 set out for the JavaView framework as described in
Section 1. Therefore, the decision was made to base the visualiza-
tion framework on the Java programming language.

3. The Structure of JavaView

After a one-year testing period at Technische Universität Berlin, the
JavaView software framework was first released in 1999 [PKPR02,

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

60



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

p. 1]. Ever since, it was further developed at the Zuse Institute
Berlin and at Freie Universität Berlin, where the current core de-
velopment team is situated. The framework has always been a
free software and can be downloaded on the corresponding web
page [JVWeb]. Since the release of version 3.0, a free yearly online
registration is necessary to disable a “missing license” message in
the viewer of the stand-alone version. Applets do not require a li-
cense. As of now, the code is not open-source, see Section 6 for a
discussion of the implications of this decision.

The JavaView framework comes with three main compo-
nents [PKPR02, Sec. 2]:

1. A software-based rendering engine integrated in a geometry
viewer. It supports basic functionality for exploration of geome-
tries, comfort functions like coordinate axes and rulers as well
as different camera modes. This functionality suffices for basic
investigations of geometric models. A general description of the
capabilities of the viewer is available online [JVDoc].

2. Different built-in workshops and projects for the creation
and alteration of geometries. Generally, workshops apply to a
shown geometry. The present functionalities allow for instance
for mesh simplification, subdivision, smoothing, and optimiza-
tion, among many other operations. Opposed to these work-
shops, projects implement more complex pipelines and can for
example create their own geometries and animations. Among
the long list of implemented projects are Julia and Mandelbrot
fractals, discrete minimal surfaces, polygonal curves, and differ-
ent methods for handling and computing discrete vector fields
on surfaces.

3. Class libraries and JavaView archives for the development
of new applications on the basis of JavaView. As the viewer
and certain workshop functionalities are already present, the
developer can focus on the creation of new applications and
does not have to worry about technicalities. The libraries con-
tain, for instance, data structures for geometry representations,
algorithms for geometric modeling, numeric and linear alge-
bra packages, animation frameworks, and support structures for
user-interaction.

Both the framework with its viewer and the corresponding JVX file
format were wide-spread in the contemporary Computer Algebra
Systems. Maple included JavaView as a “powertool”, while Math-
ematica, Matlab, and Polymake [PKPR02, Sec. 5] as well as Mu-
PAD [MP04] supported or still support data exchange to and from
JavaView. Some of the listed programs also include the functional-
ity to use JavaView as a viewer of the generated data.

By providing a framework with the three components described
above, JavaView satisfied Goal 2 outlined in Section 1. Namely,
developers and content creators do not have to deal with technicali-
ties like a rendering engine or a geometry viewer. Also, they do not
have to re-write basic geometry processing algorithms, as those are
readily available. Thus, they can start immediately with program-
ming and creating their own mathematical visualization projects.
Furthermore, the spread of the JVX file format contributed to an
easy exchange of geometric data between different systems, which
works towards Goal 3.

Finally, another large benefit of JavaView was the easy cre-
ation of interactive web visualization via Java Applets [Pol00,

Figure 2: Procedure of “untangling Goeritz 13-21”, visualized
with JavaView, taken from [ADP02].

Sec. 5.2/5.3]. In the following, we will elaborate on this function-
ality by discussing some examples that highlight the broad appli-
cability of JavaView as well as the different areas in which it was
utilized.

4. Application Examples

The applications that are presented here are described in the way
they were published, i.e. at the technological stage of their respec-
tive release date. We discuss the problems that these different soft-
ware modules tackled. Keep in mind the current, advanced status
of the JavaView framework, as referred to in Section 6.

4.1. Knot Simplifier

The authors of [ADP02] present the implementation of a partial
knot recognition algorithm. It stands aside from other algorithms
in the field as it is implemented in the form of a web service on the
basis of JavaView, available at [JVOnl]. The applet allows users to
view knots from an online database, create new knots, and (par-
tially) simplify a knot. See Figure 2 for a visualization of the pro-
cedure.

This interactive applet for the discovery of knots is a repre-
sentative of several mathematical online services implemented via
JavaView [JVOnl]. Aside from the knot simplifier and a simple ge-
ometry viewer, the list includes an ODE solver, a root finder for
functions, a visualization of geodesics on polyhedral surfaces, an
algebraic solver, and a mesh unfolder that provides a planar net for
a given geometry, see Figure 1. All these applications are avail-
able in form of Java Applets online. Thus, satisfying Goal 1 from
Section 1, these services provide a low-threshold means to interact
with and learn mathematics online.

