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Abstract

We propose PACO, a visual analytics framework to support the prediction, analysis, and communication of COVID-19 hospi-
talization outcomes. Although several real-world data sets about COVID-19 are openly available, most of the current research
focuses on the detection of the disease. Until now, no previous work exists on combining insights from medical image data with
knowledge extracted from clinical data, predicting the likelihood of an intensive care unit (ICU) visit, ventilation, or decease.
Moreover, available literature has not yet focused on communicating such results to the broader society. To support the predic-
tion, analysis and communication of the outcomes of COVID-19 hospitalizations on the basis of a publicly available data set
comprising both electronic health data and medical image data [SSP*21], we conduct the following three steps: (1) automated
segmentation of the available X-ray images and processing of clinical data, (2) development of a model for the prediction of
disease outcomes and a comparison to state-of-the-art prediction scores for both data sources, i.e., medical images and clin-
ical data, and (3) the communication of outcomes to two different groups (i.e., clinical experts and the general population)
through interactive dashboards. Preliminary results indicate that the prediction, analysis and communication of hospitalization
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outcomes is a significant topic in the context of COVID-19 prevention.
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1. Introduction

COVID-19 is a respiratory disease that turned into a pandemic in
2020. While the main danger of the disease is the actual illness, it
has also fueled social disruption through fake news and alternative
facts—hindering strategies to combat the pandemic’s spread. This
could have been mitigated through a more offensive information
strategy in highly trusted media, and it seems increasingly impor-
tant to communicate novel COVID-19-related insights gained by
scientific institutions to the general population in an understand-
able manner [FDEO20].

Several real-world data sets about COVID-19 are openly avail-
able. With the disease affecting the lungs, data sets often comprise
solely chest X-rays or inherit other medical images, such as com-
puted tomography (CT) scans, and/or clinical data from electronic
health records. This vast information can be used to train models
for disease detection [ZCH*20, LHL*20] or for the prediction of
high-risk patients [ZCH*20]. Until now, no work exists on combin-
ing insights from medical images with knowledge extracted from
clinical data for COVID-19, predicting the likelihood of an inten-
sive care unit (ICU) visit, ventilation, or decease. Moreover, avail-
able literature has not focused on communicating such results to
the broader society—especially, laypeople.

Although the prediction of the status of a patient infected by
COVID-19 could be simply evaluated quantitatively using retro-
spective data, the communication of the prediction outcomes re-
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quires an additional visual presentation of the insights to the tar-
get users. Visual analytics offers a welcoming opportunity for
providing significant support through visuals that communicate
information—helping clinical experts to save time and resources,
while also facilitating the understanding of prediction models, and
providing risk communication tools for the general population.

The contribution of this work is a visual analytics framework
that supports the prediction, analysis and communication of the
outcomes of COVID-19 hospitalizations on the basis of a publicly
available data set [SSP*21]. The main components of our frame-
work include the analysis and prediction of hospitalization out-
comes using electronic health data and medical image data, and
the communication of the outcome prediction for two different user
groups (namely, clinical experts and the general population).

2. Related Work

Applications for the communication of the status of patients have
been proposed already numerous times, and is a very active field of
research. Examples include previous work providing decision mak-
ing support and patient cohort exploration. Recent work by Fur-
manovd et al. addresses the exploration, analysis, and prediction of
pelvic organ variability to support decision making with regard to
tumor treatment [FMCM*21]. Floricel et al. went one step further,
developing an environment for visual analysis and knowledge dis-
covery for longitudinal cancer therapy symptom data [FNB*21]. In
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a different application, Bernold et al. proposed a dashboard target-
ing predictive analytics on the basis of in-patient rehabilitation data
from a large cohort of 46,000 patients [BMGR19]. Through the
pandemic, a lot of research has been shifted towards developing
applications with communication purposes in mind, focusing on
COVID-19 detection using medical images [ZR21] or electronic
health data records [ZCH*20]. Furthermore, medical biomarkers
have been defined in multiple publications regarding COVID-19
disease progression [PMR*20] along the typical biomarkers anal-
ysis in cancer research [ZVA*20]. To the best of our knowledge,
there is no previous work that combines multiple COVID-19 hos-
pitalization data sources, while communicating insights through in-
teractive dashboards to different target groups.

