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1. Circular heatmap tool

Quality metrics, such as PSNR or SSIM, represent specific global
aspects of the images. However, for navigation applications, per-
ceived topological accuracy is considerably more important than
precision. This perceived accuracy cannot be easily captured in
metrics [RHM∗11]. Therefore, we also evaluate the effects of the
experimental parameters on the visual quality of the 2D projec-
tions guided by image quality metrics. An interactive tool was de-
veloped to evaluate quality based on the camera positions with
interactive circular heatmaps. Our openly available tool is avail-
able at https://nerfforangiography.netlify.app/
and shown in Figure 1. The explanation of the circular heatmap is
provided in Section 5.2 of the main paper. The circular heatmap 1⃝
contains regions where each region represents one spherical cam-
era position. Camera positions are sampled for every 10◦ of the
sphere, independently from the number of camera positions used
for reconstruction. The regions of the heatmap are colored based
on the user-defined quality metric score of the respective 2D pre-
dicted projections. For example, in the figure, the heatmap is col-
ored based on the SSIM metric. This visual inspection overcomes
the limitations of the individual metric scores, as users can identify
the visual differences relevant to them. Hovering over the regions
displays the ground-truth, predicted, and difference images for the
camera position (θ,φ), indicated with 2⃝. The difference image is
computed as the absolute pixel-wise difference between the ground
truth and the predicted image. To analyze the parameter-dependent
trends, the settings represent the different parameters of the exper-
iments, shown at 3⃝. These settings include limited angle projec-
tions, number of sparse projections, low or high vessel sparsity,
and binary or background imaging. The orientation parameters of
the sphere can also be varied.

2. Projection experiments results

Figure 2 shows the Dice scores and LPIPS score for the projections
experiment. Note that the y-axis is scaled differently for some of
the metrics to make the differences between the lines more visible.
The other metric scores for this experiment are reported in Figure 4
of the main paper.

Figure 1: The interactive circular heatmap tool. 1⃝ the circular
heatmap component, where one region is selected. 2⃝ the angles
and difference predicted and the ground-truth image of the selected
region. 3⃝ the parameter option settings.

3. Vessel sparsity experiments

Table 1 displays the table of sparse and limited angle projections
for the high-sparsity dataset. It supports the trend that is shown in
Figure 6 of the main paper.
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Table 1: Heatmaps for the high-sparsity dataset. The rows of the
tables represent the sparse projections and the columns the limited
angle projections.
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Figure 2: Relation between limited angle and sparse projections and
specified metric scores for the Projections experiment. Limited an-
gle projections in Dice 2D (a), Dice 3D (c), and LPIPS (e). Sparse
projections in Dice 2D (b), Dice 3D (d) and LPIPS (f).

4. Sampling for low-sparsity and high-sparsity datasets results

Figure 3 shows the effects of the Frangi, segmentation and random
sampling approaches on the low-sparsity dataset. Only the angular
ranges below 30◦ are reported, as the vessel sparsity experiment
(see Section 6.2 main paper) proved that larger angular ranges al-
ready provide mostly optimal performance for both datasets. As
can be seen, no significant differences are there between the ap-
proaches, in contrast to the high-sparsity as shown in Figure 10 of
the original paper. The Frangi and segmentation methods slightly
outperform the random sampling approach. The average training
time for the low-sparsity dataset is 52, 50, and 65 minutes for the
Frangi, segmentation, and random sampling approaches, respec-
tively. Overall, we can conclude that Frangi sampling can bene-
fit the reconstruction of the low-sparsity dataset slightly, as it de-
creases the rendering time slightly, while maintaining quality.