4.2. Maple and JavaViewLib

The JavaViewLib enables full support of JavaView from within
Maple in the form of a “power tool”. This tool adds new interactiv-
ity to Maple plots in both web pages and worksheets. For instance,
it introduces the widely used arc-ball rotation system [Sho92] to

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

61



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

Figure 3: The JavaViewLib enables the creation of an interactive
web page out of any Maple plot, taken from [DP03].

Maple. Arguably the most powerful addition that JavaView pro-
vides for Maple comes in the form of an easy web page export
functionality. By a simple command, a complete Maple plot can be
exported into an HTML document with Java Applets, allowing for
interactive exploration of the plot [DP03], see Figure 3.

In this application, JavaView enables the users of Maple to easily
share their work and make it more accessible, in particular via the
internet. In terms of Goal 3 formulated in Section 1, this serves the
general communication of scientific ideas as researchers can easily
share, alter, and work on different geometric models.

4.3. EG-Models

Another example for the use of JavaView is the online journal for
electronic geometry models, short “EG-Models” [JP02]. It aims to
exhibit a broad collection of peer-reviewed geometry data sets from
a wide range of mathematical subjects such as—but not limited
to—differential, discrete, or computational geometry. Aside from
images and interactive visualizations via JavaView, the key aspect
is the data itself, combined with a self-contained description of its
mathematical importance. See Figure 4 for a screenshot of the web
page.

The “EG-Models” project creates a whole new outlet for sci-
entific research. In the form of a peer-reviewed online journal, it
offers a possibility for publication of geometrical data. At the same
time, the website provides an accessible way of browsing through
the data interactively within a JavaView applet. This enables re-
searchers to use these curated model sets in their own research by
simply browsing them interactively on the web page and by down-
loading those that are helpful for their own projects. In terms of

Goal 3 from Section 1, the “EG-Models” web page thus offers a
new way to publish research work.

4.4. Geometry Processing

The description of the workshop and projects in Section 3 already
hinted at the capabilities of the JavaView framework regarding gen-
eral geometry processing tasks. While the previous applications
where concerned with different interactive web pages, the most
powerful algorithms are available in the JavaView stand-alone pro-
gram. Most notably, this offline version of JavaView can handle all
relevant aspects of the geometry processing pipeline—starting from
scanned, real-world models, processing them, and preparing them
for 3D printing. For instance, isotropic and anisotropic smoothing
algorithms are available to remove noise components added during
the scanning process. Boundaries can be identified and correspond-
ing wholes can be filled automatically in order to create a watertight
surface. A mesh can either be subdivided via different schemes or
simplified, depending on the current application. Furthermore, it
can be altered according to the minimization of different energies,
like Dirichlet or conformal stresses. Finally, several extrusions are
possible to prepare the object for 3D printing. The framework sup-
ports output to eleven different 3D geometry formats, including the
widely used STL format for 3D printing.

4.5. Further Applications

Aside from the applications presented above, further examples
for the integration and application of JavaView can be found in
print [PKPR02, Sec. 4] as well as online [JVOnl; JVApp]. Fi-
nally, JavaView has been discussed in the specific context of use
in schools [MP04, Sec. 4].

5. Changes in the Programming Language – Deprecation of
Java Applets

As discussed above, one main feature of the JavaView framework
is its easy export of interactive mathematical visualizations to web
pages. This functionality depends on the technology of Java Ap-
plets. Thus, the development of this aspect of the JavaView frame-
work is dependent on the development of Java Applets.

An online article by Michael Byrne provides a well-written sum-
mary of the history of Java Applets [Byr]. While the technology of
applets was tremendously successful in the early 2000s, the come-
back of JavaScript (JS) brought a serious competitor back into the
field. The Chrome browser soon supported JS with its own engine,
making the additional installation and frequent updates of Java’s
virtual machine a comparable hassle for the user. Several exploits
and security faults gave Java Applets a bad standing in the commu-
nity, as Ben Evans summarized in his 2015 book [Eva15]. Shortly
after the book was issued, the release of Java version 9.0 saw the
deprecation of the Java Applet API, “as web-browser vendors re-
move support for Java browser plug-ins” [Tit]. After this prelim-
inary step, the support for the Java Applet API was completely
removed in the release of the Java Development Kit (JDK), ver-
sion 11.0 [Ora].

With the end of support for Java Applets by all major web

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

62



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

Figure 4: Screenshot of the EG-Models web page [JP02].

browsers, the easy web export from the JavaView framework was
gone. In particular, this caused the web services [JVOnl] as well
as the applications as discussed in Sections 4.1–4.3 to become un-
available with modern browsers online. They are now only acces-
sible via the stand-alone offline version of JavaView. Therefore, a
serious reorientation of the framework, its main applications and
goals was necessary. Certainly, given the amount of time, energy,
and resources that went into the algorithms, implementation, and
general framework concepts, a reorientation should build on this
basis and preserve this work, if possible. We will discuss different
aspects of this reorientation in Section 6. Here, we briefly consider
how different software handled the historical development.