3. Data - Users — Tasks Analysis

B Data: We employ the Stony Brook University COVID-19 Posi-
tive Cases Data set [SSP*21], which includes a variety of medical
information in form of tabular data at a per-patient level (in total
131 features for electronic health records, including information
on demographics, pre-existing conditions, and results from medi-
cal tests during the hospital stay, such as blood oxygen tests). Pa-
tients included in the data set (N = 1384) were all hospitalized and
tested positive using a polymerase chain reaction (PCR) test for
COVID-19. The data set contains missing values, which need to
be dealt with, e.g., with imputation methods. Additionally, the data
set contains chest X-ray images without segmentation masks of the
lungs or other structures. Multiple images may be available for a
patient and are often available per day, and in most cases, at least
two different contrast settings have been used. After cleaning up
the data, a final number of N = 1279 patients and 4728 X-ray im-
ages is included. Among these patients, 174 (13.6%) are deceased,
257 (20.1%) have been admitted to ICU, and 213 (16.7%) were
ventilated during their hospitalization stay.

Bl Users: We separate the general population into two categories:

(U1) Medical experts and clinicians, who are interested in de-
cision making support for the treatment of upcoming hospitalized
patients. This includes comparing and filtering for similar patients
based on electronic records and preconditions, which could also be
used for prediction or risk perception dialogues in individual pa-
tient treatments.

(U2) General population, i.e., lay users without specific back-
grounds in medicine or data analytics. Insights can be communi-
cated to this group, with the purpose of increasing risk perception
and better support of health-related measures. Here, the biggest
challenge is the varying level of visualization literacy of the users.

B Tasks: We support the users in accomplishing these three tasks:

(T1) Automated segmentation requires the segmentation of X-ray
images, feature extraction thereof, and correlation with radiomic
features to support the identification of potential biomarkers. This
task requires also the processing of the clinical data.

(T2) Prediction of disease outcomes requires the prediction of
disease outcomes and a comparison to state-of-the-art prediction
scores for both data sources, i.e., medical images and clinical data.

(T3) Outcomes communication indicates that the prediction of

disease outcomes needs to be communicated to the aforementioned
users through an interactive interface. Each group focuses on dif-
ferent aspects of the information space to discover new knowledge.

4. Predicting, Analyzing and Communicating Outcomes of
COVID-19 Hospitalizations with PACO

We designed and developed PACO, a visual analytics dashboard to
support the Prediction, Analysis and Communication of COVID-
19 hospitalization Outcomes. The workflow of PACO is depicted
in Figure 1. PACO is developed in Python, using PyTorch, scikit-
learn and imbalanced-learn. For the medical images, we used py-
dicom, scikit-image and PyRadiomics. For the front-end develop-
ment, Streamlit was used together with Plotly. The implementation
is made available on GitHub.

B Automated Segmentation and Clinical Data Processing:

Lung segmentation from X-rays: To train a lung segmentation
network from publicly available masked X-ray images, we focus
on investigating previously proposed architectures [1Z18,1S18]. Is-
lam et al. [IZ18] make use of openly available data sets (Mont-
gomery County and Shenzen Lung data) to train a Unet network
specialized for lung segmentation. TernausNet (VGG11 Unet) has
been widely used for lung segmentation [IS18] as an improvement
to the traditional Unet, by generating better features and boosting
its performance. It can be initialized with a pre-trained network in
a warm-start scenario, and the authors showed promising results
when using the model pre-trained on ImageNet.

In all previously investigated approaches, the medical images
differ from the ones in our data set, as ours are less contrasted
and with heavy artifacts caused by cables or the positioning of the
patient. To make our data set more compatible with the training
data, preprocessing is applied, in the form of a Gaussian blur filter
followed by an adaptive histogram equalization. Subsequently, we
train five models shown in Table 1. Given that our data set is less
clean than the training, we add additional rotational data augmen-
tation during the training phase to make the model more robust.
In addition, random cropping, zooming, and shifting are applied to
the data during training to increase variance. We also opt for test-
ing both AdamW optimizer and Adam, as the former tends to yield
better training loss and generalizes much better than the latter.