The average rendering time per experiment for the high-sparsity
dataset is 47, 46, and 54 minutes for the Frangi, segmentation, and
random sampling approaches, respectively. In this case, we can
conclude that the sampling approaches do not significantly influ-
ence the rendering time. Especially in the binary case, we rather
expect the empty space skipping of NeRFAcc to be crucial for
the rendering time. Figure 4 shows the qualitative examples for
the Frangi and Random sampling approaches for the high-sparsity
dataset. The setting is 4 sparse projections and 15◦ limited projec-
tions. It can be observed that the random sampling approach leads
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Figure 3: Relation between limited angle projections and SSIM for
(a) Frangi, (b) segmentation, and (c) random sampling approaches
for the low-sparsity dataset.

to a more accurate topological reconstruction, whereas the Frangi
approach leads to more noise in the empty space.

5. Model architecture for vessel sparsity

This section discusses the exploration of different model architec-
tures.

5.1. Parameter description

The decision of the architecture of the MLP for NeRF can con-
tribute largely to the reconstruction quality and time [MESK22].
This parameter explores the impact of architecture design on these
two factors. A practical example is the trade-off between quality
and time when reconstructing vascular morphologies with sparse
vessels, as not all vessels may be of interest in clinical applications,
such as navigation. For example, major vessels may be of higher
importance than smaller vessels for coronary angiography [CC00].
Three types of architectures are defined. The first architecture is
the default architecture with 4 layers and 128 hidden units, which is
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Figure 4: Heatmaps for the high-sparsity vessel morphology for
sparse 4 and limited 15◦ for the Frangi (a) and random (b) sampling
techniques.
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commonly used across different applications for NeRFs [MST∗21].
To identify whether the width of the architecture can improve re-
construction time, we also define the lower-width architecture with
4 layers and 64 hidden units. Following the previous works, we ex-
pect this network with lower width to provide lower-quality results
with a slight decrease in computation time. Lastly, we inspect a
lower-depth architecture with 2 layers and 128 hidden units. Sim-
ilarly to the width architecture, this less deep architecture will im-
prove computation time. In contrast, we only expect a small de-
crease in quality with respect to the default architecture. Generally,
it is in our interest to analyze these different architectures to iden-
tify possible acceleration approaches, as well as their effect on re-
construction quality.

5.2. Results

We analyze the size of the MLP architecture with respect to the
quality of the reconstructions, both for the low and high-sparsity
datasets. A lower width architecture (2 layers and 64 neurons), de-
fault architecture (4 layers and 128 neurons), and lower depth ar-
chitecture (2 layers and 128 neurons) are optimized for both sparse
and limited projection settings.

(a) Low sparsity

(b) High sparsity

Figure 5: Relation between sparse projections and specified met-
ric scores for the Model architecture experiment. The metrics are
computed based on the average score of the 2D projections.

The metric scores in relation to the sparse projections for the

low- and high-sparsity datasets are shown in Figure 5. The scores
are averaged for the different limited projection parameters. For
the low-sparsity dataset (Figure 5a), it can be observed that the de-
crease in width or depth of the architecture does not majorly affect
performance. This may indicate that the simple vessel structures,
such as the major vessels in the low-sparsity dataset, can still be
learned by smaller architectures. The architecture size for the high-
sparsity structure does impact the reconstruction quality, as can be
seen in Figure 5b. Once more, a decrease in width or depth shows
similar decreases in performance. One qualitative case for sparse
projections 49 and 180◦, reported in Figure 6, shows that, indeed,
the smaller vessels of the structures are not reconstructed with the
smaller architectures. It also shows that the lower-width architec-
ture (see Figure 6b) leads to more noise in space than the lower-
depth architecture (see Figure 6c) even though their performance
scores are similar. This case may indicate that width indeed has a
larger effect than depth on reconstruction quality as known from lit-
erature [MESK22]. Overall, we can report that, for high-precision
applications, larger MLP architectures may be preferred for the re-
construction of sparse vessels or precise details. However, for vi-
sualization applications, smaller architectures may be preferred to
decrease rendering time.

(a) Default architecture (b) Lower-width architecture

(c) Lower-depth architecture

Figure 6: Comparison of reconstructions of high-sparsity dataset
with different architectures sizes.
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