The contemporary frameworks Cabri and Cinderella had to
face similar challenges as JavaView. When considering how the
JavaView framework might react and change, it can be beneficial
to consider the actions taken within these two frameworks. They
followed different approaches. The Cabri software nowadays fo-
cuses on education. It runs in a stand-alone environment on PC or
Mac and targets both teachers and students [Cab]. Thus, it moved
away from its research background and applicability in web pages.
Instead, it became a user-centered, commercial software.

The original stand-alone version of Cinderella is still up and run-
ning. It is actively worked on and recently became freely available
after 20 years of commercial distribution [Kor]. However, the in-
teractive examples on the website are only accessible with a web
browser supporting Java, i.e. not with any modern web browsers.
To counteract the loss of the created material, a sister-project to
Cinderella was formed, called CindyJS [vGKRS16]. Recognizable
from the name, it is implemented in HTML5, JS, and WebGL.
Therefore, it is suited to be a replacement of the Java Applets used
by Cinderella. As CindyJS provides compatibility to existing Cin-

derella projects, these can now easily be recycled and be given a
fresh start as lightweight and interactive web applications. See for
instance the examples in the CindyJS gallery [Pro].

The JavaView framework is facing the challenge that parts of its
underlying technology are deprecated and it cannot provide one of
its main features anymore. Considering other contemporary frame-
works, it can be shown that not only changes in the software en-
vironment, but a variety of different factors can be a challenges to
a specific software. Cinderella and Cabri reacted to their respec-
tive challenges in their own ways. The following section is de-
voted to general thoughts about such reactions, always considering
JavaView as the element of this case study.

6. Developing a Software Framework over Time

In the sections above, we have seen how the JavaView framework
was impacted by the deprecation of Java Applets that formed the
basis for one of its main functionalities, the easy web export. For
the remainder of the article, we will broaden the view and con-
sider a more general question in the field. Namely, phrasing it tren-
chantly, whether or not all software should be saved. We will ap-
proach this question via various facets and always refer back to the
case study of JavaView to give concrete examples for respective
reactions. The different facets of the question are not necessarily
disjoint, but rather overlap and affect each other.

First, however, we need to define what “saving” a software
means in the context of the following discussion. Certainly, there
is a broad range of states a software can be in. It can be under
active development by one or several developers; it can be exe-
cutable on modern hardware after installation, while not being fur-
ther maintained; it can be available in an archived or legacy for-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

63



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

mat, for instance within a container, equipped with other, neces-
sary pieces of software not commonly available anymore; or it can
be non-executable in any form on modern hardware. While the lat-
ter definitely describes a piece of ‘dead’ software, the other cases
are more subtle. We will assume in the following that a software
is safe in securing its own existence only if its actively maintained
by developers. Otherwise, one could argue, it is doomed to fall into
the last category of eventually becoming non-executable. Follow-
ing this definition, the JavaView framework is actively maintained
and thus “saved” by its developer team. Despite its long lifetime
since its first release in 1999, it saw the release of version 5.01 in
March 2020.

We have to take care, however, not to take a long lifetime of a
software as a valid reason for saving it. While it might hurt to toss
aside a large collection of experience, research, algorithms, and
implemented concepts, not all software can be saved. Otherwise,
a field would become too fragmented to actually accomplish any-
thing. Therefore, it is important and necessary to frequently check
the applications and thus the raison d’être of each software frame-
work.

Before we dive into the discussion of the different facets that
contribute to the development of a software framework over time,
we will briefly form the ground of this discussion by collecting
reasons and circumstances that require a software framework to
change in the first place. An important factor are ever-changing re-
strictions and limitations. Without claiming completeness, the fol-
lowing factors limit the development of a software framework.

• A given setup can only achieve a level of security according to
the weakest link in its chain. A major reason for the deprecation
of Java Applest was their security issues, in combination with a
growing desire by the users to have secure web application.
• The programming language of the software provides certain

functionalities, but also comes with constraints. For instance,
Java is easily portable between different architectures, but has
a bad performance when compared to e.g. C++.
• Portability is a factor that is also affected by the rise of new

architectures. While the scientific computing sector is currently
turning towards Python, the Java language has witnessed a read-
justment with the Android system for mobile devices.
• Performance is mostly a question of the desired use case. In

terms of Goal 1, JavaView should load fast and be extremely in-
teractive, without lags or long waiting times. These aspects are
less important, when focusing on other applications, like scien-
tific geometry processing, see Section 4.4.
• Similarly, the ease of use of a software comes with its user

base. Again, educational and interactive visualizations need to
have more accessible and intuitive graphical user interfaces than
highly professionalized software for rather specific tasks.