To form a well-founded decision about the model despite the
lack of ground truth, a quantitative assessment is designed based on
previous work on reverse classification accuracy by Valindria et al.
[VLB*17]. While the reverse accuracy is based on a model trained
on only one sample that is presented to an online-segmentation
system, the data available in this work allows for the creation of
many reference segmentations to train a new model. Using parts
of the original training data sets (Montgomery County and Shen-
zen Lung data) with ground truth available as a validation set, the
usage of standard metrics like Dice and Jaccard is enabled again.
Figure 2 schematically depicts our evaluation process, which re-
sults in Model A from Table 1 (TernausNet with Adam Optimizer)
being the preferred model for the segmentation, with a loss of
0.090540.0560, Jaccard Index of 0.8858 + 0.0570, and Dice Co-
efficient of 0.9384 + 0.0342.

Radiomic feature extraction: In the next step, PyRadiomics is
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Figure 1: The workflow of PACO for predicting, analyzing and communicating outcomes of COVID-19 hospitalizations with medical images
and clinical data, including a link to the main tasks: (T1) Automated segmentation, (T2) Prediction and (T3) Outcomes communication.

Name Design Rotation | Optmizer | Early stop
Model A | TernausNet None Adam None
Model B | TernausNet +30 AdamW 10%
Model C | TernausNet +30 Adam 10%
Model D | TernausNet +25 Adam 20%
Model E UNet +25 Adam 20%

Table 1: Deep learning models [IS18, IZ18] trained on Mont-
gomery County and Shenzen Lung data.

Figure 2: Model evaluation strategy without ground truth, inspired
by Valindria et al. [VLB*17].

used to extract radiomic features from the chest X-rays and their
respective segmentation masks. This can provide important infor-
mation regarding potential biomarkers [PMR*20]. First, the lung
masks are cleaned, removing additional wrongly segmented areas,
based on the two biggest contours as generated by contour de-
tection on binarized gray scale masks. Then, the remaining area
is separated into left and right lung using positional information.
Radiomic feature extraction with stacked features for all feature
classes leads to a total of 204 features, with 102 for each lung.

Clinical data cleaning: To prepare the clinical data, we initially
transform them to a desired form. For example, we transform the
variable that represents the outcome of the hospitalization from a
string format to a numerical, leading to eight target variables that
define our multi-label classification setting. Additionally, duplicate
and redundant variables are removed (e.g., Body Mass Index > 35
boolean fields were removed, if also present as numeric values).
Then, one-hot encoding is applied to some features, where we con-
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vert each categorical value into a numerical one and assign a bi-
nary value of O or 1 to it. For example, smoking status would be
0 if the patient does not smoke and 1, otherwise. Also, targets and
data columns that could implicitly indicate the outcome of any of
the target variables (e.g., number of ventilation days imply that a
patient was ventilated) are removed. Finally, we scale the remain-
ing numerical variables by removing the mean and scaling to unit
variance. To address data missingness, we have applied and com-
pared different imputation strategies (mean, median, regression, k-
nearest neighbor imputation) [VB18]. After a thorough quantitative
assessment using a leave-one-out method on complete data, where
we computed the Silhouette Score and the Calinski Harabasz (CH)
criterion, and an additional qualitative comparison of the resulting
distribution plots, kNN imputation with k = 5 is chosen as the best
fit. After imputation, the clinical data together with the radiomic
features are scaled to account for changes in the data distribution.
This results into a 284-dimensional feature vector, where the 204
are the radiomic features of the previous section and the remaining
80 are clinical features.

Clinical feature engineering: Generating predictions requires as
the first step to cluster patient records into semantically reasonable
groups depending on their hospitalization outcomes and their gen-
eral clinical state, as denoted by the available clinical data. Each
patient is described with 284 features, i.e., 204 radiomic and 80
clinical. To work with this high-dimensional space, prior to clus-
tering, we need to apply dimensionality reduction, namely t-SNE
[VAMHO8]. For the clustering, we applied and compared the ef-
fect of different clustering methods (k-means, DBSCAN and Ward
hierarchical clustering) [RMO05] using the Silhouette Score and the
CH criterion against the ground truth outcomes (i.e., deceased, ICU
admission, ventilated, and hospitalized). A quantitative evaluation
of the different alternatives suggests that the most robust option is
yielded when employing k-means with k = 4, returning 4 clusters.