Evolutionary speaking, these restrictions provide niches into which
software with their respective aims and use cases can nest. Another
important factor are changes in all aspects of a software framework
that possibly affect the limitations as well as the decisions made
in these regards. For instance, over time, support for old hardware
is given up in favor of new developments. Similarly, software and
their underlying languages also evolve and wherever old aspects

vanish, new possibilities and opportunities arise. In the following,
we will discuss several such changes and possible reactions.

6.1. How to react when a main use case of an application is
put to the test?

When a software loses one of its main use cases—like the easy
web export functionality of JavaView—a thorough reorientation
is necessary to ensure that new goals and target areas are identi-
fied and focused on. At the point of deprecation of Java Applets,
the JavaView framework was a mixture of a viewer, some core
functionality, and several high-level applications/algorithms imple-
mented on the basis of the other two. A development decision based
on this status breaks down into the question: What should the main
goal of the software framework in the future be?

In case the creation of web applications is the main goal of
the framework, corresponding measures would have to be taken to
find a replacement for the deprecated Java Applet technology. Fur-
thermore, these web applications could either provide mathemat-
ical illustrations or be more complex and therefore rather mimic
the mathematical web services [JVOnl]. In a way, the CindyJS
project [vGKRS16] followed the first path and now provides a set
of mathematical illustrations via its gallery [Pro]. Regarding the
second aspect of more complex web applications, the Visualization
Toolkit (VTK) [SML04] expanded its functionality via a JS add-on,
called VTK-JS [MSL].

Regarding the JavaView framework and its components as dis-
cussed in Section 3, when Java Applets were deprecated, the devel-
opment team decided to continue work on the stand-alone version
of the software and its included algorithms. Thereby, the Mesh-
Lab software became an immediate competitor [CCC*08]. How-
ever, JavaView still has its class libraries available to those users
who would like to expand and alter the software towards their own
use cases. This gives JavaView a slight benefit over Meshlab. Con-
versely, Meshlab is implemented in C++ and thus provides better
performance compared to JavaView while still being available for
all major platforms.

This shows that when a software is confronted with loosing one
of its main use cases, it has two options. It can either make all nec-
essary changes and additions to still follow this application, like
CindyJS, or it can drop this use case and focus on remaining appli-
cation scenarios, like JavaView.

6.2. What aspects of software can be maintained by container
technology?

In the preliminary definition of “saving” software, we have deemed
container technology as an unsuitable way for saving a framework.
However, this broad view cannot be upheld when considering cer-
tain, more specialized use cases. Consider for instance a set of visu-
alization experiments that are programmed and executed as supple-
mentary data for a research article. Naturally, subsequent articles
will cite these experiments and will strive to compare them to their
own results. In this sense, it is important to provide an executable
environment for the computations, even if the underlying software
setup changes. The field of container technology aims at solving

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

64



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

exactly this problem. By using available techniques such as Docker
or VirtualBox, it is possible to provide an out-of-the-box running
environment even for outdated software. Note that this general ap-
proach of keeping experiments available and thus replicable is the
main goal of the Graphics Replicability Stamp Initiative [Mar].

In terms of JavaView, container technology will not be able
to help maintaining the framework. This still needs to be done
by active developer teams. However, a container can include a
JDK, a browser, and a Java Applet (e.g. from the online web ser-
vices [JVOnl]). If the JDK and the browser are provided in versions
that still support Java Applet technology, container can be a means
to still provide the discussed services with a comparably low ef-
fort. Such container could be made available in the relevant repos-
itories as well as via download from the official JavaView web-
site [JVWeb]. Thereby, research process is still accessible and fol-
low up works can benefit from it.

6.3. How does the choice of the programming language affect
a software framework?

The discussion in Section 2 has shown that choosing a program-
ming language for a software framework is based on the respective
goals to follow. However, what happens if the language changes
and does not provide the elements for these goals anymore? Cer-
tainly, the underlying programming language evolves and corre-
sponding problems and the necessity for adjustment will occur. Is
the translation into another language a valid option to handle these
challenges or can other features of the original language be em-
ployed to circumvent the problems?

Regarding the JavaView software framework, an obvious choice
was to leave the implementation in Java. While this circumvents
the refactoring or complete rewriting of the code, it also—given the
deprecation of Java Applets—implies that all functionality of the
framework based on Java Applets becomes inaccessible. Nonethe-
less, it is a reasonable choice, as the once popular Java3D li-
brary is no longer officially supported, which provides JavaView
with a unique characteristic in the Java domain. Within this field,
JavaView now is the only software framework to provide all rele-
vant aspects of a visualization toolkit, including viewer, core func-
tionality, and algorithms. This still comes with the benefits of the
Java language, which has a low threshold in terms of its setup such
that—in particular user with few experience—can tackle program-
ming projects faster than in e.g. C++.

Other languages—aside from Java—do have widely used
geometry frameworks available. Popular examples include the
CGAL [CGAL] framework or the open-source software Mesh-
lab [CCC*08], both implemented in C++. These large collections
provide support for viewing operations as well as core function-
ality. Therefore, they are ideal for focusing on the implementa-
tion of high-level algorithms or application and services, just like
JavaView does in the Java domain. Similarly, several 3D geometry
packages exist for more specific purposes (like the point cloud li-
brary for processing of unstructured point sets [RC11]) or within
other languages (in Python for instance the bindings for tetrahedral
meshing [HZG*18] or the packages for geometric algebra [Ker*]).

Coming back to the original roots of JavaView—interactive

web page applications—several other projects have now filled
the gap. The aforementioned CindyJS [vGKRS16] as well as
VTK JS [MSL] both rely on a larger framework in the background
and only provide a JS interface to make this background framework
accessible in the web. Other approaches, like three.js enable the
user to render 3D web applications using WebGL, thus providing
less comfort, but more flexibility. These examples show that com-
binations of different languages are possible within the domain of a
single framework and that JavaView might at some point consider
using an export into web applications, not based on Java Applets,
but possibly on one of these existing approaches.

6.4. What other basic building blocks of a software
framework are subject to change?

As indicated in the beginning of this section, several different fac-
tors and limitations contribute to the development of a software.
In particular a visualization framework has to cope with more
than changes in the programming language and related software
components—like the operating system. Other changes equally af-
fect the performance of the framework. Consider the following
three examples in the realm of the JavaView framework.

1. The wider availability of potent hardware in the user base cre-
ates the expectancy of the users that the visualization frame-
work of their choice also supports this hardware. Towards this
end, JavaView has—aside from its software rendering—added
support for OpenGL, thereby harnessing the graphics power at
the user’s machines, but still remaining platform independent as
OpenGL is available for a variety of platforms.

2. With rising graphic capabilities, the resolution of the user’s
monitors are also on an incline. To pick up this movement, re-
cent versions of JavaView come with a high DPI mode to better
scale on systems with 4k resolution.

3. Not only output devices, but also input devices develop.
Aside from traditional input via a mouse with the arcball
model [Sho92], new input devices like the Leap Motion Con-
troller allow the user to interact with the programs using
hand gestures. A corresponding support has been added to the
JavaView framework recently [SBGP19].

Missing reaction to these changes easily results in frustration on
the side of the users who then migrate to other systems that bet-
ter satisfy their demands. Therefore, each framework offers its re-
spective attractive benefits. For instance, CGAL [CGAL] provides
native multi-core support, while CindyJS [vGKRS16] offers easy,
encapsulated access to harness the computation power of the graph-
ics card.

6.5. How does a closed- or open-source policy affect the
development of a framework?

The availability of software as open-source clearly affects the num-
ber of available developers, collaborators, and users willing to in-
teract with the software. However, a closed-source software with
a loose release cycle allows for closer monitoring of the developed
functionality and can provide better quality and more homogeneous
code. Also, all project members can focus on the continued devel-
opment and no resources have to be allocated towards code reviews

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

65



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

of external collaborators. As the JavaView framework is currently
closed-source, developments and additions made by the users out-
side of the core development team are not integrated into the soft-
ware.

Other software packages in the field tend to have a policy be-
tween the two extremes of open- or closed-source. The CGAL
project [CGAL] for instance has an editorial board. Additions made
to the software have to pass the board before they are included in
the main framework. The driving force for CGAL are its industry
clients who propose and require new features to be added. This
provides a natural selection for the features that are contributed and
considered for inclusion in the new releases.

Both Meshlab [CCC*08] and CindyJS [vGKRS16] handle con-
tributions via pull requests to their respective repositories. How-
ever, when considering the contribution statistics for these frame-
works, they are still largely carried by a small number of core-
developers with the majority of the users providing minor contri-
butions. It remains debatable and dependent on the actual frame-
work whether a code review of contributed code from outside the
core developer team takes more or less time compared to the core
developers creating a solution for the same issue.