After analyzing the characteristics of the four resulting clusters,
we summarize them as follows: Cluster I comprises healthy young
to middle-aged patients, unlikely to have preconditions, with the
lowest decease rate and the shortest hospital stay on average, low
ventilation rate, and mainly women. Cluster 2 contains less healthy
young to middle-aged patients, unlikely to have preconditions, with
large hospital stays, high chance of ICU admission and ventilation,
and mainly men. Cluster 3 consists of elderly people with high risk,
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likely to have preconditions such as diabetes, heart issues or malig-
nancies, with the lowest BMI and the lowest rate of never-smokers,
and the highest (and fastest) decease rate. Cluster 4 includes high-
risk patients with pre-existing conditions from all age groups, who
have a long and severe hospital stay and were mostly admitted to
ICU, ventilated, and deceased.

H Prediction of Disease Outcomes: The data set inherits multiple
variables that could be chosen as prediction targets. In this work,
we choose the outcome of the disease as: deceased, dismissed from
the hospital, ventilated during the hospital stay, and admitted to the
ICU. These can be defined as separate binary classification cases,
which would lead to several representation issues for the dashboard
and the users, as separate classifiers would lead to independent pre-
dictions. To avoid this, we combine the classes into a multi-class
classification setting. This reduces complexity and enables commu-
nication of results in form of natural probabilities for an outcome
to the potential users for the dashboard. Yet, this introduces several
other problems like class imbalances, for which different strate-
gies are adopted—namely, using balanced weights where applica-
ble, random oversampling, random undersampling, and Synthetic
Minority Oversampling Technique (SMOTE) [BSGRO03].

The data are split into 70% train and 30% validation and are not
imputed prior to splitting to avoid information leakage. Training
data are used within 8-fold cross-validation, as stratified folding is
limited to the lowest number of records for minority classes, which
was 8. For each fold, the clean data are used to train five classi-
fiers: Random Forest (n = 10, max_depth = 5), Logistic Regres-
sion (max_iter = 250), Support Vector Machine (SVM), XGBoost,
and Multi-layer Perceptron (MLP, max_iter = 500, Ir = adaptive).
Subsequently, we assess which approach yields the most satisfac-
tory results. We reuse metrics proposed by other works to be able to
compare our results directly [ZCH*20,LHL*20]. In addition to ac-
curacy, recall and ROC-AUC (one vs. one), we quantify balanced
accuracy. Accuracy is a non-optimal metric for imbalanced data
sets, not taking class weights into account and thus tending to pro-
vide too optimistic results for classifiers that are biased towards the
majority class. Balanced accuracy takes this into account. The best
classifier overall is SVM with balanced class weights, as it has the
highest ROC-AUC tied with XGBoost. SVM is superior though
in balanced-accuracy and has a lower standard deviation over the
training folds. SVM is trained again with k-fold cross-validation to
tune for optimal hyper-parameters. The best ROC-AUC was found
for C = 25 with a linear kernel and seed 0, with a ROC of 0.795 +
0.063 on the training set and 0.78 on the validation set.

B Outcomes Communication: Medical experts need to focus on
the prediction of the disease progression based on the available
data, while the general population would care for “what-if” sce-
narios applied to personal or familial data. For example, the for-
mer would look into potential outcomes of a new incoming patient,
while the latter would use it to find out how their general health
status might influence (or not) the likelihood of hospitalization. The
medical tasks require overview strategies into the multivariate elec-
tronic health data and medical images, while for the general pop-
ulation, the data should not be presented in its raw form to avoid
overwhelming views. Interaction possibilities are needed by all tar-
get groups to enable selection and filtering.
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Figure 3: Dashboards of PACO for the two user groups.