6.6. How to adjust to competitors coming into the field?

As new developments arise in a field, new niches open and new
competitors rush in to fill these. Established visualization frame-
works thus have to cope with other software coming in and com-
peting for the same user base. In the case of JavaView, several other
developments have picked up possibilities for easy web export after
the deprecation of Java Applets. For instance, three.js is a frame-
work to render 3D web applications using WebGL. Several visu-
alizations are available based on this technology. Furthermore, the
Unity framework makes it very simple to create interactive setups
that can be exported to a variety of targets, like web pages, game
consoles, or mobile applications. The commercial, scientific com-
puting software Matlab has a web export via its Simulink WebView
functionality, Cinderella projects are made available online via the
discussed CindyJS, and Python visualizations can be shared online
in the form of Jupyter Notebooks. Even more recently, the Java-
style language Processing causes a wide spread of online visual-
izations and interactive displays.

As these competitors have rushed into the field of online visual-
izations, JavaView has concentrated on its stand-alone program and
the corresponding implemented high-level geometry processing al-
gorithms (see Section 4.4). In this area, it competes with current li-
braries, like CGAL [CGAL] or libigl [JP*18]. Other libraries focus
on algorithms for specific application areas, like the Point Cloud Li-
brary which aims to process unstructured point sets [RC11]. While
these three libraries are working with C++, comparable options
are available in other languages, such as Python, cf. the aforemen-
tioned [HZG*18; Ker*]. While libraries are mainly aimed at larger
setups into which they can be integrated, the C++-based Meshlab
program provides a stand-alone setup with a user-friendly graphical
interface to process geometric models [CCC*08]. Less language-
dependent, the ParaView software offers developer support in C++,
Python, and a web version via JS [AGL05].

Given the developments in the field of visualization software,
JavaView has to continuously readjust and check its raison d’être
against the competitors. Currently, it is the only available and ac-
tively maintained visualization framework in the Java language,
which provides its unique attraction. It has successfully managed to
adapt to different situations over the course of the last 21 years and
thus sets an example by its development choices for other frame-
works facing similar challenges.

7. Conclusion

In this article, we have presented the history of the visualization
framework JavaView. Originally, the software tackled the specific
problem of interactive geometry visualizations in the internet as
one of its main applications. This feature was implemented on the
basis of Java Applets, which became deprecated in 2016. Having
lost the availability of web exports, the JavaView framework had
to reorganize and readjust itself within a market of different goals,
competitors, and user demands.

As the JavaView software has existed and been maintained for 21
years, it has several valuable lessons to tell. Much like the contem-
porary frameworks Cinderella and Cabri, JavaView moved on from
the goals it had originally set. Other software solutions filled these
gaps on the basis of more modern developments and now replace
the interactive web elements that JavaView once set out to create.
The JavaView framework lives on as a stand-alone software that
can be downloaded, installed, and run on a variety of platforms. Its
user-friendly GUI and its XML file format are still available to the
community.

The discussion of JavaView in this article is a mere case study
and rather an example for challenges that can happen to any soft-
ware framework. It shows that a visualization toolkit cannot safely
focus on a unique selling point for an arbitrary amount of time.
It must have either multiple use cases available—and be willing
to drop one, should the need arise—or react timely to changes in
its underlying architecture and its environment. These reactions
include—if necessary—the translation into or combination with an-
other language or the choice to move the whole framework into a
different application area.

A gap can as easily arise in visualization software as in any situ-
ation where environmental factors are changing. We can try to learn
from the presented examples, the historical developments, and the
decisions that have been made in order to try and bridge gaps we
are facing. Or we might come to the conclusion that—knowing the
effort it takes to adjust a software system—it is not worth preserv-
ing it and it is more beneficial to move on to other approaches.
Past developments can not take this decision from us, they can only
guide us.

Acknowledgments

The writing of this article has been supported by a Visiting Re-
searcher Scholarship of the German National Academic Founda-
tion and the Japanese RIKEN research institute. The author would
like to thank the anonymous reviewers as well as E. Zimmermann
for their helpful comments and suggestions.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

66



M. Skrodzki / How the deprecation of Java Applets affected online visualization frameworks

References
[ADP02] ANDREEVA, MV, DYNNIKOV, IA, and POLTHIER, K. “A math-

ematical webservice for recognizing the unknot”. Mathematical Soft-
ware. World Scientific, 2002, 201–207 3.

[AGL05] AHRENS, JAMES, GEVECI, BERK, and LAW, CHARLES. “Par-
aview: An end-user tool for large data visualization”. The visualization
handbook 717 (2005) 8.

[BPS*98] BRAY, TIM, PAOLI, JEAN, SPERBERG-MCQUEEN,
C. MICHAEL, et al. Extensible markup language (XML). Tech.
rep. World Wide Web Consortium W3C, 1998 2.

[Byr] BYRNE, MICHAEL. The Rise and Fall of the Java Applet: Creative
Coding’s Awkward Little Square. URL: https://www.vice.com/
en_us/article/8q8n3k/a- brief- history- of- the-
java-applet (visited on 03/09/2020) 4.

[Cab] CABRILOG. Cabrilog, supporting mathematics and science educa-
tion. URL: https://cabri.com/en (visited on 03/10/2020) 5.

[CCC*08] CIGNONI, PAOLO, CALLIERI, MARCO, CORSINI, MASSIM-
ILIANO, et al. “MeshLab: an Open-Source Mesh Processing Tool”.
Eurographics Italian Chapter Conference. Ed. by SCARANO, VIT-
TORIO, CHIARA, ROSARIO DE, and ERRA, UGO. The Eurograph-
ics Association, 2008. ISBN: 978-3-905673-68-5. DOI: 10 . 2312 /
LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136 6–8.

[CGAL] THE CGAL PROJECT. CGAL User and Reference Manual. 5.0.2.
CGAL Editorial Board, 2020. URL: https://doc.cgal.org/5.
0.2/Manual/packages.html 7, 8.

[DP03] DUGARO, STEVEN PETER and POLTHIER, KONRAD. “Visualiz-
ing Maple Plots with JavaViewLib”. Algebra, Geometry and Software
Systems. Springer, 2003, 255–275 4.

[Eva15] EVANS, BEN. “Java, the legend: past, present, and future”.
(2015) 4.

[GM95] GOSLING, JAMES and MCGILTON, HENRY. The Java language
environment. Tech. rep. Sun Microsystems Computer Company, 1995 2.

[HZG*18] HU, YIXIN, ZHOU, QINGNAN, GAO, XIFENG, et al. “Tetrahe-
dral Meshing in the Wild”. ACM Trans. Graph. 37.4 (July 2018), 60:1–
60:14. ISSN: 0730-0301. DOI: 10.1145/3197517.3201353. URL:
http://doi.acm.org/10.1145/3197517.3201353 7, 8.

[JP*18] JACOBSON, ALEC, PANOZZO, DANIELE, et al. libigl: A simple
C++ geometry processing library. https://libigl.github.io/. 2018 8.

[JP02] JOSWIG, MICHAEL and POLTHIER, KONRAD. “EG-Models—A
New Journal for Digital Geometry Models”. Multimedia Tools for Com-
municating Mathematics. Springer, 2002, 165–190 4, 5.

[JVApp] THE JAVAVIEW PROJECT. Real-World Applications of JavaView.
URL: http://www.javaview.de/applications/ (visited on
03/09/2020) 4.

[JVDoc] THE JAVAVIEW PROJECT. User’s Documentation. URL: http:
/ / www . javaview . de / doc / index . html (visited on
04/18/2020) 3.

[JVOnl] THE JAVAVIEW PROJECT. Mathematical Online Web-Services.
URL: http : / / javaview . de / services/ (visited on
03/09/2020) 3–7.

[JVWeb] THE JAVAVIEW PROJECT. JavaView – Interactive 3D Geometry
and Visualization. URL: http://www.javaview.de (visited on
03/09/2020) 1, 3, 7.

[JVX] THE JAVAVIEW PROJECT. JavaView JVX File Format. URL:
http://www.javaview.de/doc/userManual/formats/
Format_Jvx.html (visited on 03/09/2020) 2.

[Ker*] KERN, ROBERT et al. clifford: Geometric Algebra for Python. URL:
https://clifford.readthedocs.io/en/latest/index.
html (visited on 04/14/2020) 7, 8.

[Kor] KORTENKAMP, ULRICH. Cinderella. URL: http : / /
cinderella.de/tiki-switch_lang.php?language=en
(visited on 03/10/2020) 5.

[KR02] KORTENKAMP, ULRICH and RICHTER-GEBERT, JÜRGEN. “The
interactive geometry software Cinderella”. Mathematical Software: Pro-
ceedings of the First International Congress of Mathematical Software:
Beijing, China, 17-19 August 2002. Vol. 1. World Scientific. 2002, 208 2.

[Kun02] KUNTZ, GILLES. “Dynamic geometry on WWW”. Multimedia
Tools for Communicating Mathematics. Springer, 2002, 221–229 2.

[Map] MAPLESOFT. JavaView (.jvx) File Format. URL: https://www.
maplesoft.com/support/help/Maple/view.aspx?path=
Formats%2FJVX (visited on 03/09/2020) 2.

[Mar] MARCO ATTENE AND OTHERS. Graphics Replicability Stamp Ini-
tiative. URL: http://www.replicabilitystamp.org/ (visited
on 04/24/2020) 7.

[MP04] MAJEWSKI, MIREK and POLTHIER, KONRAD. “Using MuPAD
and JavaView to visualize mathematics on the internet”. Proc. 9th Asian
Technology Conf in Mathematics. 2004, 465–474 3, 4.