For medical experts and clinicians (U1): The entire segmentation
and prediction part of the pipeline is conducted in the background,
and only the results can be accessed by the medical expert or clin-
ician. The user starts by deciding the type of patients to include
in the analysis (Figure 3 (a,A)). Then, filtering and querying can
be performed (Figure 3 (a,B)), where specific patient characteris-
tics, such as gender, can be included. Subsequently, we provide an
overview of the entire cohort on a scatterplot that represents the
days of hospitalization vs. the number of X-rays acquired per pa-
tient. An additional colorcoding of the data points represents the
eight hospitalization outcome classes (Figure 3 (a,C)). Here, the
clustering outcomes (see four clusters above) are not communi-
cated to the user, and the eight types of patients are determined
from the past cohort (e.g., deceased, or ICU, or ICU+ventilated).
To obtain more details on demand, patients can be selected in the
scatterplot (Figure 3 (a,C)) or manually (Figure 3 (a,D)), and their
medical images will be shown (Figure 3 (a,E)). Specific timepoints
of the hospitalization can be filtered (Figure 3 (a,F)), while the pre-
dicted segmentations can be overimposed on the X-rays ((Figure
3 (a,G)). The user can further load images of a new patient to pre-
dict the hospitalization outcome, based on similar past patients.

For the general population (U2): The dashboard for the general
population is simplified, as—to support all visualization literacy
levels—we provide all information textually or using infographics.
The users can select which of the two ways they prefer (Figure
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3 (b,A)). If the users choose infographics, a legend with schematic
depictions of the potential underlying conditions is shown to them
(Figure 3 (b,B)). Subsequently, the four groups of patients, as re-
sulting from the clustering step, are also communicated (Figure
3 (b,C)). Here, we prefer to use the clustering outcome, as these
groups are more descriptive than the raw data classes. Additional
information for each group is visually abstracted and communi-
cated to the user, including demographics, smoking habits, and pre-
conditions. Here, glyphs are employed (e.g., for genders denoted
as d and @), while for the preconditions we use Focus+Context,
to indicate which are encountered (e.g., group 1 has no precondi-
tion, as all are greyed out, while group 2 has diabetes). Finally, we
use a scatterplot-like representation, where data points are placed
on a grid and color coded depending on whether they were hospi-
talized, deceased, ventilated, or in the ICU (Figure 3 (b,D)). This
is accompanied by an additional textual description at the bottom
of the dashboard. In all cases, juxtaposition of the groups is pre-
ferred to show all cases comparatively. The users can further input
personal information (e.g., age, smoking status, preconditions) to
predict a personalized hospitalization outcome. Using medical im-
ages, if available, as the input is also supported. Here, the user will
additionally obtain a summary of top five most similar patients.

5. Evaluation

We conducted an initial user study with members from the general
population (N = 6, 3 male, mean age 29), and two fictional pa-
tient cases were prepared to validate the dashboard design for user
group U2. For example, one case was: Till is 28 years old and has
diabetes. He is a current smoker and not very sporty. In which risk
group would you assign him? What would be his outcome predic-
tion if he was hospitalized for COVID-19? Before conducting the
cases, the users had time to get familiar with PACO and to ask ques-
tions. All participants were able to solve the two cases correctly and
to assign the patients to the correct groups. Using the patient’s—
or even personal—data as input for the prediction was also suffi-
ciently conducted and interpreted. One of the two cases included a
patient precondition (i.e., coronary artery disease), which was mis-
interpreted by some participants and led them to not entirely accu-
rate results. All interviewees positively outlined the possibilities of
using their own data and interacting with the dashboard. Four men-
tioned that the infographic was aesthetically pleasing, intuitive, and
easy to understand. The other two found it confusing or commented
that it required more attention. As a solution, we also provided tex-
tual feedback, but this was only used by one participant. Three in-
terviewees wished for a more granular differentiation between the
age groups. Two interviewees would have found it helpful to have
information about the patients’ fitness, and one suggested including
vaccination information to educate skepticals.

6. Conclusions and Future Work

In this work, we proposed PACO, a dashboard to support the pre-
diction, analysis and communication of COVID-19 hospitalization
outcomes to two user groups. In our future work we would like to
integrate vaccination data in the prediction model, which could be
further reworked to predict other variables, such as the length of
stay. Finally, we would like to extend the evaluation to both groups
to obtain insights into PACO’s practical usefulness.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

References

[BMGR19] BERNOLD G., MATKOVIC K., GROLLER M. E., RAIDOU
R.: preha: Establishing precision rehabilitation with visual analytics. In
Eurographics Workshop on Visual Computing for Biology and Medicine
(2019) (2019), pp. 79-89. 2

[BSGR0O3] BARANDELA R., SANCHEZ J. S., GARCIA V., RANGEL E.:
Strategies for learning in class imbalance problems. Pattern Recognition
36, 3 (2003), 849-851. 4

[FDEO20] FRENCH J., DESHPANDE S., EVANS W., OBREGON R.: Key
Guidelines in Developing a Pre-Emptive COVID-19 Vaccination Uptake
Promotion Strategy. International Journal of Environmental Research
and Public Health 17, 16 (2020). 1

[FMCM*21] FURMANOVA K., MUREN L. P., CASARES-MAGAZ O.,
MOISEENKO V., EINCK J. P., PILSKOG S., RAIDOU R. G.: PREVIS:
Predictive visual analytics of anatomical variability for radiotherapy de-
cision support. Computers & Graphics 97 (2021), 126-138. 1

[FNB*21] FLORICEL C., Nipu N., BIGGS M., WENTZEL A.,
CANAHUATE G., DUK L. V., MOHAMED A., FULLER C., MARAI
G. E.: THALIS: Human-Machine Analysis of Longitudinal Symptoms
in Cancer Therapy. IEEE Transactions on Visualization and Computer
Graphics 28, 1 (2021), 151-161. 1

[IS18] IGLOVIKOV V., SHVETS A.: TernausNet: U-Net with VGGI11
Encoder Pre-Trained on ImageNet for Image Segmentation. ArXiv e-
prints (2018). arXiv:1801.05746. 2,3

[IZ18] ISLAM J., ZHANG Y.: Towards robust lung segmentation in
chest radiographs with deep learning. arXiv preprint arXiv:1811.12638
(2018). 2,3

[LHL*20] L1Y., HOROWITZ M. A.,L1UJ., LAN H., L1U Q., SHA D.,
YANG C.: Individual-level fatality prediction of COVID-19 patients us-
ing Al methods. Frontiers in Public Health 8 (2020), 566. 1, 4

[PMR*20] PONTI G., MACCAFERRI M., RUINI C., TOMASI A.,
OZzBEN T.: Biomarkers associated with COVID-19 disease progression.
Critical reviews in clinical laboratory sciences 57, 6 (2020), 389-399.
2,3

[RMO5] ROKACH L., MAIMON O.: Clustering methods. In Data mining
and knowledge discovery handbook. Springer, 2005, pp. 321-352. 3

[SSP*21] SALTZ J., SALTZ M., PRASANNA P., MOFFITT R., HAJA-
GOS J., BREMER E., BALSAMO J., KURC T.: Stony Brook University
COVID-19 Positive Cases (COVID-19-NY-SBU). The Cancer Imag-
ing Archive, 2021. URL: https://doi.org/10.7937/TCIA.
BBAG-2923. 1,2

[VB18] VAN BUUREN S.: Flexible imputation of missing data. CRC
Press, 2018. 3

[VAMHO8] VAN DER MAATEN L., HINTON G.: Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008). 3

[VLB*17] VALINDRIA V. V., LAVDAS 1., BAT W., KAMNITSAS K.,
ABOAGYE E. O., ROCKALL A. G., RUECKERT D., GLOCKER B.: Re-
verse classification accuracy: Predicting segmentation performance in
the absence of ground truth. IEEE Transactions on Medical Imaging
36, 8 (2017), 1597-1606. 2, 3

[ZCH*20] ZHAO Z., CHEN A., HOU W., GRAHAM J. M., L1 H., RICH-
MAN P. S., THODE H. C., SINGER A. J., DUONG T. Q.: Prediction
model and risk scores of ICU admission and mortality in COVID-19.
PloS one 15,7 (2020), e0236618. 1,2, 4

[ZR21] ZEBIN T., REZVY S.: COVID-19 detection and disease progres-
sion visualization: Deep learning on chest X-rays for classification and
coarse localization. Applied Intelligence 51,2 (2021), 1010-1021. 2

[ZVA*20] ZWANENBURG A., VALLIERES M., ABDALAH M. A.,
AERTS H. J. W. L., ET AL.: The image biomarker standardization ini-
tiative: Standardized quantitative radiomics for high-throughput image-
based phenotyping. Radiology 295, 2 (2020), 328-338. 2


http://arxiv.org/abs/1801.05746
https://doi.org/10.7937/TCIA.BBAG-2923
https://doi.org/10.7937/TCIA.BBAG-2923