[MSL] MARTIN, KEN, SCHROEDER, WILL, and LORENSEN, BILL. Visu-
alize Your Data With vtk.js. URL: https://kitware.github.io/
vtk-js/ (visited on 04/18/2020) 6, 7.

[Ora] ORACLE. JDK 11 Release Notes. URL: https://www.oracle.
com/technetwork/java/javase/11-relnote-issues-
5012449.html (visited on 03/09/2020) 4.

[PKPR02] POLTHIER, KONRAD, KHADEM, SAMY, PREUSS, EIKE, and
REITEBUCH, ULRICH. “Publication of interactive visualizations with
Java View”. Multimedia tools for communicating mathematics. Springer,
2002, 241–264 2–4.

[Pol00] POLTHIER, KONRAD. Mathematical visualization and online ex-
periments. Tech. rep. SCAN-0007285, 2000 2, 3.

[Pro] PROJECT, CINDYJS. Cindy JS Gallery. URL: https : / /
cindyjs.org/gallery/main/ (visited on 03/10/2020) 5, 6.

[RC11] RUSU, RADU BOGDAN and COUSINS, STEVE. “3D is here: Point
Cloud Library (PCL)”. IEEE International Conference on Robotics and
Automation (ICRA). Shanghai, China, May 2011 7, 8.

[SBGP19] SKRODZKI, MARTIN, BATH, ULRIKE, GUO, KEVIN, and
POLTHIER, KONRAD. “A leap forward: a user study on gestural geome-
try exploration”. Journal of Mathematics and the Arts 13.4 (2019), 369–
382. DOI: 10.1080/17513472.2019.1667209. eprint: https:
/ / doi . org / 10 . 1080 / 17513472 . 2019 . 1667209. URL:
https://doi.org/10.1080/17513472.2019.1667209 7.

[Sho92] SHOEMAKE, KEN. “ARCBALL: a user interface for specify-
ing three-dimensional orientation using a mouse”. Graphics interface.
Vol. 92. 1992, 151–156 3, 7.

[SML04] SCHROEDER, WILL, MARTIN, KEN, and LORENSEN, BILL.
The visualization toolkit: an object-oriented approach to 3D graphics.
Kitware, 2004 6.

[Tit] TITOV, DANIIL. JEP 289: Deprecate the Applet API. URL: https:
//openjdk.java.net/jeps/289 (visited on 03/09/2020) 4.

[vGKRS16] Von GAGERN, MARTIN, KORTENKAMP, ULRICH,
RICHTER-GEBERT, JÜRGEN, and STROBEL, MICHAEL. “CindyJS”.
International Congress on Mathematical Software. Springer. 2016, 319–
326. URL: https://cindyjs.org/ 5–8.

[XMLVal] THE JAVAVIEW PROJECT. XML Validator – A Document Vali-
dation Service. URL: http://www.javaview.de/validator/
index.html (visited on 04/18/2020) 2.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

67

https://www.vice.com/en_us/article/8q8n3k/a-brief-history-of-the-java-applet
https://www.vice.com/en_us/article/8q8n3k/a-brief-history-of-the-java-applet
https://www.vice.com/en_us/article/8q8n3k/a-brief-history-of-the-java-applet
https://cabri.com/en
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doc.cgal.org/5.0.2/Manual/packages.html
https://doc.cgal.org/5.0.2/Manual/packages.html
https://doi.org/10.1145/3197517.3201353
http://doi.acm.org/10.1145/3197517.3201353
http://www.javaview.de/applications/
http://www.javaview.de/doc/index.html
http://www.javaview.de/doc/index.html
http://javaview.de/services/
http://www.javaview.de
http://www.javaview.de/doc/userManual/formats/Format_Jvx.html
http://www.javaview.de/doc/userManual/formats/Format_Jvx.html
https://clifford.readthedocs.io/en/latest/index.html
https://clifford.readthedocs.io/en/latest/index.html
http://cinderella.de/tiki-switch_lang.php?language=en
http://cinderella.de/tiki-switch_lang.php?language=en
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Formats%2FJVX
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Formats%2FJVX
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Formats%2FJVX
http://www.replicabilitystamp.org/
https://kitware.github.io/vtk-js/
https://kitware.github.io/vtk-js/
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html
https://cindyjs.org/gallery/main/
https://cindyjs.org/gallery/main/
https://doi.org/10.1080/17513472.2019.1667209
https://doi.org/10.1080/17513472.2019.1667209
https://doi.org/10.1080/17513472.2019.1667209
https://doi.org/10.1080/17513472.2019.1667209
https://openjdk.java.net/jeps/289
https://openjdk.java.net/jeps/289
https://cindyjs.org/
http://www.javaview.de/validator/index.html
http://www.javaview.de/validator/index.html



